二元一次方程组复习讲义

合集下载

第八章二元一次方程组的复习课件

第八章二元一次方程组的复习课件
注意事项
在代入时,要确保代入的表达式正确,且代入后的方程能够简化为一元一次方程。
消元法应用举例
例题1
解法
例题2
解法
解方程组 {x + y = 5, 2x - y = 1}。
采用加减消元法,将两个方 程相加得到 3x = 6,解得 x = 2,然后将 x = 2 代入原 方程 x + y = 5 中解得 y = 3。所以方程组的解为 {x = 2, y = 3}。
第八章二元一次方程 组的复习课件
汇报人:XX
目 录
• 二元一次方程组基本概念 • 消元法求解二元一次方程组 • 图像法求解二元一次方程组 • 实际问题中的二元一次方程组 • 方程组解的讨论与性质 • 复习总结与提高
01
二元一次方程组基本概念
定义与性质
二元一次方程组的定义
含有两个未知数,且未知数的次数都 是1的方程组。
忽视方程组的解的定义
在解二元一次方程组时,需要注意方程组的解必须满足方程组中的所有
方程。如果忽视这一点,可能会导致求解错误。
02
消元方法使用不当
在解二元一次方程组时,需要根据方程组的特点选择合适的消元方法。
如果方法使用不当,可能会导致计算过程繁琐或结果错误。
03
忽视实际问题的限制条件
在应用二元一次方程组解决实际问题时,需要注意问题中的限制条件。
• 解:分别画出两个方程对应的直线图像,观察两条直线的位置关系。通 过图像可以看出,两条直线相交于一点,因此方程组有唯一解。
04
实际问题中的二元一次方程组
利润与成本问题
利润公式
利润 = 售价 - 进价
利润率公式
利润率 = 利润 / 进价 × 100%

第八章二元一次方程组解法复习课课件

第八章二元一次方程组解法复习课课件
当X=4,y=15 当X=7,y=24 15=4k+b 24=7x+b
k 3 解得: b 3
2.在y= ax bx c 中,当 x 0 时y的值是-7, x 1 时y的值是-9, x 1 时y的值是-3,求 a、b、c 的 值 当x=0 y=7 -7= c
2
当x=1 y=-9
x 1 x 2 x 3 y 16 y 12 y 8
x 4 y 4
1、方程x+2y=7在正整数范围内的解有( C ) A 1个 B 2个 C 3个 D 无数个
解后语:二元一次方程一般有无数个解,但它的解 若受到限制往往是有限个解。
y 1 z 17 y 2 z 14 y 3 z 11 y 4 z 8 y 5 z 5 y 6 z 2 y 1 z 7 y 2 z 1

3(09黑)13题一宾馆有二人间、三人间、四人间三种客房供游客租住, 某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满, x 2 x 3 C 租房方案有( ) x y z 7 y 4 y 2 z 2 A4种 B3种 C2种D1种 z 1 2 x 3 y 4 z 20
解:设新建1个地上停车位为x元,一个个地下停车位为y元
x y 0.5 3 x 2 y 1.1
x 0.1 解得: y 0.4
练习:
2 不是 1、 -1=3y 是不是二元一次方程?答: x
4、当方程组中两个方程的某个未知数 的系数相等或互为相反数时, 把方程的两边分别相减或相加来消去这个 未知数,得到一个一元一次方程。 当方程组中两个未知数系数的绝对值均不相 等,可以把两个方程的两边各自乘以一个适 当的数,使某一个未知数的绝对值相等。

二元一次方程组复习(带解析)

二元一次方程组复习(带解析)

二元一次方程组复习一、知识要点 1、二元一次方程组的有关概念I .二元一次方程(1)概念:含有______未知数,并且未知数的项的次数都是____,这样的整式方程叫做二元一次方程.(2)一般形式:ax +by =c(a≠0,b≠0).(3)使二元一次方程两边的值______的两个未知数的值,叫做二元一次方程的解.(4)解的特点:一般地,二元一次方程有无数个解.由这些解组成的集合,叫做这个二元一次方程的解集.II .二元一次方程组(1)概念:具有相同未知数的______二元一次方程合在一起,就组成了一个二元一次方程组.(2)一般形式:⎩⎨⎧=+=+222111c y b x a c y b x a (a 1,a 2,b 1,b 2均不为零).(3)二元一次方程组的解:一般地,二元一次方程组的两个方程的________,叫做二元一次方程组的解.2、二元一次方程组的解法解二元一次方程组的基本思想是______,即化二元一次方程组为一元一次方程,主要__________消元法.不要漏掉括号x (或y )的代数式表示出y (或x ),即变成y =ax +b (或x =ay +b )的形式;(2)将y =ax +b (或x =ay +b )代入另一个方程,消去y (或x ),得到关于x (或y )的一元一次方程;(3)解这个一元一次方程,求出x (或y )的值;y =ax +b (或x =ay +b )中,求y (或x )的值.不要漏乘在二元一次方程组中,若有同一个未知数的系数相同(或互为相反数),则可以直接相减(或相加),消去一个未知数;(2)在二元一次方程组中,若不存在(1)中的情况,可选一个适当的数去乘方程的两边,使其中一个未知数的系数相同(或互为相反数),再把方程两边分别相减(或相加),消去一个未知数;(3)解这个一元一次方程;(4)将求出的一元一次方程的解代入原方程组中系数比较简单的方程内,求出另一个未知数.二、典型例题考点一 :二元一次方程概念与解法例1.已知⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+18my nx ny mx 的解,则2m -n= .例2.小明和小佳同时解方程组⎩⎨⎧=-=+1325ny x y mx ,小明看错了m ,解得⎪⎩⎪⎨⎧-==227y x ,小华看错了n ,解得⎩⎨⎧-==73y x ,你能知道原方程组正确的解吗总结分析:灵活学会“方程解”概念解题.【巩固】已知方程组⎩⎨⎧-=--=+4652by ax y x 和方程组⎩⎨⎧-=+=-81653ay bx y x 的解相同,求2017)2(b a +的值.【变式】已知关于x ,y 的二元一次方程组⎩⎨⎧=+=+f by ex c by ax 的解为⎩⎨⎧==13y x ,你能求得关于x ,y 的二元一次方程组⎩⎨⎧=++-=++-f y x b y x e c y x b y x a )()()()(的解吗★剖析总结★:灵活学会“方程解”概念解题,利用解相同,可以将方程重新组合,换位联立;在解题过程中,常常运用类比的思想【巩固2】.考点二:解决实际问题列方程(组)解应用题的一般步骤1、审:有什么,求什么,干什么;2、设:设未知数,并注意单位;3、找:等量关系;4、列:用数学语言表达出来;5、解:解方程(组);6、验:检验方程(组)的解是否符合实际题意.7、答:完整写出答案(包括单位).列方程组思想:找出相等关系“未知”转化为“已知”.有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等.列二元一次方程----解决实际问题类型:(1)方案问题:(2)行程问题;(3)工程问题;(4)数字问题;(5)年龄问题;(6)分配问题;(7)销售利润问题;(8)和差倍分问题; (9)几何问题; (10)表格或图示问题; (11)古代问题;(12)优化方案问题. 题型一 二元一次方程组的应用 - 方案问题典例1 (2020·监利县期中)1400元奖金要分给22名获奖员工,其中一等奖每人200元,二等奖每人50元。

第八章 二元一次方程组》复习课件常用课件

第八章 二元一次方程组》复习课件常用课件

y
y 2x 1
2x y 1
x y 5
的解
(3)交点的坐标与方程组的 解有什么关系?
o
x
y 5 x
以下为备选练习题
例1.A、B两地相距36千米.甲从A地出发步行 到B地,乙从B地出发步行到A地.两人同时出 发,4小时相遇,6小时后 ,甲所余路程为乙所 余路程的2倍,求两人的速度.
2
yx
1 ,2 2
点,则P的值分别为( ). (A) 2,3 (B) 3,2 (C) 3.已知:一次函数
正比例函数的图象交于点A,并且与轴交于点B
1 (D) ,3 2 1 y kx b 的图象与 y x 3
(0,-4),△AOB的面积为6,求一次函数的表达 式.
4.在同一直角坐标系内分别作出 一次函数y 5 x 和 y 2 x 1 的图象, 观察图象并回答问题: (1)这两个图象有交点吗?交点 坐标是什么? (2)方程组 是什么?
8.若两个多边形的边数之比是2:3,两个多
边形的内角和是1980°,求这两个多边形 的边数. 6和9
2 x 3 y k 9.方程组 中,x与y的和12, 3 x 5 y k 2
求k的值.
x 2k 6 解法1:解这个方程组,得 y 4 k
依题意:x+y=12 所以(2k-6) +(4-k)=12
解:设订单要辆x汽车,规定日期是y天,根据 题意得方程组 35 y x 10 40( y 0.5) x
x 220 解这个方程组,得 y 6
答:订单要220辆汽车,规定日期是6天
4.销售问题:
标价×折扣=售价
售价-进价=利润
利润 售价 进价 利润率= 进价 进价

二元一次方程组复习课件

二元一次方程组复习课件
二元一次方程组复习课件
本课件将重点介绍二元一次方程组的定义、解法、应用、图解方法以及练习 题,让你轻松学会解决二元一次方程组。
二元一次方程组的定义
什么是二元一次方程组?
二元一次方程组是由两个二元一次方程所构成的一个方程组。
方程组的解是什么?
方程组的解是使所有方程都成立的变量值。
为什么要学习二元一次方程组?
经济问题
例如,在经济学领域,需 要通过二元一次方程组计 算投入产出比率,来进行 经济决策和分析。
二元一次方程组的图解方法
解的几何意义
二元一次方程组的解是两条直线的交点。
图形解法的步骤
1.将两个方程转换成斜截式或截距式。 2.用直线来表示每个方程。 3.找到它们的交点。 4.标注解。
二元一次方程组的题目练习
1 练习1
2 练习2
3 练习3
某公司生产A、B两种 产品,已知每100个产 品A可获利23元,每 100个产品B可获利30 元。设该公司已生产 1000个产品,并获得 总利润255元,则该公 司生产A、B两种产品 各多少?
小明和小刚两人总共 有15个糖果和5元钱。 如果小明每个糖果卖1 毛钱,小刚每个糖果 卖5角钱,问两人各卖 出了几个糖果?
二元一次方程组在数学及相关领域中具有广泛应用。
二元一次方程组的解法
1
直接代入法
将一个方程的一元表达式直接代入另一个方程即可得到另一个未知数的值,进 而求得整个方程组的解。
2
消元法
通过将方程分别相加或相减,消去一个未知数的系数,然后求出另一个未知数 的值,最终得到整个方程组的解。
3
Cramer法则
利用行列式的性质和比例关系直接求解二元一次方程组。
4

二元一次方程组复习课件!说课材料

二元一次方程组复习课件!说课材料
一次函数图象上的点的坐标都适合 对应的二元一次方程.
方程组的解是对应的两条直 线的交点坐标
两条线的交点坐标是对应 的方程组的解
二元一次方程和一次 函数的图象的关系
以二元一次方程的解为坐标的点都 在对应的函数图象上.
一次函数图象上的点的坐标都适合 对应的二元一次方程.
每个二元一次方程都可转化为一次函数
A.重合 B.平行 C.相交 D.无法判断
3、方程组有无数多个解,由此一次 函数y= 3-x与2y=6-2x的图象必定 () A
A 重合 B.平行 C.相交 D.无法判 断
4、一次函数y=2x+4与一次函数y=1-x的交点为
____(_-1__,2__)_,所以两个一次函数组成的方程组 ( 有)解(填 有或没有)解是 x=-1
相加,从而消去y。
大显身手
ax + by = 2
2x + 3y = 10
8.关于x、y的二元一次方程组ax - by = 4的解与 4x - 5y = -2
的解相同,求a、b的值
4x 3 y 1
9、二元一次方程组 kx (k 1) y 3 的解中,
x、y的值相等,则k= 11
.
10、先阅读材料,后解方程组.
解:设小明在12:00时看到的数的十位数字是 x,个位的数字是y,那么
x+y=7
(10y+x)-(10x+y)=(100x+y)-(10y+x)
解之:
x=1 y=6
答:小明在12:00时看到的数字是16.
二元一次方程和一次 函数的图象的关系
二元一次方程组和一 次函数的图象的关系
以二元一次方程的解为坐标的点都 在对应的函数图象上.

二元一次方程组复习通用课件

二元一次方程组复习通用课件

方程组的解集
解集总结
二元一次方程组的解集是所有满 足方程组条件的 $(x, y)$ 的集合。
具体描述
解集可以是一个点、一条直线或 一个平面区域。解集的具体形式 取决于方程组的系数和常数项。
PART 02
二元一次方程组的解法
代入法
总结词
通过将一个方程中的一个变量表示为另一个变量的函数,将二元一次方程组转化 为一元一次方程进行求解。
详细描述
代入法的基本步骤是先从二元一次方程组中消去一个变量,将其表示为另一个变 量的函数,然后将这个函数代入另一个方程中,得到一个关于一个变量的方程, 最后解这个一元一次方程得到解。
消元法
总结词
通过对方程组中的两个方程进行加减 或乘除运算,消去其中一个变量,将 二元一次方程组转化为一元一次方程 进行求解。
PART 04
二元一次方程组的变式与 拓展
方程组中未知数的增减
总结词
未知数的增减会影响方程组的解的数量和性质。
详细描述
当方程组中未知数的数量增加或减少时,方程组的解的数量和性质可能会发生变化。例如,二元一次方程组有唯 一解,当加入一个新的未知数后,可能变为无穷多解或无解。
方程组中系数的变化
总结词
2023 WORK SUMMARY
二元一次方程组复习 通用课件
REPORTING
CATALOGUE
• 二元一次方程组的定义与性质 • 二元一次方程组的解法 • 二元一次方程组的应用 • 二元一次方程组的变式与拓展 • 二元一次方程组的解题技巧与注意事项
PART 01
二元一次方程组的定义与 性质
定 运算消去二元一次方程组中的一个变 量,将其转化为一个一元一次方程, 然后解这个一元一次方程得到解。

二元一次方程组复习课件ppt

二元一次方程组复习课件ppt

迭代法
总结词
通过不断迭代逼近的方式来求解二元一次方程组的近似 解
详细描述
迭代法是一种求解二元一次方程组的近似解的方法,其 基本思路是通过不断迭代逼近的方式来求解二元一次方 程组的近似解。这种方法的关键是选择合适的迭代公式 和迭代初始值,同时要注意迭代过程中的收敛性问题。 迭代法在一些特定情况下可以求解非线性方程组,但在 一般情况下,其求解效率和准确度不如前三种方法。
05
解二元一次方程组的软件工具
MathWorks MATLAB
MATLAB是一款由MathWorks公司出品的商业数学软件,用于算法开发、数据 可视化、数据分析以及数值计算。
MATLAB可以用来求解线性方程组,其中包括二元一次方程组,同时它也提供了 丰富的工具箱用于高效地解决特定问题。
Apache POI
2
方程组中每个方程至少包含两个未知数,且每 个方程都是一次方程,即未知数的次数为1。
3
二元一次方程组常常用于解决各种实际问题中 的数量关系问题。
二元一次方程组解法的发展历程
01
二元一次方程组解法的发展历程:解二元一次方程组可以追溯到古代数学,其 发展历程非常悠久。
02
古代数学家们通过各种方法和技巧来求解二元一次方程组,如唐代数学家李冶 的“天元术”和元代数学家朱世杰的“四元术”等。
加减消元法
总结词
通过两个方程式之间的加减运算,消去其 中一个未知数,从而将二元一次方程组转 化为一元一次方程组
详细描述
加减消元法是求解二元一次方程组的另一 种常用方法,其基本思路是通过两个方程 式之间的加减运算,消去其中一个未知数 ,从而将二元一次方程组转化为一元一次 方程组。这种方法的关键是选择合适的两 个方程式进行加减运算,同时要注意加减 过程中不要出现增解或漏解的情况。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章 二元一次方程组
一、基本概念
(一)二元一次方程组的有关概念
1.二元一次方程的定义:都含有 个未知数,并且 的次数都是1,像这样的整式方程,叫做二元一次方程。

一般形式为:ax+by=c (a 、b 、c 为常数,且a 、b 均不为0)
结合一元一次方程,二元一次方程对“元”和“次”作进一步的理解;“元”与“未知数”相通,几个元是指几个未知数,“次”指未知数的最高次数。

例如:方程7y-3x=4、-3a+3=4-7b 、2m+3n=0、1-s+t=2s 等都是二元一次方程。

而6x 2=-2y-6、4x+8y=-6z 、m
2=n 等都不是二元一次方程。

2.二元一次方程组的定义:把两个二元一次方程合在一起,就组成了一个二元一次方程组。

例如:⎩⎨
⎧-=+=-8532y x y x 、⎩⎨⎧=--=+12337b a b a 、⎩⎨⎧=-=+12n m n m 、⎩
⎨⎧-=+=-1132t s t s 等都是二元一次方程组。

而⎩⎨⎧-=+=-8532z x y x 、⎩⎨⎧=--=+12337a a a a 、⎪⎩⎪⎨⎧=-=+1
21n m n m 等都不是二元一次方程组。

注意:(1)只要两个方程一共含有两个未知数,也是二元一次方程组。

如:⎩⎨⎧-==852y x 、⎩⎨⎧-==11
2t s 也是二元一次方程组。

3.二元一次方程和二元一次方程组的解
(1)二元一次方程的解:能够使二元一次方程的左右两边都相等的两个未知数的值,叫做二元一次方程的解。

(2)二元一次方程组的解:使二元一次方程组的 两个方程 左右两边的值都相等的 两个 未知数的值,叫做二元一次方程组的解。

(即是两个方程的公共解)
注意:写二元一次方程或二元一次方程组的解时要用“联立”符号“⎩
⎨⎧
”把方程中两个未知数的值连接起来写。

二元方程解的写法的标准形式是:⎩⎨
⎧==b
y a x ,(其中a 、b 为常数) (二)二元一次方程组的解法 1.解二元一次方程组的基本思想:“消元”,化二元一次方程组为一元一次方程来解。

2.二元一次方程组的基本解法
(1)代入消元法(代入法)
定义:通过“代人”消去一个未知数,将方程组转化为一元一次方程来解的这种解法叫做代人消元法,简称代入法。

步骤:①选取一个方程,将它写成用一个未知数表示另一个未知数,记作方程③。

②把③代人另一个方程,得一元一次方程。

③解这个一元一次方程,得一个未知数的值。

④把这个未知数的值代人③,求出另一个未知数值,从而得到方程组的解。

(2)加减消元法(加减法)
定义:通过将两个方程相加(或相减),消去一个未知数,将方程组转化为一元一次方程来解,这种解法叫加减消元法,简称加减法。

步骤:①把两个方程同一个未知数的系数乘以适当的倍数,使得这两个未知数的绝对值相同。

②把未知数的绝对值相同的两个方程相加或相减,得一元一次方程。

③解这个一元一次方程,得一个未知数的值。

④把这个未知数的值代人原方程组中系数叫简单的一个方程,求出另一个未知数值,从而得到方程组的解。

注意:正确选用两种基本解二元一次方程组
(1)若二元一次方程组中有一个未知数系数的绝对值为1,适宜用“代入法”。

(2)用加减法解二元一次方程组,两方程中若有一个未知数系数的绝对值相等,可直接加减消元;若同一未知数的系数绝对值不等,则应选一个或两个方程变形,使一个未知数的系数的绝对值相等,然后再直接用加减法求解;若方程组比较复杂,应先化简整理。

(三)二元一次方程组的应用
1.纯数学上的应用:(1)二元一次方程定义的应用;(2)方程解的概念的应用;(3)代数中的应用;(4)公式变形等。

2.实际生活上的应用:(1)调配问题;(2)行程问题;(3)工程问题;(4)利息问题;(5)
面积问题等。

3.探索性应用:这类问题与上面的几类问题有联系,但也有区别,有时是一种没有结论的问题,需要你给出结论并解答。

注意事项:
(1)在实际问题中,常会遇到有多个未知量的问题,和一元一次方程一样,二元一次方程组也是反映现实世界数量之间相等关系的数学模型之一,要学会将实际问题转化为二元一次方程组,从而解决一些简单的实际问题。

(2)二元一次方程组的解法很多,但它的基本思想都是通过消元,转化为一元一次方程来解的,最常见的消元方法有代人法和加减法。

一个方程组用什么方程来逐步消元,转化应根据它的特点灵活选定。

(3)通过列方程组来解某些实际问题,应注意检验和正确作答,检验不仅要检查求得的解是否适合方程组的每一个方程,更重要的是要考察所得的解答是否符合实际问题的要求。

二、练习
1.求二元一次方程3x+y=10的正整数解。

2.已知 x=1 2xn-m=5
y=2 是方程组 mx-ny=5的解,求m和n的值。

3.A、B两地相距150千米,甲、乙两车分别从A、月两地同时出发,同向而行,甲车3小时可追上乙车;相向而行,两车1.5小时相遇,求甲、乙两车的速度。

相关文档
最新文档