灰色关联分析算法步骤

合集下载

灰色关联分析法及其应用案例

灰色关联分析法及其应用案例
在这些因素中哪些是主要的哪些是次要的有待研究和量化分析三应用实例以输沙量为参考数列以年径流量为平均年降雨量为平均汛期降雨量为则相应的关联系数序列如下根据关联系数求关联度得年径流量与输沙量的关联程度年平均降雨量与输沙量的关联程度平均汛期降雨量与输沙量的关联程度相应的关联序为上述关联序表明对输沙量影响最大的是年径流量其次是汛期降雨量再其次是平均年降雨量
例如在社会系统中,人口是一种重要的子系统。影响人口 发展变化的有社会因素,如计划生育、社会治安、社会道德 风尚、社会的生活方式等。影响人口发展变化的因素还有经 济的,如社会福利、社会保险;还有医疗的,如医疗条件、 医疗水平等。总之,人口是多种因素互相关联、互相制约的 子系统。这些因素的分析对于控制人口、发展生产是必要的。
关联度
关联系数的数很多,信息过于分散,不便于比较,为此有 必
要将各个时刻关联系数集中为一个值,求平均值便是做这种

息处理集中处理的一种方法。ri
1 N
N
i (k)
k 1
关联度的一般表达式为:
无量纲化
无量纲化的方法常用的有初值化与均值化,区间相对值化。 初值化是指所有数据均用第1个数据除,然后得到一个新的数 列,这个新的数列即是各个不同时刻的值相对于第一个时刻
影响泥沙输入水库的因素较多,比如降雨量、径流量、植被 覆盖率等。在这些因素中哪些是主要的,哪些是次要的有待研 究和量化分析。
以输沙量为参考数列x 0 ,以年径流量为x 1 ,平均年降雨量为x 2
平均汛期降雨量为x 3 则相应的关联系数序列如下:
1 ( k ) ( 1 , 0 . 4 , 0 . 4 , 0 . 3 2 , 0 . 8 6 , 0 . 2 3 , 0 . 2 9 , 0 . 2 , 0 . 5 3 , 0 . 4 5 , 0 . 1 7 , 0 . 2 9 , 0 . 7 3 , 0 . 3 6 , 0 . 2 7 , 0 . 3 1 , 0 . 3 5

灰色关联度计算公式

灰色关联度计算公式

灰色关联度计算公式
灰色关联度是由日本学者 Deng 发明的用作测度系统之间关联程度的数学工具,它是互联网上最重要的数据分析及决策指标之一。

它可以有效地抓取两类系统之间的特征,反映他们之间关系的变化,量化两类系统个体之间的关联度程度、动态特征及稳定性,以分析及识别系统中不同对象间的相互关系。

灰色关联度分析的具体表示形式是:分析 A、B 两类系统的互联关系,可以根
据其各自的变量值,进行相互依赖、变换、叠加或引用的计算,来计算两类系统之间的关联度。

灰色关联度的公式也很简单:∆R=XAYA+XBYB,其中 XA 、YB 分别为
A类、B类的变量值,当∆R值越大,表示这两类系统之间的关联性越强。

灰色关联度在互联网领域众多应用之一是深度学习,算法中,×A、YB两者代
表不同但具有内在联系的特征,通过灰色关联度得到的∆R代表其间的关联程度,
常被用来衡量算法的性能及准确性,也有效地增加了机器学习的预测及决策准确度。

此外,灰色关联度在互联网领域还可以用作监控系统运行状态,监测用户行为
及指标、帮助企业细致把控和运营,在众多智能应用及金融风控中发挥着重要作用。

总而言之,灰色关联度是一种非常重要的系统数据分析及决策工具,它可以有
效帮助系统内建立联系,加强企业的管控和运营,也是众多互联网,智能应用,机器学习及金融风控中不可或缺的重要元素。

灰色关联分析计算实例

灰色关联分析计算实例

80.52 54.22
0.361
3.7 2.0213
50.974 50.4325 40.8828
.
2.矩阵无量纲化(初值化): X=Xij´/ Xi1´(i=1,2,3,4,5,6; j=2,3,4,5)
1
0.9496 0.8005
1 (X)= 1
0.9249 0.7948 1.0113 0.1006
X0,X1,,Xnxx001 2 x0m
x11 x12
x1m
xxnn1 2
xnm
.
常用的无量纲化方法有均值化法(见(12-3)
式)、初值化法(见(12-4)式)和 x x 变
换等。
s
xi
k
xik
1 m
mk1
xi
k
xi
k
xik xi1
i 0,1,, n;k1, 2,, m.
(123) (124)
表2 灾害直接经济损失及各相关影响因素之间的关联度
影响因素 农作物成灾面积 地震灾害损失 海洋灾害损失 森林火灾损失 地质灾害损失
关联度ri
0.9875
0.9131
0.9668
0.7103
0.9786
.
由表2的结果可以看出,灾害经济损失的各相 关影响因素对灾害直接经济损失影响的关联度 大小的顺序为: 农作物成灾面积>地质灾害损失>海洋灾害损失> 地震灾害损失>森林火灾损失 可以说明对灾害直接经济损失影响最大的是 农作物成灾面积、地质灾害损失和海洋灾害损 失,其次为地震灾害损失,森林火灾损失对灾 害直接经济损失影响程度较小。
5.求最值:
nm
minmin i1 k1
x0

第六章灰色关联度分析

第六章灰色关联度分析

M = max max ∆ i (k )
i k
m = min min ∆ i (k )
Байду номын сангаасi k
第四步, 第四步,求关联系数
m + ρM γ i (k ) = ∆ i (k ) + ρM
1 1 1
0.5010 0.8354 0.6343
0.3694 0.5244 0.4982
0.3333 0.5046 0.3536
1
1.0149
0.8060
0.7015
第二步,求差序列, 第二步,求差序列,记
∆ i (k ) = x ′ (k ) − x ′ (k ) 0 i
0 0 0
0.1163 0.0230 0.0673
0.1992 0.1058 0.1176
0.2335 0.1146 0.2134
第三步,求两级最大差和最小差, 第三步,求两级最大差和最小差,记
第一步, 确定比较序列和参考序列, 第一步 , 确定比较序列和参考序列 , 求 各序列的初值象(或均值象 或均值象), 各序列的初值象 或均值象 ,令
x ′ = x i / x i (1) i
1
0.9476
0.9236
0.9148
1
1.0639
1.1228
1.1483
1
0.9706
1.0294
1.0294
γ 13 > γ 14 > γ 12
作业
请以农业为参考序列,计算工业、 请以农业为参考序列,计算工业、 运输业、商业与农业的关联度大小。 运输业、商业与农业的关联度大小。
X0=(18,20,22,35,41,46) X1=(8,11,12,17,24,29) X2=(3,2,7,4,11,6) X3=(5,7,7,11,5,10)

两因素三水平用灰色关联法

两因素三水平用灰色关联法

灰色关联分析法是一种用于比较多个因素之间关联程度的分析方法,其基本思想是通过比较各因素之间的相似程度来评估它们之间的关联程度。

在两因素三水平的情境下,可以使用灰色关联分析法来比较三个水平之间的关联程度。

具体步骤如下:1.确定参考序列和比较序列。

参考序列是用于比较的基准序列,通常选择一个固定值或者已知的最佳水平作为参考序列。

比较序列是待比较的各个因素在不同水平下的观测值序列。

2.数据预处理。

对参考序列和比较序列进行数据预处理,包括数据清洗、缺失值处理、异常值处理等。

3.计算灰色关联度。

根据灰色关联分析法的原理,计算参考序列与各个比较序列之间的灰色关联度。

灰色关联度的计算公式为:(\gamma(x_0, x_i) = \frac{\min_i |x_0(k) - x_i(k)| + \rho \max_i |x_0(k) -x_i(k)|}{|x_0(k) - x_i(k)| + \rho \max_i |x_0(k) - x_i(k)|})其中,(x_0(k))表示参考序列在时刻k的值,(x_i(k))表示第i个比较序列在时刻k 的值,(\min_i |x_0(k) - x_i(k)|)和(\max_i |x_0(k) - x_i(k)|)分别表示第k时刻所有比较序列与参考序列的差的绝对值的最小值和最大值,(\rho)是一个分辨系数,通常取0.5。

4. 判断关联程度。

根据计算出的灰色关联度,判断各个比较序列与参考序列的关联程度。

灰色关联度越接近于1,表示关联程度越高。

通过以上步骤,可以得出各个水平之间的关联程度,从而为决策提供依据。

需要注意的是,灰色关联分析法只是一种定性的分析方法,其结果具有一定的主观性,因此在具体应用时需要根据实际情况进行合理的解释和判断。

灰色关联分析(算法步骤)

灰色关联分析(算法步骤)

灰色关联分析灰色关联分析是指对一个系统发展变化态势的定量描述和比较的方法,其基本思想是通过确定参考数据列和若干个比较数据列的几何形状相似程度来判断其联系是否紧密,它反映了曲线间的关联程度[1]。

灰色系统理论是由著名学者邓聚龙教授首创的一种系统科学理论(Grey Theory),其中的灰色关联分析是根据各因素变化曲线几何形状的相似程度,来判断因素之间关联程度的方法。

此方法通过对动态过程发展态势的量化分析,完成对系统内时间序列有关统计数据几何关系的比较,求出参考数列与各比较数列之间的灰色关联度。

与参考数列关联度越大的比较数列,其发展方向和速率与参考数列越接近,与参考数列的关系越紧密。

灰色关联分析方法要求样本容量可以少到4个,对数据无规律同样适用,不会出现量化结果与定性分析结果不符的情况。

其基本思想是将评价指标原始观测数进行无量纲化处理,计算关联系数、关联度以及根据关联度的大小对待评指标进行排序。

灰色关联度的应用涉及社会科学和自然科学的各个领域,尤其在社会经济领域,如国民经济各部门投资收益、区域经济优势分析、产业结构调整等方面,都取得较好的应用效果。

[2]关联度有绝对关联度和相对关联度之分,绝对关联度采用初始点零化法进行初值化处理,当分析的因素差异较大时,由于变量间的量纲不一致,往往影响分析,难以得出合理的结果。

而相对关联度用相对量进行分析,计算结果仅与序列相对于初始点的变化速率有关,与各观测数据大小无关,这在一定程度上弥补了绝对关联度的缺陷。

[2]灰色关联分析的步骤[2]灰色关联分析的具体计算步骤如下:第一步:确定分析数列。

确定反映系统行为特征的参考数列和影响系统行为的比较数列。

反映系统行为特征的数据序列,称为参考数列。

影响系统行为的因素组成的数据序列,称比较数列。

设参考数列(又称母序列)为Y={Y(k) | k= 1,2,Λ,n};比较数列(又称子序列)X i={X i(k) | k= 1,2,Λ,n},i= 1,2,Λ,m。

第四章 灰色关联度评价法

第四章 灰色关联度评价法

第四章灰色关联度评价法1982年,华中理工大学邓聚龙教授首先提出了灰色系统得概念,并建立了灰色系统理论.之后,灰色系统理论得到了较深入的研究,并在许多方面获得了成功得应用.灰色系统理论认为,人们对客观事物得认识具有广泛得灰色性,即信息的不完全性和不确定性,因而由客观事物所形成得是一种灰色系统,即部分信息已知、部分信息未知得系统.比如社会系统、经济系统、生态系统等都可以看作是灰色系统..人们对综合评价的对象—被评价事物的认识也具有灰色性,因而可以借助于灰色系统的相关理论来研究综合评价问题.下面首先介绍灰色关联分析方法,然后探讨其在综合评价中应用的一些问题.一、灰色关联分析方法灰色关联分析(GRA)是一种多因素统计分析方法,它是以各因素的样本数据为依据用灰色关联度来描述因素间关系得强弱、大小和次序的.如果样本数据列反映出两因素变化的态势(方向、大小、速度等)基本一致,则它们之间得关联度较大;反之,关联度较小.与传统的多因素分析方法(相关、回归等)相比,灰色关联分析对数据要求较低且计算量小,便于广泛应用.GRA分析得核心是计算关联度,下面通过一个例子来说明计算关联度得思路和方法.表5-3是某地区1990~1995年国内生产总值得统计资料.现在提出这样得问题:该地区三次产业中,哪一产业产值得变化与该地区国内生产总值(GDP)的变化态势更一致呢?也就是哪一产业与GDP的关联度最大呢?这样得问题显然是很有实际意义的.一个很自然的想法就是分别将三次产业产值的时间序列与GDP 的时间序列进行比较,为了能够比较,先对各序列进行无量纲化,这里采用均值化法.各序列得均值分别为:2716,461.5,1228.83,1025.67,表5-3中每列数据除以其均值可表5-3 某地区国内生产总值统计资料(百万元)得均值化序列(如表5-4所示).粗略地想一下,两序列变化的态势是表现在其对应点的间距上.如果各对应点间距均较小,则两序列变化态势的一致性强,否则,一致性弱.分别计算各产业产值与GDP在对应期的间距(绝对差值),结果见表5-5.接下来表5-4表5-5似乎应该是对三个绝对差值序列分别求平均再进行比较,就可以解决问题了.但如果仔细观察表5-5中数据就会发现绝对差值数据序列的数据间存在着较大的数量级差异(最大为0.1857,最小的为0.0006,相差300多倍),不能直接进行综合,还需要对其进行一次规范化.设(max)∆分别表示表5-5中绝对差∆和(min)值)(0t i ∆的最大数和最小数,则(m ax ))((m in)00∆≤∆≤∆≤t i因而1(max ))((max )(min)00≤∆∆≤∆∆≤t i显然(max ))(0∆∆t i 越大,说明两序列i x 和0x 变化态势一致性弱,反之,一致性强,因此可考虑将(max ))(0∆∆t i 取倒反向.为了规范化后数据在[0,1]内,可考虑(max ))((max )(min)0∆∆∆∆t i由于在一般情况下(min)∆可能为零(即某个)(0t i ∆为零),故将上式改进为)((max ))((max )(min)00t t i i ερρ∆=+∆∆+∆∆ρ在0和1之间取值.上式可变形为1995,,1990,3,2,1(max))((max)(min))(00 ==∆+∆∆+∆=t i t t i i ρρε (5-6))(0t i ε称为序列i x 和序列0x 在第t 期的灰色关联系数(常简称为关联系数).由(5-6)式可以看出,ρ取值的大小可以控制(max)∆对数据转化的影响, ρ取较小的值,可以提高关联系数间差异的显著性,因而称ρ为分辨系数.利用(5-6)式对表5-5中绝对差值)(0t i ∆进行规范化,取ρ=0.4,结果见表5-6.以)1990(01ε计算为例:4191.01857.04.01044.01857.04.00006.0)1990(1857.0(max),0006.0(min)01=⨯+⨯+==∆=∆ε 同样可计算出表5-6中其余关联系数.表5-6最后分别对各产业与GDP 的关联系数序列求算术平均可得7209.0)4758.000.17338.05213.07257.08687.0(615760.0)3510.06141.08761.04903.05178.06067.0(614571.0)2881.03696.07055.05808.03796.04191.0(61010101=+++++==+++++==+++++=r r ri r 0称为序列0x 和)3,2,1(=i x i 的灰色关联度.由于010203r r r >>,因而第三产业产值与GDP 的关联度最大,其次是第二产业、第一产业.从上例可以看出,灰色关联分析需要经过以下几个步骤:1.确定分析序列在对所研究问题定性分析的基础上,确定一个因变量因素和多个自变量因素.设因变量数据构成参考序列0X ',各自变量数据构成比较序列1),,,2,1(+='n n i X i 个数据序列形成如下矩阵:(5-7)其中n i N x x x X T i i i i ,,2,1,))(,,2(),1(( ='''=' N 为变量序列的长度.)1(110110)()()()2()2()2()1()1()1(),,,(+⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡'''''''''='''n N nnnn N x N x N x x x x x x x X X X无论是时间序列数据、指标序列数据还是横向序列数据都可以用来作关联分析。

灰色关联分析方法

灰色关联分析方法

灰色关联分析方法灰色关联分析方法(Grey Relational Analysis,GRA)是一种多指标决策方法,它用于研究因素之间的关联程度。

与传统的关联分析方法相比,灰色关联分析方法具有较强的适用性和灵活性。

它可以用于分析多个指标之间的关联程度,对于复杂决策问题具有较强的应用能力。

灰色关联分析方法的基本思想是将系统的各个指标转化为灰色数列,再利用灰色关联度来评估指标之间的关联程度。

该方法可以对多个指标进行综合评价,找出各个指标之间的关联程度,并根据关联程度来进行排序和决策。

灰色关联分析方法的具体步骤如下:1. 数据预处理:将原始数据进行标准化处理,以确保各指标在同一数量级上进行比较。

2. 构建灰色数列:将标准化后的数据转化为灰色数列,通过建立灰色微分方程来描述数据序列的发展趋势。

3. 确定关联度测度:根据灰色数列的特点,选择适当的关联度测度方法来计算指标之间的关联程度。

4. 计算关联度:根据所选择的关联度测度方法,计算每个指标与其他指标之间的关联度。

5. 排序和决策:根据计算得到的关联度值进行排序,并作出相应的决策。

灰色关联分析方法的优点有以下几个方面:1. 适用性广泛:灰色关联分析方法适用于各种类型的指标数据,包括定量指标和定性指标。

2. 考虑了指标之间的时序关系:灰色关联分析方法考虑了指标数据的时序性,能够更好地反映指标之间的演变趋势。

3. 简单易行:灰色关联分析方法不需要过多的统计方法和复杂的计算过程,容易被理解和操作。

4. 提供了多指标综合评价的能力:灰色关联分析方法可以将多个指标之间的关联程度综合考虑,对于决策问题的综合评价有着较好的效果。

然而,灰色关联分析方法也存在一些限制和局限性:1. 灵敏度不高:由于灰色关联分析方法只考虑了指标之间的线性关联程度,对于非线性关系的刻画较为困难,灵敏度较低。

2. 依赖于初始数据:灰色关联分析方法对初始数据的选取较为敏感,不同的初始数据可能导致不同的关联度结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

灰色关联分析
灰色关联分析是指对一个系统发展变化态势的定量描述和比较的方法,其基本思想是通过确定参考数据列和若干个比较数据列的几何形状相似程度来判断其联系是否紧密,它反映了曲线间的关联程度[1]。

灰色系统理论是由着名学者邓聚龙教授首创的一种系统科学理论(GreyTheory),其中的灰色关联分析是根据各因素变化曲线几何形状的相似程度,来判断因素之间关联程度的方法。

此方法通过对动态过程发展态势的量化分析,完成对系统内时间序列有关统计数据几何关系的比较,求出参考数列与各比较数列之间的灰色关联度。

与参考数列关联度越大的比较数列,其发展方向和速率与参考数列越接近,与参考数列的关系越紧密。

灰色关联分析方法要求样本容量可以少到4个,对数据无规律同样适用,不会出现量化结果与定性分析结果不符的情况。

其基本思想是将评价指标原始观测数进行无量纲化处理,计算关联系数、关联度以及根据关联度的大小对待评指标进行排序。

灰色关联度的应用涉及社会科学和自然科学的各个领域,尤其在社会经济领域,如国民经济各部门投资收益、区域经济优势分析、产业结构调整等方面,都取得较好的应用效果。

[2]
关联度有绝对关联度和相对关联度之分,绝对关联度采用初始点零化法进行初值化处理,当分析的因素差异较大时,由于变量间的量纲不一致,往往影响分析,难以得出合理的结果。

而相对关联度用相对量进行分析,计算结果仅与序列相对于初始点的变化速率有关,与各观测数据大小无关,这在一定程度上弥补了绝对关联度的缺陷。

[2]
灰色关联分析的步骤[2]
灰色关联分析的具体计算步骤如下:
第一步:确定分析数列。

确定反映系统行为特征的参考数列和影响系统行为的比较数列。

反映系统行为特征的数据序列,称为参考数列。

影响系统行为的因素组成的数据序列,称比较数列。

设参考数列(又称母序列)为Y={Y(k)|k=1,2,Λ,n};比较数列(又称子序列)
X i={X i(k)|k=1,2,Λ,n},i=1,2,Λ,m。

第二步,变量的无量纲化
由于系统中各因素列中的数据可能因量纲不同,不便于比较或在比较时难以得到正确的结论。

因此在进行灰色关联度分析时,一般都要进行数据的无量纲化处理。

第三步,计算关联系数
x0(k)与x i(k)的关联系数
记,则
,称为分辨系数。

ρ越小,分辨力越大,一般ρ的取值区间为(0,1),具体取值可视情况而定。

当时,分辨力最好,通常取ρ=0.5。

第四步,计算关联度
因为关联系数是比较数列与参考数列在各个时刻(即曲线中的各点)的关联程度值,所以它的数不止一个,而信息过于分散不便于进行整体性比较。

因此有必要将各个时刻(即曲线中的各点)的关联系数集中为一个值,即求其平均值,作为比较数列与参考数列间关联程度的数量表示,关联度r i公式如下:
第五步,关联度排序
关联度按大小排序,如果r1<r2,则参考数列y与比较数列x2更相似。

在算出X i(k)序列与Y(k)序列的关联系数后,计算各类关联系数的平均值,平均值r i就称为Y(k)与X i(k)的关联度。

相关文档
最新文档