数学模型灰色系统方法建模灰色关联与优势分析

合集下载

灰色系统建模_-PPT精品文档53页

灰色系统建模_-PPT精品文档53页

x (1) (t ) 1 ( x (1) (k ) x (1) (k 1)) 2

X 0 k
1

a

1 2
(
x
(1)
(
k
)

x (1) (k

1)
)



31
设 ˆ
为待估参数向量,ˆ

a



,可利用
最小二乘法求解。解得:
ˆBTB1BTYn
13
第二步:求序列差
2 0 ,0 .1 1 6 ,0 .1 9 9 ,0 .2 3 3
3 0 ,0 .0 2 3 ,0 .1 0 6 ,0 .1 1 5 4 0 ,0 .0 6 7 ,0 .1 1 8 ,0 .2 1 3
第三步:求两极差
Mmaxmaxi k0.233 mminmini k0
6
二、灰色关联分析
• 灰色关联分析根据因素间发展态势的相似 或相异程度,来衡量因素之间的关联程度 的一种系统分析方法。
• 其基本思想是根据序列曲线几何形状的相 似程度来判断其联系是否紧密。曲线越接 近,相应序列之间的关联度就越大,反之 就越小。
7
8
关联度
灰色关联分析通过计算系统内各因素间的关联度进 行系统分析,在计算关联度之前需先计算关联系数。 (1)关联系数
14
第四步:计算关联系数 取ρ=0.5,有:
1ikik0.1 01 .16 17 6 ,i 5 72,3 5,4
从而:
12111220.501 1230.370 1240.334
13111320.836 1330.525 1340.505

灰色系统理论的应用

灰色系统理论的应用

灰色系统理论的应用灰色系统理论是一种基于不完全信息、缺乏数据和知识的系统分析方法。

它是由我国著名学者李兴钢教授于上世纪80年代提出的,是一种集数学、统计、经济、管理、环境等多学科为一体的理论体系。

在实际应用中,灰色系统理论可以通过对已有数据的预处理、模型建立、模型检验、模型应用等步骤来解决实际问题。

一、灰色系统理论的优点相比较于其他的统计与预测方法,灰色系统理论的特点主要有以下几个:1. 灰色系统理论可以通过对有限或者不确定的历史数据进行分析,得到一些有用的信息。

2. 灰色系统理论适合处理小样本、非稳态、非线性等情况下的系统分析。

3. 灰色系统理论可以得出相对较为精确但是不需过多历史数据的预测结果,这对于预测风险较高的领域非常有用。

二、灰色系统理论应用的具体场景灰色系统理论在很多领域得到了广泛应用,以下是一些典型的应用场景:1. 企业管理在企业的生产经营中,灰色系统理论可以通过对生产数据、销售数据、库存数据等进行分析,帮助企业管理人员制定合理的生产计划、销售策略和库存控制策略。

同时,灰色系统理论也能较为准确地预测某种商品的需求情况,有助于企业制定产销计划并减少存货积压。

2. 金融风险控制在金融领域,灰色系统理论可以用于控制风险,规避可能出现的金融波动和风险事件。

它可以通过大量的历史数据,去发现其中蕴含的信息和规律,并将其运用到风险控制中。

3. 能源管理对于电力、煤炭、石油等能源行业,灰色系统理论可以用于分析煤炭储量、电力供需情况、石油开采效果等问题。

同时还可以对得到了地下水位与地温的数据,预测天然气的渗透性、储量与分布规律。

4. 医疗领域在医疗领域,灰色系统理论可以用于预测疾病的流行趋势、治疗效果和疾病的概率。

同时,它也可以用于分析不同治疗方式造成的费用差异,并为医疗机构提供合理的方案。

三、灰色系统理论的应用案例以下是几个具体的应用案例:1. 预测手机销售某通讯公司通过调查与分析了解到,在某一段时间内销售的手机数量与之前销售的时间和数量有关系。

灰色关联分析

灰色关联分析

灰色关联分析灰色关联分析是一种常用于研究和预测多个影响因素之间关联程度的方法。

该分析方法可以通过对各个因素的数值进行比较,得出它们之间的关联强度,从而为决策提供依据。

下面将详细介绍灰色关联分析的原理、应用以及优势。

灰色关联分析的原理基于灰色系统理论,该理论是中国科学家陈纳德于1982年提出的一种对部分已知和部分未知信息进行分析的数学方法。

灰色关联分析将各个影响因素的数据进行标准化处理,然后计算各个因素之间的关联度。

通过对关联度进行排序,即可得出影响因素之间的关联程度大小。

灰色关联分析在各个领域都有广泛的应用,比如经济学、管理学、环境科学等。

在经济学领域,可以使用灰色关联分析来研究不同经济指标之间的关联程度,从而预测未来的经济趋势。

在管理学中,可以利用灰色关联分析来研究不同管理指标之间的关联程度,进而指导管理决策。

在环境科学领域,可以运用灰色关联分析来分析各个环境因素对生态系统的影响程度,以及控制污染等。

灰色关联分析相对于其他分析方法有一些独特的优势。

首先,它不要求数据分布满足正态分布等数学假设,可以对数据进行较好的处理。

其次,灰色关联分析可以处理样本量较小的情况,对于样本量不足的数据分析也有较好的适用性。

此外,由于灰色关联分析能够捕捉到数据之间的内在联系,因此对于某些非线性关系的分析,其结果可能更加准确。

然而,灰色关联分析也存在一些限制和不足之处。

首先,该分析方法依赖于数据的稳定性,对于非稳态的数据可能会导致分析结果不准确。

其次,灰色关联分析无法处理存在时间滞后效应的数据。

此外,该方法对数据的标准化要求较高,如果数据质量较差或者存在异常值,也会影响分析结果。

综上所述,灰色关联分析是一种研究和预测多个影响因素之间关联程度的有效方法。

它的原理基于灰色系统理论,可以在各个领域中广泛应用。

灰色关联分析相对于其他分析方法有一些独特的优势,但也存在一定限制。

在实际应用中,我们应该结合具体情况,合理选择分析方法,并充分考虑其适用性和局限性,以提高分析和决策的准确性。

数模选修灰色预测与灰色关联度分析详解

数模选修灰色预测与灰色关联度分析详解
3
三种不确定性系统研究方法的比较分析
(灰色系统理论、概率统计、模糊数学)
项目 研究对象 基础集合 方法依据 途径手段 数据要求 侧重点
目标 特色
灰色系统 贫信息不确定
灰色朦胧集 信息覆盖 灰序列算子 任意分布
内涵 现实规律 小样本
概率统计 随机不确定
康托集 映射
频率统计 典型分布
内涵 历史统计规律
r 0 1 r 0 5 r 0 3 r 0 6 r 0 2 r 0 4
28
存在的问题及解决方法
29
《灰色预测与决策模型研究》 党耀国 刘思峰等著 科学出版社
本书中提及了一些其它的灰色关联度,如绝对关联度,相对关联度等 等,并且针对各自的适 用范围进行了讨论。 所以如果是在数学建模的过程中,我们可以根据实际的需要,确定我们的关联度的计算公式。
=0.5
1(1)1 0 0 0..5 5 7 70.778,1(2)0 0 0 0..5 5 7 71.000 1(3)= 0.778, 1(4)= 0.636, 1(5)= 0.467, 1(6)= 0.333 1(7)= 1.000,
26
同理得出其它各值,见下表
编号
i(1) i(2 ) i(3) i(4 ) i(5) i(6 ) i(7 )
33
令 x(0)为 原 始 序 列 ,x(0)[x(0)(1),x(0)(2), ,x(0)(n)],
记 生 成 数 为 x(1),x(1)[x(1)(1),x(1)(2), ,x(1)(n)],如 果
x(1)与 x(0)之 间 满 足 如 下 关 系 :
k
x (1 )(k ) x (0 )(i);k 1 ,2 , ,n i 1
例:x (0) =(3.2,3.3,3.4,3.6,3.8) 求 x(1)(k) 解:

灰色关联度分析方法模型

灰色关联度分析方法模型

灰色关联度分析方法模型灰色综合评价主要是依据以下模型:R=Y×W式中,R 为M 个被评价对象的综合评价结果向量;W 为N 个评价指标的权重向量;E 为各指标的评判矩阵,(矩阵略))(k i ξ为第i 个被评价对象的第K 个指标与第K 个最优指标的关联系数。

根据R 的数值,进行排序。

(1)确定最优指标集设],,[**2*1n j j j F =,式中*k j 为第k 个指标的最优值。

此最优序列的每个指标值可以是诸评价对象的最优值,也可以是评估者公认的最优值。

选定最优指标集后,可构造矩阵D (矩阵略)式中i k j 为第i 个期货公司第k 个指标的原始数值。

(2)指标的规范化处理由于评判指标间通常是有不同的量纲和数量级,故不能直接进行比较,为了保证结果的可靠性,因此需要对原始指标进行规范处理。

设第k 个指标的变化区间为],[21k k j j ,1k j 为第k 个指标在所有被评价对象中的最小值,2k j 为第k 个指标在所有被评价对象中的最大值,则可以用下式将上式中的原始数值变成无量纲值)1,0(∈i k C 。

i k k k i k i kj j j j C --=21,m i ,2,1=,n k ,,2,1 =(矩阵略) (3)计算综合评判结果根据灰色系统理论,将],,,[}{**2*1*n C C C C =作为参考数列,将],,,[}{21i n i i C C C C =作为被比较数列,则用关联分析法分别求得第i 个被评价对象的第k 个指标与第k 个指标最优指标的关联系数,即i k k k i i k k i k k k i i k k k iC C C C C C C C k -+--+-=****i max max max max min min )ρρξ(式中)1,0(∈ρ,一般取5.0=ρ。

这样综合评价结果为:R=ExW若关联度i r 最大,说明}{C 与最优指标}{*C 最接近,即第i 个被评价对象优于其他被评价对象,据此可以排出各被评价对象的优劣次序。

时序预测中的灰色模型介绍(十)

时序预测中的灰色模型介绍(十)

时序预测中的灰色模型介绍时序预测是一种应用广泛的数据分析方法,它可以帮助我们预测未来一段时间内的数据趋势。

而在时序预测中,灰色模型是一种常用的模型之一。

本文将介绍灰色模型的基本原理、应用范围和优缺点。

一、灰色模型的基本原理灰色系统理论最早由中国科学家陈裕昌教授提出,它是一种用于处理少量数据和缺乏信息的系统分析方法。

灰色模型的基本原理是通过对数据进行灰色关联分析、灰色预测等处理,来实现对未来时序数据的预测。

灰色模型的关键在于建立数据的灰色关联度,通过对数据进行加权处理,将不规则的数据变为规则的规整数据,进而实现对未来数据的预测。

这种方法不仅可以用于单变量时序数据的预测,还可以用于多变量时序数据的预测,具有一定的灵活性和适用范围。

二、灰色模型的应用范围灰色模型在实际应用中具有广泛的应用范围,主要包括以下几个方面:1. 经济领域:灰色模型可以用于对经济指标的预测,如国内生产总值、消费指数、失业率等。

通过对这些指标的预测,可以帮助政府和企业制定发展战略和政策。

2. 工业领域:灰色模型可以用于对工业生产数据的预测,如原材料价格、产量、需求量等。

这对于企业的生产计划和库存管理具有重要意义。

3. 环境领域:灰色模型可以用于对环境数据的预测,如空气质量、水质数据等。

通过对这些数据的预测,可以帮助政府和环保部门采取相应的措施来改善环境。

4. 医疗领域:灰色模型可以用于对医疗数据的预测,如疾病发病率、病人数量、医疗资源需求等。

这对于医院和卫生部门的资源配置和医疗服务规划具有重要意义。

三、灰色模型的优缺点灰色模型作为一种时序预测方法,具有以下优点:1. 适用范围广:灰色模型可以处理各种类型的时序数据,包括线性和非线性数据,适用范围广泛。

2. 数据要求低:灰色模型对数据的要求相对较低,对于缺乏信息或者数据量较少的情况也可以进行预测。

3. 预测精度高:灰色模型在一定范围内可以取得较高的预测精度,对于短期和中期的预测效果较好。

灰色理论模型


y (k)
y(0) (k 1) X
y(0) (k)
(k 2,3,, n)
18
2. 建立模型GM(1,1)
按前面的方法建立模型GM(1,1),则可以得到预测值:
xˆ (1) (k 1) x(0) (1) b eak b (k 1,2,, n 1)
a
a
而且:
xˆ (0) (k 1) xˆ (1) (k 1) xˆ (1) (k) (k 1,2,, n 1)
则称 x(1) (k) 为数列 x (0) 的1- 次累加生成,数列
x(1) x(1) (1), x(1) (2),, x(1) (n) 称为数列 x (0) 的1- 次累加生成数列
k
类似地有 x(r) (k) x(r1) (i) (k 1,2,, n, r 1) 称之为 x (0) 的 i 1
22
表1:商品的零售额(单位:亿元)
年代
1997 1998 1999 2000 2001 2002 2003
1月 2月 3月 4月 5月 6月 7月 8月 9月 10月 11月 12月
83.0 79.8 78.1 85.1 86.6 88.2 90.3 86.7 93.3 92.5 90.9 96.9 101.7 85.1 87.8 91.6 93.4 94.5 97.4 99.5 104.2 102.3 101.0 123.5 92.2 114.0 93.3 101.0 103.5 105.2 109.5 109.2 109.6 111.2 121.7 131.3 105.0 125.7 106.6 116.0 117.6 118.0 121.7 118.7 120.2 127.8 121.8 121.9 139.3 129.5 122.5 124.5 135.7 130.8 138.7 133.7 136.8 138.9 129.6 133.7 137.5 135.3 133.0 133.4 142.8 141.6 142.9 147.3 159.6 162.1 153.5 155.9 163.2 159.7 158.4 145.2 124 144.1 157.0 162.6 171.8 180.7 173.5 176.5

灰色关联分析模型


模型优化
01
改进灰色关联分析模型的计算方 法,提高模型的准确性和稳定性 。
02
引入人工智能和机器学习技术, 实现灰色关联分析模型的自适应 和智能化。
应用拓展
将灰色关联分析模型应用于更多领域 ,如金融、能源、环境等,挖掘各领 域数据之间的关联关系。
结合其他数据分析方法,形成更为综 合和全面的数据分析体系。
THANKS
感谢观看
通过灰色关联分析,可以挖掘出数据之间的内在联系,为决策提供依据,有助于提 高决策的科学性和准确性。
灰色关联分析模型的基本概念
灰色关联分析
灰色关联分析是一种基于因素之间发 展趋势相似或相异程度的分析方法, 用于衡量因素之间的关联程度。
灰色关联序
灰色关联序是根据灰色关联度的大小 对因素进行排序,从而找出主要影响 因素和次要影响因素。
灰色关联分析模型
• 引言 • 灰色关联分析模型的理论基础 • 灰色关联分析模型的实例应用 • 灰色关联分析模型的优缺点 • 灰色关联分析模型的发展趋势和展望
01
引言
灰色关联分析模型的背景和意义
灰色关联分析模型是一种用于处理不完全信息或不确定信息的数学方法,广泛应用 于经济、社会、工程等领域。
在实际应用中,由于数据的不完全性和不确定性,许多问题难以得到准确的分析和 预测。灰色关联分析模型的出现,为这类问题提供了有效的解决方案。
灰色关联度
灰色关联度是灰色关联分析中的核心 概念,表示因素之间的关联程度。通 过计算灰色关联度,可以判断各因素 之间的相似或相异程度。
灰色关联矩阵
灰色关联矩阵是表示因素之间关联程 度的矩阵,通过矩阵可以直观地看出 各因素之间的关联程度。
02
灰色关联分析模型的理论基础

灰色关联度分析方法模型

灰色关联度分析方法模型灰色综合评价主要是依据以下模型:R=Y×W式中,R 为M 个被评价对象的综合评价结果向量;W 为N 个评价指标的权重向量;E 为各指标的评判矩阵,(矩阵略))(k i ξ为第i 个被评价对象的第K 个指标与第K 个最优指标的关联系数。

根据R 的数值,进行排序。

(1)确定最优指标集设],,[**2*1n j j j F =,式中*k j 为第k 个指标的最优值。

此最优序列的每个指标值可以是诸评价对象的最优值,也可以是评估者公认的最优值。

选定最优指标集后,可构造矩阵D (矩阵略)式中i k j 为第i 个期货公司第k 个指标的原始数值。

(2)指标的规范化处理由于评判指标间通常是有不同的量纲和数量级,故不能直接进行比较,为了保证结果的可靠性,因此需要对原始指标进行规范处理。

设第k 个指标的变化区间为],[21k k j j ,1k j 为第k 个指标在所有被评价对象中的最小值,2k j 为第k 个指标在所有被评价对象中的最大值,则可以用下式将上式中的原始数值变成无量纲值)1,0(∈i k C 。

i k k k i k i kj j j j C --=21,m i ,2,1=,n k ,,2,1 =(矩阵略) (3)计算综合评判结果根据灰色系统理论,将],,,[}{**2*1*n C C C C =作为参考数列,将],,,[}{21i n i i C C C C =作为被比较数列,则用关联分析法分别求得第i 个被评价对象的第k 个指标与第k 个指标最优指标的关联系数,即i k k k i i k k i k k k i i k k k iC C C C C C C C k -+--+-=****i max max max max min min )ρρξ(式中)1,0(∈ρ,一般取5.0=ρ。

这样综合评价结果为:R=ExW若关联度i r 最大,说明}{C 与最优指标}{*C 最接近,即第i 个被评价对象优于其他被评价对象,据此可以排出各被评价对象的优劣次序。

灰色预测模型的优化及其应用


偏残差灰色预测模型的优化
1 2 3
偏残差灰色预测模型的基本原理
通过对原始数据序列的偏残差进行修正,提高灰 色预测模型的精度。
优化方法一
考虑非等间距序列:在偏残差灰色预测模型中考 虑非等间距序列的影响,可以更准确地反映原始 数据的变化规律。
优化方法二
引入非线性函数:在偏残差灰色预测模型中引入 非线性函数,可以更准确地描述原始数据序列的 变化规律。
05
结论
研究成果总结
灰色预测模型在处理具有不完整、不确定信息的问题上具有优势,能够克服数据量 小、信息不完全等限制。
通过引入优化方法,灰色预测模型在预测精度、稳定性和泛化性能等方面都得到了 显著提升。
灰色预测模型在多个领域具有广泛的应用价值,如经济、环境、医学等,为相关领 域的科学研究提供了新的思路和方法。
灰色神经网络预测模型的优化
01
灰色神经网络预测模型的基本原理
利用神经网络的自学习能力,对灰色预测模型进行优化。
02
优化方法一
选择合适的网络结构:根据历史数据选择合适的网络结构,可以提高灰
色神经网络预测模型的泛化能力。
03
优化方法二
采用集成学习算法:将多个灰色神经网络模型的预测结果进行集成,可
以提高预测精度。
灰色预测模型与其他模型的组合研究
01
02
03
集成学习
将灰色预测模型与其他预 测模型进行集成,通过集 结多个模型的优点,提高 预测精度。
混合模型
将灰色预测模型与其他模 型进行混合,以充分利用 各种模型的优势,提高预 测性能。
多模型融合
将多个灰色预测模型进行 融合,通过综合多个模型 的预测结果,提高预测精 度。
基于大数据和人工智能的灰色预测模型研究
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021/3/24
第3页/共22页
因素分析的基本方法过去主要是采用回归分析 等办法,但回归分析的办法有很多欠缺,如要求大量 数据、计算量大以及可能出现反常情况等。为克服以 上弊病,本节采用灰色关联度分析的办法来做系统分 析。
2021/3/24
第4页/共22页
一、灰色关联度
选取参考数列
X0 {X0 (k) k 1,2,, n} (X0 (1), X0 (2),, X0 (n))
第10页/共22页
1985 15.64 15.30 16.56 14.04 2.64 100 80 85 16.40 17.95 15.88 16.87 7.54 140 90 4"06 12"72
1986 15.69 15.02 17.30 13.46 2.59 105 80 90 17.05 19.30 15.70 17.82 7.70 140 95 3"99 12"56
2021/3/24
第2页/共22页
例如人们关心的人口问题构成一个系统,影响人 口发展变化的因素有社会方面的诸如计划生育、社会 治安、社会生活方式等;有经济方面的诸如国民收入、 社会福利、社会保险等;还有医疗方面的诸如医疗条 件、医疗水平等……也就是说,人口是多种因素互相 关联、互相制约的系统,对这些因素进行分析将有助 于人们对人口的未来预测及人口控制工作。
2021/3/24
第1页/共22页
§1 灰色关联度与优势分析
大千世界里的客观事物往往现象复杂,因素繁 多。我们经常要对系统进行因素分析,这些因素中哪 些对系统来讲是主要的,哪些是次要的,哪些需要发 展,哪些需要抑制,哪些是潜在的,哪些是明显的。 一般来讲,这些都是我们极为关心的问题。事实上, 因素间关联性如何、关联程度如何量化等问题是系统 分析的关键。
客观世界的很多实际问题,其内部
的结构、参数以及特征并未被人们全部 了解,人们不可能象研究白箱问题那样 将其内部机理研究清楚,只能依据某种 思维逻辑与推断来构造模型。对这类部 分信息已知而部分信息未知的系统,我 们称之为灰色系统。本章介绍的方法是 从灰色系统的本征灰色出发,研究在信 息大量缺乏或紊乱的情况下,如何对实 际问题进行分析和解决。
Xi
1,
X i (1) , X i (2)
X i (1) , X i (3)
X i (1) , X i (4)
Xi Xi
(1) (5)
2021/3/24
i
k
max max
i
k
X0
X 0 (k) (k) X
X i (k)
i
(k
)
(1)
第5页/共22页
为比较数列 X i 对参考数列 X 0 在 k 时刻的关联系数,其 中 [0,) 为分辨系数。一般来讲,分辨系数 [0,1],
由(1)容易看出, 越大,分辩率越大; 越小,分 辩率越小。
式(1)定义的关联系数是描述比较数列与参考数 列在某时刻关联程度的一种指标,由于各个时刻都有一
2021/3/24
第8页/共22页
二、铅球运动员专项成绩的因素分析 通过对某健将级女子铅球运动员的跟踪调查,获
得其 1982~1986 年每年最好成绩及 16 项专项素质和 身体素质的时间序列资料,见下表。
2021/3/24
第9页/共22页
指标
铅球专项成绩
X0
4 公斤前抛
X1
4 公斤后抛
X2
4 公斤原地
X3
立定跳远
X4
高翻
X5
抓举
X6
卧推
X7
3 公斤前抛
X8
3 公斤后抛
X9
3 公斤原地
X 10
3 公斤滑步
X 11
立定三级跳远
X 12
全蹲
X 13
挺举
X 14
30 米起跑
X 15
100

2021/3/24
X 16
1982 13.60 11.50 13.76 12.21 2.48 85 55 65 12.80 15.30 12.71 14.78 7.64 120 80 4"20 13"10
我们对表中的 16 个数列进行初始化处理。注意, 对于前 14 个数列,随着时间的增加,数值的增加意 味着运动水平的进步,而对后两个数列来讲,随着时
间的增加,数值(秒数)的减少意味着运动水平的进
步。因此,在对数列 X 15=(4"20,4"25,4"10,4"06, 3"99)及数列 X 16=(13"10,13"42,12"85,12"72, 12"56)进行初始化处理时,采用以下公式
1983 14.01 13.00 16.36 12.70 2.49 85 65 70 15.30 18.40 14.50 15.54 7.56 125 85 4"25 13"42
1984 14.54 15.15 16.90 13.96 2.56 90 75 75 16.24 18.75 14.66 16.03 7.76 130 90 4"10 12"85
个关联系数,因此信息显得过于分散,不便于比较,为
此我们给出
ri
1 n
n k 1
i (k)
为比2021较/3/24数列 X i 对参考数第列6页X/共02的2页关联度。
(2)
由式(2)容易看出,关联度是把各个时刻的关 联系数集中为一个平均值,即把过于分散的信息集中 处理。利用关联度这个概念,我们可以对各种问题进 行因素分析。在利用(1)和(2)计算关联度之前, 我们还需要对各个数列做初始化处理。一般来讲,实 际问题中的不同数列往往具有不同的量纲,而我们在 计算关联系数时,要求量纲要相同。因此要首先对各 种数据进行无量纲化。另外,为了易于比较,要求所 有数列有公共的交点。
其中 k 表示时刻。
假设有 m 个比较数列
Xi {Xi (k) k 1,2,, n} ( Xi (1), Xi (2),, Xi (n)) (i 1,2,, m)
则称
i (k)
2021/3/24
min i
min k X0
X 0 (k) (k) X
X i (k)
i
(k
)
max max
2021/3/24
第7页/共22页
为了解决上述两个问题,我们对给定数列进行变 换。给定数列 X (X (1), X (2),, X (n)),称
X
1,
X (2) , X (1)
X (3) ,, X (1)
X (n) X (1)
பைடு நூலகம்
(3)
为原始数列 X (X (1), X (2),, X (n))的初始化数列。
相关文档
最新文档