灰色关联分析法原理及解题步骤

合集下载

第十章 灰色关联分析法

第十章 灰色关联分析法



如果对 X (0) (k ) 作r次累加,用公式
x (k ) x ( r 1) (i)
(r ) i 1
k
(9-7)
则得到r次累加生成序列
X ( r ) (k ) x( r ) (1), x( r ) (2),, x( r ) (n)
由(9-7)式,可以得到递推关系式
k 1 i 1
第十章 灰色关联分析法

第一部分:简介 第二部分:基本原理 第三部分:主要内容 第四部分:研究方法 第五部分:应用
第一部分:灰色系统理论简介
一、产生背景 二、发展 三、基本概念
一、灰色系统理论产生的背景


人们在社会、经济活动或科学研究过程中,经常会 遇到信息不完全的情形。 请看下面的例子: 例1:在农业生产中,即使播种面积、种子、化肥、 灌溉条件等信息完全明确,但由于劳动力技术水平、 气候条件、市场行情等信息不明确,仍然难以准确 地预计出产量、产值; 例2:价格体系的调整或改革,常常因为缺乏民众心 理承受力的信息,以及某些商品价格变动对其它商 品价格影响的确切信息而步履维艰。
第三部分:灰色系统理论的主要内容


以灰色代数系统、灰色方程、灰色矩阵等为基 础的理论体系; 以灰色序列生成为基础的方法体系; 以灰色关联空间为依托的分析体系; 以灰色模型( GM) 为核心的模型体系; 以系统分析、评估、建模、预测、决策、控制、 优化为主体的技术体系。
第四部分:灰色系统理论的研究方法
2 (k ) (1,0.24,0.17,0.17,0.29,0.22,0.15,0.1,0.24,0.14,0.1,0.2,0.22,0.14,0.2,0.18.0.21,
0.1,0.22,0.16,0.21,0.13,0.13,0.23,0.17,0.19,0.14)

灰色关联分析(算法步骤)

灰色关联分析(算法步骤)

灰色关联分析灰色关联分析是指对一个系统发展变化态势的定量描述和比较的方法,其基本思想是通过确定参考数据列和若干个比较数据列的几何形状相似程度来判断其联系是否紧密,它反映了曲线间的关联程度[1]。

灰色系统理论是由著名学者邓聚龙教授首创的一种系统科学理论(Grey Theory),其中的灰色关联分析是根据各因素变化曲线几何形状的相似程度,来判断因素之间关联程度的方法。

此方法通过对动态过程发展态势的量化分析,完成对系统内时间序列有关统计数据几何关系的比较,求出参考数列与各比较数列之间的灰色关联度。

与参考数列关联度越大的比较数列,其发展方向和速率与参考数列越接近,与参考数列的关系越紧密。

灰色关联分析方法要求样本容量可以少到4个,对数据无规律同样适用,不会出现量化结果与定性分析结果不符的情况。

其基本思想是将评价指标原始观测数进行无量纲化处理,计算关联系数、关联度以及根据关联度的大小对待评指标进行排序。

灰色关联度的应用涉及社会科学和自然科学的各个领域,尤其在社会经济领域,如国民经济各部门投资收益、区域经济优势分析、产业结构调整等方面,都取得较好的应用效果。

[2]关联度有绝对关联度和相对关联度之分,绝对关联度采用初始点零化法进行初值化处理,当分析的因素差异较大时,由于变量间的量纲不一致,往往影响分析,难以得出合理的结果。

而相对关联度用相对量进行分析,计算结果仅与序列相对于初始点的变化速率有关,与各观测数据大小无关,这在一定程度上弥补了绝对关联度的缺陷。

[2]灰色关联分析的步骤[2]灰色关联分析的具体计算步骤如下:第一步:确定分析数列。

确定反映系统行为特征的参考数列和影响系统行为的比较数列。

反映系统行为特征的数据序列,称为参考数列。

影响系统行为的因素组成的数据序列,称比较数列。

设参考数列(又称母序列)为Y={Y(k) | k= 1,2,Λ,n};比较数列(又称子序列)X i={X i(k) | k= 1,2,Λ,n},i= 1,2,Λ,m。

第四章 灰色关联度评价法

第四章 灰色关联度评价法

第四章灰色关联度评价法1982年,华中理工大学邓聚龙教授首先提出了灰色系统得概念,并建立了灰色系统理论.之后,灰色系统理论得到了较深入的研究,并在许多方面获得了成功得应用.灰色系统理论认为,人们对客观事物得认识具有广泛得灰色性,即信息的不完全性和不确定性,因而由客观事物所形成得是一种灰色系统,即部分信息已知、部分信息未知得系统.比如社会系统、经济系统、生态系统等都可以看作是灰色系统..人们对综合评价的对象—被评价事物的认识也具有灰色性,因而可以借助于灰色系统的相关理论来研究综合评价问题.下面首先介绍灰色关联分析方法,然后探讨其在综合评价中应用的一些问题.一、灰色关联分析方法灰色关联分析(GRA)是一种多因素统计分析方法,它是以各因素的样本数据为依据用灰色关联度来描述因素间关系得强弱、大小和次序的.如果样本数据列反映出两因素变化的态势(方向、大小、速度等)基本一致,则它们之间得关联度较大;反之,关联度较小.与传统的多因素分析方法(相关、回归等)相比,灰色关联分析对数据要求较低且计算量小,便于广泛应用.GRA分析得核心是计算关联度,下面通过一个例子来说明计算关联度得思路和方法.表5-3是某地区1990~1995年国内生产总值得统计资料.现在提出这样得问题:该地区三次产业中,哪一产业产值得变化与该地区国内生产总值(GDP)的变化态势更一致呢?也就是哪一产业与GDP的关联度最大呢?这样得问题显然是很有实际意义的.一个很自然的想法就是分别将三次产业产值的时间序列与GDP 的时间序列进行比较,为了能够比较,先对各序列进行无量纲化,这里采用均值化法.各序列得均值分别为:2716,461.5,1228.83,1025.67,表5-3中每列数据除以其均值可表5-3 某地区国内生产总值统计资料(百万元)得均值化序列(如表5-4所示).粗略地想一下,两序列变化的态势是表现在其对应点的间距上.如果各对应点间距均较小,则两序列变化态势的一致性强,否则,一致性弱.分别计算各产业产值与GDP在对应期的间距(绝对差值),结果见表5-5.接下来表5-4表5-5似乎应该是对三个绝对差值序列分别求平均再进行比较,就可以解决问题了.但如果仔细观察表5-5中数据就会发现绝对差值数据序列的数据间存在着较大的数量级差异(最大为0.1857,最小的为0.0006,相差300多倍),不能直接进行综合,还需要对其进行一次规范化.设(max)∆分别表示表5-5中绝对差∆和(min)值)(0t i ∆的最大数和最小数,则(m ax ))((m in)00∆≤∆≤∆≤t i因而1(max ))((max )(min)00≤∆∆≤∆∆≤t i显然(max ))(0∆∆t i 越大,说明两序列i x 和0x 变化态势一致性弱,反之,一致性强,因此可考虑将(max ))(0∆∆t i 取倒反向.为了规范化后数据在[0,1]内,可考虑(max ))((max )(min)0∆∆∆∆t i由于在一般情况下(min)∆可能为零(即某个)(0t i ∆为零),故将上式改进为)((max ))((max )(min)00t t i i ερρ∆=+∆∆+∆∆ρ在0和1之间取值.上式可变形为1995,,1990,3,2,1(max))((max)(min))(00 ==∆+∆∆+∆=t i t t i i ρρε (5-6))(0t i ε称为序列i x 和序列0x 在第t 期的灰色关联系数(常简称为关联系数).由(5-6)式可以看出,ρ取值的大小可以控制(max)∆对数据转化的影响, ρ取较小的值,可以提高关联系数间差异的显著性,因而称ρ为分辨系数.利用(5-6)式对表5-5中绝对差值)(0t i ∆进行规范化,取ρ=0.4,结果见表5-6.以)1990(01ε计算为例:4191.01857.04.01044.01857.04.00006.0)1990(1857.0(max),0006.0(min)01=⨯+⨯+==∆=∆ε 同样可计算出表5-6中其余关联系数.表5-6最后分别对各产业与GDP 的关联系数序列求算术平均可得7209.0)4758.000.17338.05213.07257.08687.0(615760.0)3510.06141.08761.04903.05178.06067.0(614571.0)2881.03696.07055.05808.03796.04191.0(61010101=+++++==+++++==+++++=r r ri r 0称为序列0x 和)3,2,1(=i x i 的灰色关联度.由于010203r r r >>,因而第三产业产值与GDP 的关联度最大,其次是第二产业、第一产业.从上例可以看出,灰色关联分析需要经过以下几个步骤:1.确定分析序列在对所研究问题定性分析的基础上,确定一个因变量因素和多个自变量因素.设因变量数据构成参考序列0X ',各自变量数据构成比较序列1),,,2,1(+='n n i X i 个数据序列形成如下矩阵:(5-7)其中n i N x x x X T i i i i ,,2,1,))(,,2(),1(( ='''=' N 为变量序列的长度.)1(110110)()()()2()2()2()1()1()1(),,,(+⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡'''''''''='''n N nnnn N x N x N x x x x x x x X X X无论是时间序列数据、指标序列数据还是横向序列数据都可以用来作关联分析。

灰色关联分析

灰色关联分析

灰色关联分析简介灰色关联分析是一种用于评估多个因素之间相关性的统计分析方法。

它可以帮助我们理解一组因素对于某个指标的影响程度,并且可以用来预测未来的趋势。

原理灰色关联分析基于灰色理论,其核心思想是将样本数据转化为灰色数列,然后通过计算灰色相关度来评估因素之间的关联性。

在灰色关联分析中,我们首先需要确定一个参考数列和一个比较数列,然后根据数列的发展趋势和规律性对它们进行排序。

最后,通过计算两个数列之间的关联度来评估它们之间的关联程度。

灰色关联度的计算方法灰色关联度可以通过以下公式计算:$$ \\rho(i,j) = \\frac{{\\min(\\Delta^*+(k-1)\\Delta^*,\\Delta^*+\\delta^*+(k-1)\\Delta^*,\\Delta^*-\\delta^*+(k-1)\\Delta^*)}}{{\\max(\\Delta^*+(k-1)\\Delta^*,\\Delta^*+\\delta^*+(k-1)\\Delta^*,\\Delta^*-\\delta^*+(k-1)\\Delta^*)}} $$其中,$\\Delta^*$表示相邻数据的差值绝对值的最大值,$\\delta^*$表示数列中数据的最大值与最小值之差。

灰色关联分析步骤1.数据预处理:将原始数据进行标准化处理,使其具有可比性。

2.建立关联矩阵:根据参考数列和比较数列计算灰色关联度,并构建关联矩阵。

3.确定权重:根据关联矩阵的行列和大小确定各因素的权重,权重越大表示因素对目标的影响越大。

4.计算综合关联度:将灰色关联度与权重相乘并求和,得到各个因素的综合关联度。

5.分析结果:根据综合关联度的大小对因素进行排序和评估,得出各因素对目标的贡献程度。

适用领域灰色关联分析在许多领域都有广泛的应用,包括经济、环境、工程等。

它可以用于评估多个因素对某个现象的影响程度,帮助决策者制定合理的决策和策略。

优势与局限灰色关联分析具有以下优势:•可以在样本数据不完整或不完全的情况下进行分析。

第六章 灰色关联分析(新)

第六章 灰色关联分析(新)


社会系统、经济系统等抽象系统包含多种因素, 这些因素之间哪些是主要的,哪些是次要的, 哪些需要发展,哪些需要拟制,这些都是因素 分析的内容。回归分析是一种较通用的方法, 但大都只适用于只有少量因素的、线性的问题。 对于多因素的、非线性的问题则难以处理。灰 色系统理论提出了一种新的分析方法,即系统 的关联度分析方法。这是根据因素之间发展态 势的相似程度来衡量因素间关联程度的方法。

多目标决策的一个显著特点是目标间的 不可公度性,在评价前应对计算关联程 度的数列进行标准化处理,转化为无量 纲的数据。常用的方法有以下2种:
1、标准化函数方法

成本型标准化函数:
x j (max x j x j ) /(max x j min x j )

效益型标准化函数:
x j ( x j min x j ) /(max j min x j )

灰色系统是贫信息的系统,统计方法难 以奏效。灰色系统理论能处理贫信息系 统,适用于只有少量观测数据的项目。 灰色系统理论是我国学者邓聚龙教授于 1982年提出的。它的研究对象是“部分 信息已知,部分信息未知”、开发,实现对现实世界的确切 描述和认识。
* * 1 * 2 * n
C C , C , , C
i k

* * min min Ck Cki max max Ck Cki i * C Cki max max Ck Cki i k k * k i k
min max i k x0 k xi k max

绝对关联度的一般表达式为:
1 n ri i k n k 1

绝对值关联度是反映事物之间关联程度的一种 指标,它能指示具有一定样本长度的给定因素 之间的关联情况。但它也有明显的缺点,就是 绝对值关联度受数据中极大值和极小值的影响, 一旦数据序列中出现某个极值,关联度就会发 生变化。另外计算绝对值关联度时,需要对原 数据作无量纲化处理,比较繁琐。而且,分辨 系数的取值不同,也会导致关联系数的不惟一。

灰色关联分析法原理及解题步骤

灰色关联分析法原理及解题步骤

灰色关联分析法原理及解题步骤——-—-————--—-—-研究两个因素或两个系统的关联度(即两因素变化大小,方向与速度的相对性)关联程度-—曲线间几何形状的差别程度灰色关联分析是通过灰色关联度来分析和确定系统因素间的影响程度或因素对系统主行为的贡献测度的一种方法。

灰色关联分析的基本思想是根据序列曲线几何形状的相似程度来判断其联系是否紧密1>曲线越接近,相应序列之间的关联度就越大,反之就越小2>灰色关联度越大,两因素变化态势越一致分析法优点它对样本量的多少和样本有无规律都同样适用,而且计算量小,十分方便,更不会出现量化结果与定性分析结果不符的情况。

灰色系统关联分析的具体计算步骤如下1》参考数列和比较数列的确定参考数列——反映系统行为特征的数据序列比较数列--影响系统行为的因素组成的数据序列2》无量纲化处理参考数列和比较数列(1)初值化——矩阵中的每个数均除以第一个数得到的新矩阵(2)均值化——矩阵中的每个数均除以用矩阵所有元素的平均值得到的新矩阵(3)区间相对值化3》求参考数列与比较数列的灰色关联系数ξ(Xi)参考数列X0比较数列X1、X2、X3……………比较数列相对于参考数列在曲线各点的关联系数ξ(i)称为关联系数,其中ρ称为分辨系数,ρ∈(0,1),常取0。

5。

实数第二级最小差,记为Δmin. 两级最大差,记为Δmax. 为各比较数列Xi曲线上的每一个点与参考数列X0曲线上的每一个点的绝对差值。

记为Δoi(k).所以关联系数ξ(Xi)也可简化如下列公式:4》求关联度ri关联系数——比较数列与参考数列在各个时刻(即曲线中的各点)的关联程度值,所以它的数不止一个,而信息过于分散不便于进行整体性比较.因此有必要将各个时刻(即曲线中的各点)的关联系数集中为一个值,即求其平均值,作为比较数列与参考数列间关联程度的数量表示,关联度ri公式如下:5》排关联序因素间的关联程度,主要是用关联度的大小次序描述,而不仅是关联度的大小.将m个子序列对同一母序列的关联度按大小顺序排列起来,便组成了关联序,记为{x},它反映了对于母序列来说各子序列的“优劣"关系。

灰色关联分析方法

灰色关联分析方法

灰色关联分析方法灰色关联分析方法(Grey Relational Analysis,GRA)是一种多指标决策方法,它用于研究因素之间的关联程度。

与传统的关联分析方法相比,灰色关联分析方法具有较强的适用性和灵活性。

它可以用于分析多个指标之间的关联程度,对于复杂决策问题具有较强的应用能力。

灰色关联分析方法的基本思想是将系统的各个指标转化为灰色数列,再利用灰色关联度来评估指标之间的关联程度。

该方法可以对多个指标进行综合评价,找出各个指标之间的关联程度,并根据关联程度来进行排序和决策。

灰色关联分析方法的具体步骤如下:1. 数据预处理:将原始数据进行标准化处理,以确保各指标在同一数量级上进行比较。

2. 构建灰色数列:将标准化后的数据转化为灰色数列,通过建立灰色微分方程来描述数据序列的发展趋势。

3. 确定关联度测度:根据灰色数列的特点,选择适当的关联度测度方法来计算指标之间的关联程度。

4. 计算关联度:根据所选择的关联度测度方法,计算每个指标与其他指标之间的关联度。

5. 排序和决策:根据计算得到的关联度值进行排序,并作出相应的决策。

灰色关联分析方法的优点有以下几个方面:1. 适用性广泛:灰色关联分析方法适用于各种类型的指标数据,包括定量指标和定性指标。

2. 考虑了指标之间的时序关系:灰色关联分析方法考虑了指标数据的时序性,能够更好地反映指标之间的演变趋势。

3. 简单易行:灰色关联分析方法不需要过多的统计方法和复杂的计算过程,容易被理解和操作。

4. 提供了多指标综合评价的能力:灰色关联分析方法可以将多个指标之间的关联程度综合考虑,对于决策问题的综合评价有着较好的效果。

然而,灰色关联分析方法也存在一些限制和局限性:1. 灵敏度不高:由于灰色关联分析方法只考虑了指标之间的线性关联程度,对于非线性关系的刻画较为困难,灵敏度较低。

2. 依赖于初始数据:灰色关联分析方法对初始数据的选取较为敏感,不同的初始数据可能导致不同的关联度结果。

灰色关联分析模型及其应用的研究

灰色关联分析模型及其应用的研究

灰色关联分析模型及其应用的研究灰色关联分析模型是一种应用于研究和分析的数学方法,它可以用于解决各种实际问题。

本文将探讨灰色关联分析模型的基本原理和应用领域,并通过实例说明其在实际问题中的有效性。

一、灰色关联分析模型的基本原理灰色关联分析模型是由中国科学家陈纳德于1982年提出的。

它是一种基于信息不完全和不确定性条件下进行系统评价和决策的方法。

其基本原理是通过建立数学模型,将系统中各个因素之间的联系进行量化,并通过计算各个因素之间的关联系数,评估它们对系统变化的贡献程度。

灰色关联度是衡量两个变量之间相关程度的指标,它可以用来描述两个变量之间是否具有线性相关、非线性相关或无相关等情况。

在计算过程中,首先需要将原始数据序列进行归一化处理,然后根据序列数据计算出各个因素之间的差值序列,并确定参考值序列。

接下来,根据差值序列和参考值序列计算出各个因素之间的关联系数,最后通过对关联系数进行综合分析,得出各个因素对系统变化的贡献程度。

二、灰色关联分析模型的应用领域灰色关联分析模型可以应用于各个领域,包括经济、环境、工程、管理等。

下面将以几个具体的应用领域为例进行说明。

1. 经济领域:在经济研究中,灰色关联分析模型可以用于预测和评估经济指标之间的相关性。

例如,在宏观经济研究中,可以通过对GDP、消费指数、投资指数等因素进行灰色关联分析,评估它们对经济增长的贡献程度,并预测未来的发展趋势。

2. 环境领域:在环境保护和资源管理中,灰色关联分析模型可以用于评估不同因素之间的相关性,并制定相应的措施。

例如,在水资源管理中,可以通过对降雨量、水位变化等因素进行灰色关联分析,评估它们对水资源供需平衡的影响,并制定相应的调控措施。

3. 工程领域:在工程设计和优化中,灰色关联分析模型可以用于评估不同设计方案的优劣程度。

例如,在产品设计中,可以通过对不同设计参数的灰色关联分析,评估它们对产品性能的影响,并选择最优方案。

4. 管理领域:在管理决策中,灰色关联分析模型可以用于评估不同决策方案的风险和效益。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

灰色关联分析法原理及解题步骤
---------------研究两个因素或两个系统的关联度(即两因素变化大小,方向与速度的相对性)
关联程度——曲线间几何形状的差别程度
灰色关联分析是通过灰色关联度来分析和确定系统因素间的影响程度或因素对系统主行为的贡献测度的一种方法。

灰色关联分析的基本思想是根据序列曲线几何形状的相似程度来判断其联系是否紧密
1>曲线越接近,相应序列之间的关联度就越大,反之就越小
2>灰色关联度越大,两因素变化态势越一致
分析法优点
它对样本量的多少和样本有无规律都同样适用,而且计算量小,十分方便,更不会出现量化结果与定性分析结果不符的情况。

灰色系统关联分析的具体计算步骤如下
1》参考数列和比较数列的确定
参考数列——反映系统行为特征的数据序列
比较数列——影响系统行为的因素组成的数据序列
2》无量纲化处理参考数列和比较数列
(1)初值化——矩阵中的每个数均除以第一个数得到的新矩阵
(2)均值化——矩阵中的每个数均除以用矩阵所有元素的平均值得到的新矩阵
(3)区间相对值化
3》求参考数列与比较数列的灰色关联系数ξ(Xi)
参考数列X0
比较数列X1、X2、X3……………
比较数列相对于参考数列在曲线各点的关联系数ξ(i)
称为关联系数,其中ρ称为分辨系数,ρ∈(0,1),常取0.5.实数第二级最小差,记为Δmin。

两级最大差,记为Δmax。

为各比较数列Xi曲线上的每一个点与参考数列X0曲线上的每一个点的绝对差值。

记为Δoi(k)。

所以关联系数ξ(Xi)也可简化如下列公式:
4》求关联度ri
关联系数——比较数列与参考数列在各个时刻(即曲线中的各点)的关联程度值,所以它的数不止一个,而信息过于分散不便于进行整体性比较。

因此有必要将各个时刻(即曲线
中的各点)的关联系数集中为一个值,即求其平均值,作为比较数列与参考数列间关联程度的数量表示,关联度ri公式如下:
5》排关联序
因素间的关联程度,主要是用关联度的大小次序描述,而不仅是关联度的大小。

将m个子序列对同一母序列的关联度按大小顺序排列起来,便组成了关联序,记为{x},它反映了对于母序列来说各子序列的“优劣”关系。

若r0i>r0j,则称{xi}对于同一母序列{x0}优于{xj},记为{xi}>{xj} ;若r0i表1 代表旗县参考数列、比较数列特征值。

相关文档
最新文档