高考数学 秒杀必备 涂色问题的常见解法及策略

高考数学 秒杀必备 涂色问题的常见解法及策略
高考数学 秒杀必备 涂色问题的常见解法及策略

高考数学中涂色问题的常见解法及策略

与涂色问题有关的试题新颖有趣,近年已经在高考题中出现,其中包含着丰富的数学思想。解决涂色问题方法技巧性强且灵活多变,因而这类问题有利于培养学生的创新思维能力、分析问题与观察问题的能力,有利于开发学生的智力。本文拟总结涂色问题的常见类型及求解方法

一、区域涂色问题

1、 根据分步计数原理,对各个区域分步涂色,这是处理染色问题的基本方法。

例1、 用5种不同的颜色给图中标①、②、③、④的各部分涂色,每部分只涂一种颜色,

相邻部分涂不同颜色,则不同的涂色方法有多少种?

分析:先给①号区域涂色有5种方法,再给②号涂色有4种方法,接着给③号涂色方法有3种,由于④号与①、②不相邻,因此④号有4种涂法,根据分步计数原理,不同的涂色方法有5434240???=

2、 根据共用了多少种颜色讨论,分别计算出各种出各种情形的种数,再用加法原理求出不同的涂色方法种数。

例2、四种不同的颜色涂在如图所示的6个区域,且相邻两个区域不能同色。

分析:依题意只能选用4种颜色,要分四类:

(1)②与⑤同色、④与⑥同色,则有44A ; (2)③与⑤同色、④与⑥同色,则有44

A ;

(3)②与⑤同色、③与⑥同色,则有4

4A ; (4)③与⑤同色、② 与④同色,则有44A ;(5)②与④同色、③与⑥同色,则有44A ;

所以根据加法原理得涂色方法总数为544A =120

例3、如图所示,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着方法共有多少种?

分析:依题意至少要用3种颜色

1) 当先用三种颜色时,区域2与4必须同色, 2) 区域3与5必须同色,故有34A 种; 3) 当用四种颜色时,若区域2与4同色,

4) 则区域3与5不同色,有44A 种;若区域3与5同色,则区域2与4不同色,有

44

A 种,故用四种颜色时共有244A 种。由加法原理可知满足题意的着色方法共有34A +244A =24+2?

24=72

① ②③ ④ ⑤

3、 根据某两个不相邻区域是否同色分类讨论,从某两个不相邻区域同色与不同色入手,

分别计算出两种情形的种数,再用加法原理求出不同涂色方法总数。

例4用红、黄、蓝、白、黑五种颜色涂在如图所示的四个区域内,每个区域涂一种颜色,相邻两个区域涂不同的颜色,如果颜色可以反复使用,共有多少种不同的涂色方法?

分析:可把问题分为三类:

(1) 四格涂不同的颜色,方法种数为45A ;

(2) 有且仅两个区域相同的颜色,即只

有一组对角小方格涂相同的颜色,涂法种数为

12542C A ;

5) 两组对角小方格分别涂相同的颜色,涂法种数为25A ,

因此,所求的涂法种数为212255452260A C A A ++= 4、 根据相间区使用颜色的种类分类

例5如图, 6个扇形区域A 、B 、C 、D 、E 、F ,现给这6个区域着色,要求同一区域涂同一种颜色,相邻的两个区域不得使用同一种颜色,现有

1解

(1)当相间区域

A 、C 、E 着同一种颜色时,

有4种着色方法,此时,B 、D 、F 各有3种着色方法,

此时,B 、D 、F 各有3种着色方法故有4333108???=

种方法。

(2)当相间区域A 、C 、E 着色两不同的颜色时,有2234C A 种着色方法,此时B 、D 、

F 有322??种着色方法,故共有2234322432C A ???=种着色方法。

(3)当相间区域A 、C 、E 着三种不同的颜色时有34A 种着色方法,此时B 、D 、F

各有2种着色方法。此时共有34222192A ???=种方法。

故总计有108+432+192=732种方法。

说明:关于扇形区域区域涂色问题还可以用数列中的递推公来解决。

如:如图,把一个圆分成(2)n n ≥个扇形,每个扇形用红、白、蓝、黑四色之一染色,要求相邻扇形不同色,有多少种染色方法?

解:设分成n 个扇形时染色方法为n a 种

(1) 当n=2时1A 、2A 有24A =12种,即2a =12 (2) 当分成n 个扇形,如图,1A 与2A 不同色,2A 与3A 不同色,

,1n A -

与n A 不同色,共有143n -?种染色方法, 但由于n A 与1A 邻,所以应排除n A 与1A 同色的情形;n A 与1A 同色时,可把n A 、 1A 看成一个扇形,与前2n -个扇形加在一起为1n -个扇形,此时有1n a -种染色法,故有如下递推关系:

1143n n n a a --=?-

1211243(43)43n n n n n n a a a -----∴=-+?=--+?+?

21321

234343434343n n n n n n n a a -------=-?+?=-+?-?+?124[33(1)3](1)33n n n n n --==?-+

+-?=-?+

二、点的涂色问题

方法有:(1)可根据共用了多少种颜色分类讨论,(2)根据相对顶点是否同色分类讨论,

(3)将空间问题平面化,转化成区域涂色问题。

例6、将一个四棱锥S ABCD -的每个顶点染上一种颜色,并使同一条棱的两端点异色,如果只有5种颜色可供使用,那么不同的染色方法的总数是多少?

解法一:满足题设条件的染色至少要用三种颜色。

(1)若恰用三种颜色,可先从五种颜色中任选一种染顶点S ,再从余下的四种颜色中

任选两种涂A 、B 、C 、D 四点,此时只能A 与C 、B 与D 分别同色,故有125460C A =种

方法。

(2)若恰用四种颜色染色,可以先从五种颜色中任选一种颜色染顶点S ,再从余下的

四种颜色中任选两种染A 与B ,由于A 、B 颜色可以交换,故有24A 种染法;再从余下的两种颜

色中任选一种染D 或C ,而D 与C ,而D 与C 中另一个只需染与其相对顶点同色即可,故有12115422240C A C C =种方法。

(3)若恰用五种颜色染色,有55120A =种染色法

综上所知,满足题意的染色方法数为60+240+120=420种。

解法二:设想染色按S —A —B —C —D 的顺序进行,对S 、A 、B 染色,有54360??=种染色方法。

由于C 点的颜色可能与A 同色或不同色,这影响到D 点颜色的选取方法数,故分类讨论:

C 与A 同色时(此时C 对颜色的选取方法唯一),

D 应与A (C )、S 不同色,有3种选择;C 与A 不同色时,C 有2种选择的颜色,D 也有2种颜色可供选择,从而对C 、D 染色有13227?+?=种染色方法。

由乘法原理,总的染色方法是607420?=

解法三:可把这个问题转化成相邻区域不同色问题:如图,

对这五个区域用5种颜色涂色,有多少种不同的涂色方法?

解答略。

三、线段涂色问题

对线段涂色问题,要注意对各条线段依次涂色,主要方法有:

1) 根据共用了多少颜色分类讨论

2) 根据相对线段是否同色分类讨论。

例7、用红、黃、蓝、白四种颜色涂矩形ABCD 的四条边,每条边只涂一种颜色 ,且使相邻两边涂不同的颜色,如果颜色可以反复使用,共有多少种不同的涂色方法?

解法一:(1)使用四颜色共有44A 种

(2)使用三种颜色涂色,则必须将一组对边染成同色,故有112423C C A 种,

(3)使用二种颜色时,则两组对边必须分别同色,有24A 种

因此,所求的染色方法数为411224423484A C C A A ++=种

解法二:涂色按AB -BC -CD -DA 的顺序进行,对AB 、BC 涂色有4312?=种涂色方法。

由于CD 的颜色可能与AB 同色或不同色,这影响到DA 颜色的选取方法数,故分类讨论:

当CD 与AB 同色时,这时CD 对颜色的选取方法唯一,则DA 有3种颜色可供选择CD 与AB 不同色时,CD 有两种可供选择的颜色,DA 也有两种可供选择的颜色,从而对CD 、DA 涂色有13227?+?=种涂色方法。

由乘法原理,总的涂色方法数为12784?=种

例8、用六种颜色给正四面体A BCD -的每条棱染色,要求每条棱只染一种颜色且共顶点的棱涂不同的颜色,问有多少种不同的涂色方法?

解:(1)若恰用三种颜色涂色,则每组对棱必须涂同一颜色,而这三组间的颜色不同,

故有36A 种方法。

(2)若恰用四种颜色涂色,则三组对棱中有二组对棱的组内对棱涂同色,但组与组之间不同

色,故有3466C A 种方法。

(3)若恰用五种颜色涂色,则三组对棱中有一组对棱涂同一种颜色,故有1536C A 种方法。

(4)若恰用六种颜色涂色,则有66A 种不同的方法。

综上,满足题意的总的染色方法数为4080665613462336=+++A A C A C A 种。

四、面涂色问题

例9、从给定的六种不同颜色中选用若干种颜色,将一个正方体的6个面涂色,每两个具有公共棱的面涂成不同的颜色,则不同的涂色方案共有多少种?

分析:显然,至少需要3三种颜色,由于有多种不同情况,仍应考虑利用加法原理分类、乘法原理分步进行讨论

解:根据共用多少种不同的颜色分类讨论

(1)用了六种颜色,确定某种颜色所涂面为下底面,则上底颜色可有5种选择,在上、下底已涂好后,再确定其余4种颜色中的某一种所涂面为左侧面,则其余3个面有3!种涂色方案,根据乘法原理30!351=?=n

(2)共用五种颜色,选定五种颜色有656=C 种方法,必有两面同色(必为相对面)

,确定为上、下底面,其颜色可有5种选择,再确定一种颜色为左侧面,此时的方法数取决于右侧面的颜色,有3种选择(前后面可通过翻转交换)

9035562=??=C n ;(3)共用四种颜色,仿上分析可得

9024463==C C n ;(4)共用三种颜色,20364==C n

例10、四棱锥P ABCD -,用4种不同的颜色涂在四棱锥的各个面上,要求相邻不同色,有多少种涂法?

?

解:这种面的涂色问题可转化为区域涂色问题,如右图,区域1、2、3、4相当于四个侧面,区域5相当于底面;根据共用颜色多少分类:

(1) 最少要用3种颜色,即1与3同色、2与4同色,此时有34A 种;

(2) 当用4种颜色时,1与3同色、2与4两组中只能有一组同色,此时有1424C A ;

故满足题意总的涂色方法总方法交总数为31442472A C A +=

B

C

高考数学常考题型的总结(必修五)

高考数学常考题型的总结(必修五) 对高三理科来说,必修五是高考的必考内容,它不仅要考查基础知识点,而且还要考查解题方法和解题思路的问题。同学们在复习过程中,一定要明白什么是重要,什么是难点,什么是常考知识点。对重难点要了如指掌,能做到有的放矢。同学们不仅要掌握课本上的知识点,更重要的要对知识点理解的有深度,对经典题型或高考常考题型掌握到相当熟练的程度。人们常说,只有你多于一桶水的能力,在考试过程中才能发挥出一桶水的水平来,否则,基本不可能考出相对理想的成绩来。 必修五主要包括三大部分内容:解三角形、数列、不等式。高考具体要考查那些内容呢?这是我们师生共同研究的问题。虽然高考题不能面面俱到,但是我们在复习的时候,一定要不留死角,对常考题型的知识点和方法能倒背如流。下面具体对必修五常考的型作一分解: 解三角形 解三角形是高考的必考知识点,每年都有考题,一般考查分数为5-12分。考查的时候,可能是选择题、填空题,或解答题,有时单独考查,有时会与三角函数,平面向量等知识点进行综合考查,难度一般不是很大,如果出解答题,一般是第17题,属于拿分题。 知识点:正弦定理、余弦定理和三角形的面积的公式。 正弦定理: R C c B b A a 2sin sin sin ===(R 为AB C ?的外接圆半径) 余弦定理:C ab c b a cos 22 2 2 =-+,B ac b c a cos 22 2 2 =-+,A bc a c b cos 22 2 2 =-+ (变形后) C ab c b a cos 2222=-+,B ac b c a cos 2222=-+,A cb a b c cos 22 22=-+ 三角形的面积的公式:A bc B ac C ab S ABC sin 2 1 sin 21sin 21===?。 知识点分解: (1)两边一角,求另外两角一边,可以用正弦定理,也可以用余弦定理,特别注意两种三角形的情况。 (2)两角一边,求另外一角和两边,肯定是正弦定理。 (3)等式两边都有边或通过转化等式两边都有边,用正弦定理。 (4)知道三边的关系用余弦定理。

数学选修2-3-涂色问题

涂色问题解题通法 定理1(直线型结构):用(2)m m ≥种颜色给如图所示的由(2)n n ≥个区域组成的直线型结构图涂色,则总的不同涂法有 () 1 1n m n L m m -=-种. 证明:由分步计数原理按序号逐个涂色即可。 定理2(星型结构):用(2)m m ≥种颜色给如图所示的由(2)n n ≥个区域组成的星型结构图涂色,则总的不同涂法有() 1 1n m n S m m -=-种. 证明:由分步计数原理按序号逐个涂色即可。 定理3(环形结构):用(2)m m ≥种颜色给如图所示的由(3)n n ≥个 区域组成的环形结构图涂色,则总的不同涂法有 ()()()111n n m n R m m =-+--种. 证明:1m m m n n n R R L -+=(m n L 中头尾不同的涂法数为m n R ,头尾相同时, 头尾看作一个区域,涂法数为1m n R -),即()111n m m n n R R m m --+=-, ∴()() 1 111n n m m n n R m R m --??--=---? ? ,求通项即可 或()()1221m m m n n n R m R m R --=-+- 定理4(全连通型结构):用()m m n ≥种颜色给由n 个区域组成的全连通型结构图(任何两 个区域都连通,如图)涂色,则总的不同涂法有m n n m T A =种. 证明:任何两个区域都连通,所以颜色各不相同。 方法应用 例1.将三种作物种植在如图所示的5块试验田里,每块种植一种作物且相邻的试验田不能种植一种作物,不同的种植方法有 种.(以数字作答) 答:结构抽象如右图,涂法数为:() () 51 51 3 2 255333122148642L L C ---=?--??-=-= 例2.某城市在中心广场建造一个花圃,花圃分为6个部分(如图).现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有 种.(以数字作答)

椭圆的常见题型及解法(一).

椭圆的常见题型及其解法(一) 椭圆是圆锥曲线的内容之一,也是高考的热点和重点,椭圆学习的好坏还直接影响后面的双曲线与抛物线的学习,笔者在这里就椭圆常见题型作简要的探讨,希望对学习椭圆的同学有所帮助. 一、椭圆的焦半径 椭圆上的任意一点到焦点F的长称为此曲线上该点的焦半径,根据椭圆的定义,很容易推导出椭圆的焦半径公式。在涉及到焦半径或焦点弦的一些问题时,用焦半径公式解题可以简化运算过程。 1.公式的推导 设P (,)是椭圆上的任意一点, 分别是椭圆的左、右焦点,椭圆 ,求证,。证法1: 。 因为,所以 ∴ 又因为,所以 ∴, 证法2:设P 到左、右准线的距离分别为,由椭圆的第二定义知1 1 PF e d ,又,所 以, 而 。

∴,。 2.公式的应用 例1 椭圆上三个不同的点A ()、B ()、C ()到焦点F (4, 0)的距离成等差数列,则 12 x x + . 解:在已知椭圆中,右准线方程为 25 4x = ,设A 、B 、C 到右准线的距离为 , 则、、。 ∵ , , ,而|AF|、|BF|、|CF|成等差数列。 ∴,即,。 例2.12,F F 是椭圆22 14x y +=的两个焦点,P 是椭圆上的动点,求 的最大值和最 小值。 解:设 ,则10202,2.PF x PF x =+ =-2 12034.4 PF PF x ?=- P 在椭圆上,022x ∴-≤≤,12PF PF ?的最大值为4,最小值为1. 变式练习1:. 求过椭圆的左焦点,倾斜角为的弦AB 的长度。 解:由已知 可得 ,所以直线AB 的方程 为 ,代入椭圆方程 得 设 ,则 ,从而 变式练习2. 设Q 是椭圆22 221(0)x y a b a b +=>>上任意一点,求证:以2QF (或1QF )为

2020届江苏高考数学应用题专题复习

高三数学应用题专题 1. 经销商用一辆J 型卡车将某种水果从果园运送(满载)到相距400 km 的水果批发市场.据测算,J 型卡车满载行驶时,每100 km 所消耗的燃油量u(L)与速度v(km/h)的关系近似地满 足u =? ??100v +23,050.除燃油费外,人工工资、车损等其他费用平均每小时为300元.已知燃油价格为每升(L)7.5元. (1) 设运送这车水果的费用为y(元)(不计返程费用),将y 表示成速度v 的函数关系式; (2) 卡车应该以怎样的速度行驶,才能使运送这车水果的费用最少? 2. 某城市受雾霾影响严重,现欲在该城市中心P 的两侧建造A ,B 两个空气净化站(A ,P , B 三点共线),A ,B 两站对该城市的净化度分别为1a a -,,其中(01)a ∈,.已知对该城市总净化效果为A ,B 两站对该城市的净化效果之和,且每站净化效果与净化度成正比,与中心P 到净化站距离成反比.若1AB =,且当 34AP =时,A 站对该城市的净化效果为3a ,B 站对 该城市的净化效果为1a -. (1)设AP x =,(01)x ∈,,求A ,B 两站对该城市的总净化效果()f x ; (2)无论A ,B 两站建在何处,若要求A ,B 两站对该城市的总净化效果至少达到2 5,求a 的取值集合. 3. 如图,直线1l 是某海岸线,2l 是位于近海的虚拟线,12l l ⊥于点P,点A,C 在2l 上,AC 的中点为O ,且km AC PA 2==. (1)原计划开发一片以AC 为一条对角线,周长为8 km 的平行四边形水域ABCD,建深水养殖场.求深水养殖场的最大面积; (2)现因资金充裕,计划扩大开发规模,开发如图五边形水域QABCD,建养殖场,其中ABCD 是周长为8 km 的平行四边形,点Q 在1l 上,且在点P 的上方,AD OQ ⊥, ?≤∠90OCD . 养殖场分两个区域,四边形QAOD 区域内养殖浅水产品,其他区域内养 殖深水产品,要求养殖浅水产品区域的面积最大.求点Q 与点P 的距离.

高考数学中选择题的解法

高考数学中选择题的解法 一、选择题的解法 1.直接法 (1)直接计算法; (2)直接推理法; (3)直接判断法; (4)数形结合法。 2。间接法 (1)验证排除法; (2)特例排除法; (3)逻辑排除法。 二、举例与练习 1.直接法 (1)直接计算法 例题1:如果椭圆的两个焦点将长轴分成三等份,那么,这个椭圆的两条准线间的距离是焦距的( ) A 18倍 B 12倍 C 9倍 D 4倍 例题2:某电脑用户计划用不超过500元的资金购买单价分别为60元、70元的单片软件和盒状磁盘,根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方法共有( ) A 5种B 6种C 7种D 8种 练习题1:用0、1、2、3、4这五个数字组成没有重复数字的四位数,那么在这些四位数中,是偶数的共有( ) A 120个 B 96个 C 60个 D 36个 练习题2:一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积的比是( )

A B C D 练习题3:在各项均为正数的等比数列{ }中,若=9,则……+ 等于( ) A 12 B 10 C 8 D 2+ (2)直接推理法 例题3:如果AC0,且BC0,那么直线Ax+By+C=0不通过( ) A 第一象限B 第二象限C 第三象限D 第四象限 练习题4:的最小正周期是( ) A π B 2π C D 4π 练习题5:在等比数列{ }中,1,且前n项和满足,那么的取值范围是( ) A (1,+∞) B (1,4) C (1,2) D (1,) (3)直接判断法 例题4:“ 0”是方程“ 表示双曲线”的( ) A 必要条件 B 充分条件 C 充要条件 D 即不是充分条件也不是必要条件 练习题6:函数(a0且a≠1)是( ) A 奇函数 B 偶函数 C 既是奇函数又是偶函数 D 非奇非偶函数 (4)数形结合法 例题5:曲线(-2≤x≤2)与直线有两个交点时,实数k的取值范围是( )

高考数学最常考的几类题型

高考数学最常考的几类题型 要想提高高考数学成绩必须要花一定的时间来研究历 年来高考常考题型,精准把握高考最新动态,综合分析往年高考的常规题型,我们发现这七个题型是非常常考的: 第一,函数与导数 主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。 第二,平面向量与三角函数、三角变换及其应用 这一部分是高考的重点但不是难点,主要出一些基础题或中档题。 第三,数列及其应用 这部分是高考的重点而且是难点,主要出一些综合题。 第四,不等式 主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。是高考的重点和难点。 第五,概率和统计 这部分和我们的生活联系比较大,属应用题。 第六,空间位置关系的定性与定量分析,主要是证明平行或垂直,求角和距离。 主要考察对定理的熟悉程度、运用程度。 第七,解析几何 高考的难点,运算量大,一般含参数。

单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话 空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。 高考对数学基础知识的考查,既全面又突出重点,扎实的数学基础是成功解题的关键。 要练说,得练看。看与说是统一的,看不准就难以说得好。练看,就是训练幼儿的观察能力,扩大幼儿的认知范围,让幼儿在观察事物、观察生活、观察自然的活动中,积累词汇、理解词义、发展语言。在运用观察法组织活动时,我着眼观察于观察对象的选择,着力于观察过程的指导,着重于幼儿观察能力和语言表达能力的提高。 针对数学高考强调对基础知识与基本技能的考查我们一定 要全面、系统地复习高中数学的基础知识,正确理解基本概念,正确掌握定理、原理、法则、公式、并形成记忆,形成技能。以不变应万变。 “师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。其中“师傅”更早则意指春秋时国君的老师。《说文解字》中有注曰:“师教人以道者之称也”。“师”之含义,现在泛指从事

第13讲 函数的零点个数问题的求解方法-高中数学常见题型解法归纳反馈训练及详细解析

【知识要点】 一、方程的根与函数的零点 (1)定义:对于函数()y f x =(x D ∈),把使f(x)=0成立的实数x 叫做函数()y f x =(x D ∈)的零点.函数的零点不是一个点的坐标,而是一个数,类似的有截距和极值点等. (2)函数零点的意义:函数()y f x =的零点就是方程f(x)=0的实数根,亦即函数()y f x =的图像与x 轴的交点的横坐标,即:方程f(x)=0有实数根?函数()y f x =的图像与x 轴有交点?函数()y f x =有零点. (3)零点存在性定理:如果函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(

江苏高考数学专题练习函数(含解析)

江苏高考数学专题练习——函数 1. 已知函数,,则的解集是 . 2. 设函数,则满足的的取值范围为 . 3. 已知函数,不等式对恒成立,则 .* 4. 已知函数f (x )=e x -1 -tx ,?x 0∈R ,f (x 0)≤0,则实数t 的取值范围 . 5. 已知函数f (x )=2x 3 +7x 2 +6x x 2+4x +3,x ∈0,4],则f (x )最大值是 .* 6. 已知函数,若在区间上有且只有2个零点, 则实数的取值范围是 . 7. 已知函数2()12f x x x =-的定义域为[]0m ,,值域为2 0am ????,,则实数a 的取值范围 是 . * 8. 若存在实数,使不等式成立,则实数的取值范围为 . 9. 设函数,若关于的不等式在实数集上有解,则 实数的取值范围是 .* 10. 已知函数f (x )=???x 2 -1,x ≥0, -x +1,x <0. 若函数y =f (f (x ))-k 有3个不同的零点,则实数 k 的取值范围是 . 11. 设a 为实数,记函数f (x )=ax -ax 3(x ∈1 2,1])的图象为C .如果任何斜率不小于1的直 线与C 都至多有一个公共点,则a 的取值范围是 . 2()||2 x f x x += +x R ∈2 (2)(34)f x x f x -<-???≥<-=1 ,21,13)(2x x x x x f 2 ))((2))((a f a f f =2()()()(0)f x x a x b b =--≠()()f x mxf x '≥x R ?∈2m a b +-=222101, ()2 1,x mx x f x mx x ?+-=?+>? ,,≤≤()f x [)0,+∞m 2e 2e 10x x a +≥-()33,2,x x x a f x x x a ?-<=?-≥? ,()4f x a >R

2015届高考数学(理)二轮练习:选择题的解法(含答案)

选择题的解法 【题型特点概述】 高考数学选择题主要考查对基础知识的理解、基本技能的熟练程度、基本计算的准确性、基本方法的正确运用、考虑问题的严谨、解题速度的快捷等方面,注重多个知识点的小型综合,渗透各种数学思想和方法,能充分考查灵活应用基础知识、解决数学问题的能力.选择题是属于“小灵通”题,其解题过程“不讲道理”,所以解答选择题的基本策略是:充分地利用题干和选择支两方面的条件所提供的信息作出判断.先定性后定量,先特殊后推理,先间接后直接,先排除后求解,对于具有多种解题思路的,宜选最简解法等.解题时应仔细审题、深入分析、正确推演、谨防疏漏.初选后认真检验,确保准确. 解数学选择题的常用方法,主要分直接法和间接法两大类.直接法是解答选择题最基本、最常用的方法,但高考的题量较大,如果所有选择题都用直接法解答,不但时间不允许,甚至有些题目根本无法解答,因此,我们还要研究解答选择题的一些技巧.总的来说,选择题属小题,解题的原则是:小题巧解,小题不能大做. 方法一 直接法 直接法就是从题干给出的条件出发,进行演绎推理,直接得出结论.这种策略多用于一些定性的问题,是解选择题最常用的策略.这类选择题是由计算题、应用题、证明题、判断题改编而成的,可直接从题设的条件出发,利用已知条件、相关公式、公理、定理、法则等通过准确的运算、严谨的推理、合理的验证得出正确的结论,然后与选择支对照,从而作出相应的选择. 例1 数列{a n }的前n 项和为S n ,已知a 1=1 3,且对任意正整数m 、n ,都有a m +n =a m ·a n ,若 S n

高中数学概率中的涂色问题

二、高考数学中涂色问题的常见解法及策略 与涂色问题有关的试题新颖有趣,近年已经在高考题中出现,其中包含着丰富的数学思想。解决涂色问题方法技巧性强且灵活多变,因而这类问题有利于培养学生的创新思维能力、分析问题与观察问题的能力,有利于开发学生的智力。本文拟总结涂色问题的常见类型及求解方法 1、 一.区域涂色问题根据分步计数原理,对各个区域分步涂色,这是处理染色 问题的基本方法。 例1、 用5种不同的颜色给图中标①、②、③、④的各部分涂色,每部分只涂 一种颜色,相邻部分涂不同颜色,则不同的涂色方法有多少种? 分析:先给①号区域涂色有5种方法,再给②号涂色有4种方法,接着给③号涂色方法有3种,由于④号与①、②不相邻,因此④号有4种涂法,根据分步计数原理,不同的涂色方法有5434240???= 2、 根据共用了多少种颜色讨论,分别计算出各种情形的种数,再用加法原理求 出不同的涂色方法种数。 例2、四种不同的颜色涂在如图所示的6 个区域,且相邻两个区域不能同色。 分析:依题意只能选用4种颜色,要分四类: (1)②与⑤同色、④与⑥同色,则有4 4A ; (2)③与⑤同色、④与⑥同色,则有4 4 A ; (3)②与⑤同色、③与⑥同色,则有4 4A ; (4)③与⑤同色、② 与④同色,则有4 4A ; (5)②与④同色、③与⑥同色,则有44A ; 所以根据加法原理得涂色方法总数为54 4 A =120 例3、如图所示,一个地区分为5个行政区域, 现给地图着色,要求相邻区域不得使用同一颜色, 现有4种颜色可供选择,则不同的着方法共有多少种? 分析:依题意至少要用3种颜色 1) 当先用三种颜色时,区域2与4必须同色, 2) 区域3与5必须同色,故有3 4A 种; 3) 当用四种颜色时,若区域2与4同色, 4) 则区域3与5不同色,有44A 种;若区域3与5同色,则区域2与4 不同色,有44A 种,故用四种颜色时共有24 4A 种。由加法原理可知满足题意的着色方法共有34A +244A =24+2?24=72 3、 根据某两个不相邻区域是否同色分类讨论,从某两个不相邻区域同色与不同 色入手,分别计算出两种情形的种数,再用加法原理求出不同涂色方法总数。 例4用红、黄、蓝、白、黑五种颜色涂在如图所示的四个区域内,每个区域涂一种颜色,相邻两个区域涂不同的颜色,如果颜色可以反复使用,共有多少种不同的涂色方法? 分析:可把问题分为三类: (1) 四格涂不同的颜色,方法种数为(2) 有且仅两个区域相同的颜色, (3) 即只 ① ② ③ ④ ⑤ ⑥

高中数学常见题型解法归纳 - 轨迹方程的求法

高中数学常见题型解法归纳 - 轨迹方程的求法 【知识要点】 一、“曲线的方程”、“方程的曲线”的定义 在直角坐标系中,如果曲线上的点与一个二元方程的实数解建立了如下关系:(1)曲线上的点的坐标都是这个方程的解(纯粹性);(2)以这个方程的解为坐标的点都在曲线上(完备性).那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线. 二、求简单的曲线方程的一般步骤:建设限代化 (1)建立直角坐标系:利用垂直性和对称性建立适当的坐标系; (2)设点:用有序实数对表示曲线上任意一点的坐标(不要把其它的点的坐标设成); (3)列出动点满足的限制条件:用坐标表示条件,列出方程; (4)代点坐标到方程; (5)化简:化方程为最简形式; (6)检验:检验某些特殊点是否满足题意,把不满足的点排除,把满足的点补充上来.(可以省略) 三、求轨迹方程的四种主要方法:轨迹四法待代直参 (1)待定系数法:通过对已知条件的分析,发现动点满足某个曲线(圆、圆锥曲线)的定义,然后设出曲线的方程,求出其中的待定系数,从而得到动点的轨迹方程. (2)代入法:如果点的运动是由于点的运动引起的,可以先用点的坐标表示点 的坐标,然后代入点满足的方程,即得动点的轨迹方程. (3)直接法:直接把已知的方程和条件化简即得动点的轨迹方程. (4)参数法:动点的运动主要是由于某个参数的变化引起的,可以选参、设 参,然后用这个参数表示动点的坐标,即,再消参. 四、轨迹和轨迹方程 轨迹和轨迹方程是两个不同的概念,轨迹表示的曲线的简单特征的描述,而求轨迹方程

只求那个方程即可,不需描述曲线的特征. 【方法讲评】 【例1】线段与互相垂直平分于点,,,动点满足 ,求动点的轨迹方程. 【解析】 【点评】(1)这种题目由于已知中没有直角坐标系,所以首先要根据垂直性和对称性建立直角坐标系,由于建立坐标系的方法有多种,所以求出的轨迹方程有多种,但是都是对的;(2)这道题是直接用坐标化简已知中的得到的轨迹方程,运用的是直接法. 【例2】已知圆:,由动点向圆引两条切线、,

2014年江苏省高考数学试卷答案与解析

2014年江苏省高考数学试卷 参考答案与试题解析 一、填空题(本大题共14小题,每小题5分,共计70分) 1.(5分)(2014?江苏)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B=.2.(5分)(2014?江苏)已知复数z=(5+2i)2(i为虚数单位),则z的实部为.3.(5分)(2014?江苏)如图是一个算法流程图,则输出的n的值是. 4.(5分)(2014?江苏)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是. 5.(5分)(2014?江苏)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是. 6.(5分)(2014?江苏)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有株树木的底部周长小于100cm. 7.(5分)(2014?江苏)在各项均为正数的等比数列{a n}中,若a2=1,a8=a6+2a4,则a6的值是. 8.(5分)(2014?江苏)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.

9.(5分)(2014?江苏)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为. 10.(5分)(2014?江苏)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是. 11.(5分)(2014?江苏)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是.12.(5分)(2014?江苏)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,?=2,则?的值是. 13.(5分)(2014?江苏)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f (x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实 数a的取值范围是. 14.(5分)(2014?江苏)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是.二、解答题(本大题共6小题,共计90分) 15.(14分)(2014?江苏)已知α∈(,π),sinα=. (1)求sin(+α)的值; (2)求cos(﹣2α)的值. 16.(14分)(2014?江苏)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB 的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证: (1)直线PA∥平面DEF; (2)平面BDE⊥平面ABC.

高考数学常见题型汇总(经典资料)

一、函数 1、求定义域(使函数有意义) 分母 ≠0 偶次根号≥0 对数log a x x>0,a>0且a ≠1 三角形中 060,最小角<60 2、求值域 判别式法 V ≥0 不等式法 222321111 33y x x x x x x x x =+ =++≥??= 导数法 特殊函数法 换元法 题型: 题型一: 1y x x =+ 法一: 111 (,222同号)或y x x x x x x y y =+ =+≥∴≥≤- 法二:图像法(对(0) b y ax ab x =+>有效 2 -2 -1 1

题型二: ()1 (1,9) y x x x =-∈ ()/ 2(1)(9)110 1 80,,0,9导数法:函数单调递增 即y x y x x y f f y =+>∴=-?? ∴∈∈ ? ?? 题型三: 2sin 1 1sin 1sin ,1, 2112化简变形又sin 解不等式,求出,就是要求的答案y y y y y y θθ θθ-= ++=≤-+∴ ≤- 题型四: 22 2 2sin 11cos 2sin 1(1cos ),2sin cos 114sin()1,sin()41sin()11 4化简变形得即又由知解不等式,求出,就是要求的答案 y y y y y y x y x y y x y y θθ θθθθθθθ-= +-=+-=++++=++= +++≤≤+ 题型五

222233 3(3),(3)30(3)430化简变形得由判别式解出x x y x x x y x x y x y y y y += -+=-+-+==--?≥V 反函数 1、反函数的定义域是原函数的值域 2、反函数的值域是原函数的定义域 3、原函数的图像与原函数关于直线y=x 对称 题型 1 ()(2)32,2322,2已知求解:直接令,解出就是答案 x x f f x x x x --=+-=+ 周期性 ()()()(2)()()(2)0 0(2,函数 -)式相减) 是一个周期是2t 的周期函数 x x t x t x t x x x t f f f f f f f +++++=+== 对称

高中数学专题:抽象函数常见题型解法

抽象函数常见题型解法综述 抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。 一、定义域问题 例1. 已知函数 )(2x f 的定义域是[1,2],求f (x )的定义域。 例2. 已知函数)(x f 的定义域是]21 [,-,求函数)] 3([log 2 1x f -的定义域。 二、求值问题 例 3. 已知定义域为+ R 的函数f (x ),同时满足下列条件:① 51 )6(1)2(= =f f ,;② )()()(y f x f y x f +=?,求f (3),f (9)的值。 三、值域问题 例4. 设函数f (x )定义于实数集上,对于任意实数x 、y ,)()()(y f x f y x f =+总成立,且存在21x x ≠,使得)()(21x f x f ≠,求函数)(x f 的值域。 解:令0==y x ,得2 )]0([)0(f f =,即有0)0(=f 或1)0(=f 。 若0)0(=f ,则0)0()()0()(==+=f x f x f x f ,对任意R x ∈均成立,这与存在实数21x x ≠,使得)()(21x f x f ≠成立矛盾,故0)0(≠f ,必有1)0(=f 。 由于)()()(y f x f y x f =+对任意R y x ∈、均成立,因此,对任意R x ∈,有 )]2([)2()2()22()(2≥==+=x f x f x f x x f x f 下面来证明,对任意0)(≠∈x f R x , 设存在 R x ∈0,使得0)(0=x f ,则0)()()()0(0000=-=-=x f x f x x f f 这与上面已证的0)0(≠f 矛盾,因此,对任意0)(≠∈x f R x , 所以0)(>x f 评析:在处理抽象函数的问题时,往往需要对某些变量进行适当的赋值,这是一般向特殊转化的必要手段。 四、解析式问题

江苏高考数学专题复习及答案

江苏高考数学专题复习专题一函数与导数1 第1课时函数的图象与性质1 第2课时导数及其应用5 第3课时函数与方程8 第4课时函数与导数的综合应用10 专题二三角函数与平面向量14 第1课时三角函数的图象与性质14 第2课时平面向量、解三角形17 第3课时三角函数与向量的综合问题21 专题三不等式25 第1课时基本不等式及其应用25 第2课时不等式的解法与三个“二次”的关系29 专题四数列31 第1课时等差、等比数列31 第2课时数列的求和34 第3课时数列的综合应用38 专题五立体几何42 第1课时平行与垂直42 第2课时面积与体积47 专题六平面解析几何52 第1课时直线与圆52 第2课时圆锥曲线56 第3课时圆锥曲线的定点、定值问题60 第4课时圆锥曲线的范围问题64 专题七应用题67 专题八理科选修72 第1课时空间向量72 第2课时离散型随机变量的概率分布76 第3课时二项式定理80 第4课时数学归纳法84 专题九思想方法88 第1课时函数与方程思想88 第2课时数形结合思想92 第3课时分类讨论思想95 第4课时等价转化思想98

专题一 函数与导数 考情分析 函数与导数问题在高考中通常有两个小题和一个大题,主要考点有:一是函数的性质及其应用;二是分段函数的求值问题;三是函数图象的应用;四是方程根与函数零点转化问题;五是导数的几何意义及应用.函数与导数问题属中等难度以上,对考生的理解能力、计算能力、数学思想等方面要求较高. 第1课时 函数的图象与性质 考点展示 1.(2016·江苏)函数y =3-2x -x 2 的定义域是________. 2.(2016·江苏)设f ()x 是定义在R 上且周期为2的函数,在区间[)-1,1上,f ()x =?????x +a ,-1≤x <0? ????? 25-x ,0≤x <1,其中a ∈R ,若f ? ????-52=f ? ????92,则f ()5a 的值是________. 3.(17苏北三市三调)如图,已知正方形ABCD 的边长为2,BC 平行于x 轴,顶点A ,B 和 C 分别在函数y 1=3log a x ,y 2=2log a x 和y 3=log a x (a >1)的图象上,则实数a 的值为________. 第3题图 4.(17无锡一调)已知f ()x =? ??2x -3,x >0 g ()x ,x <0是奇函数,则f ()g ()-2=________. 5.(17无锡一调)若函数f ()x 在[]m ,n ()m 0,且a ≠1对任意x ∈()1,100恒成立,则实数a 的取值范围为________. 热点题型 题型1__函数的图象与性质 【例1】 (1)已知函数y =f ()x 是奇函数,当x <0时,f ()x =x 2 +ax ()a ∈R ,且f ()2=6,则a =______. (2)已知函数f ()x 是定义在R 上且周期为4的偶函数.当x ∈[]2,4时,f ()x = ??????log 4? ????x -32,则f ? ?? ??12的值为__________.

高考数学选择题的解题技巧精选.

高考数学选择题解题技巧 数学选择题在当今高考试卷中,不但题目多,而且占分比例高。数学选择题具有概括性强,知识覆盖面广,小巧灵活,且有一定的综合性和深度等特点,考生能否迅速、准确、全面、简捷地解好选择题,成为高考成功的关键。 解答选择题的基本策略是准确、迅速。准确是解答选择题的先决条件,选择题不设中间分,一步失误,造成错选,全题无分,所以应仔细审题、深入分析、正确推演、谨防疏漏,确保准确;迅速是赢得时间获取高分的必要条件,对于选择题的答题时间,应该控制在不超过40分钟左右,速度越快越好,高考要求每道选择题在1~3分钟内解完,要避免“超时失分”现象的发生。 高考中的数学选择题一般是容易题或中档题,个别题属于较难题,当中的大多数题的解答可用特殊的方法快速选择。解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略。 1、直接法:就是从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。运用此种方法解题需要扎实的数学基础。 例1、某人射击一次击中目标的概率为0.6,经过3次射击,此人至少有2次击中目标的概率为 ( ) 125 27 . 12536.12554.12581.D C B A 解析:某人每次射中的概率为0.6,3次射击至少射中两次属独立重复实验。 125 27)106(104)106(33 3223= ?+??C C 故选A 。 例2、有三个命题:①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l 有且仅有一个平面与α垂直;③异面直线a 、b 不垂直,那么过a 的任一个平面与b 都不垂直。其中正确命题的个数为( ) A .0 B .1 C .2 D .3 解析:利用立几中有关垂直的判定与性质定理对上述三个命题作出判断,易得都是正确的,故选D 。 例3、已知F 1、F 2是椭圆162x +9 2 y =1的两焦点,经点F 2的的直线交椭圆于点A 、B ,若|AB|=5,则|AF 1|+|BF 1|等于 ( ) A .11 B .10 C .9 D .16 解析:由椭圆的定义可得|AF 1|+|AF 2|=2a=8,|BF 1|+|BF 2|=2a=8,两式相加后将|AB|=5=|AF 2|+|BF 2|代入,得|AF 1|+|BF 1|=11,故选A 。 例4、已知log (2)a y ax =-在[0,1]上是x 的减函数,则a 的取值范围是( ) A .(0,1) B .(1,2) C .(0,2) D .[2,+∞) 解析:∵a>0,∴y 1=2-ax 是减函数,∵ log (2)a y ax =-在[0,1]上是减函数。 ∴a>1,且2-a>0,∴1tan α>cot α(2 4 π απ < <-),则α∈( ) A .(2π- ,4π-) B .(4π-,0) C .(0,4π) D .(4π,2 π) 解析:因24παπ<<-,取α=-6 π 代入sin α>tan α>cot α,满足条件式,则排除A 、C 、D ,故选B 。 例6、一个等差数列的前n 项和为48,前2n 项和为60,则它的前3n 项和为( ) A .-24 B .84 C .72 D .36 解析:结论中不含n ,故本题结论的正确性与n 取值无关,可对n 取特殊值,如n=1,此时a 1=48,a 2=S 2-S 1=12,a 3=a 1+2d= -24,所以前3n 项和为36,故选D 。 (2)特殊函数 例7、如果奇函数f(x) 是[3,7]上是增函数且最小值为5,那么f(x)在区间[-7,-3]上是( ) A.增函数且最小值为-5 B.减函数且最小值是-5 C.增函数且最大值为-5 D.减函数且最大值是-5

高考数学常见题型汇总

2015年高考数学常见题型汇总(精华资料) 不等式 题型一: 2 (0) 11332 2 x =x (应用公式a+b+c 者的乘积变成常数)x x x x +>++≥=≥ 题型二: 3 3 ( )13 ()32x (3-2x)(00,a>0且a ≠1 三角形中 060,最小角<60 2、求值域 判别式法 V ≥0

不等式法 222113y x x x x x =+ =++≥= 导数法 特殊函数法 换元法 题型: 题型一: 1 y x x =+ 法一: 111 (,2 22同号)或y x x x x x x y y =+=+≥∴≥≤- 法二:图像法(对(0) b y ax ab x =+>有效 题型二: ()1 (1,9) y x x x =-∈ ()/ 2(1)(9)110 1 80,,0,9导数法:函数单调递增 即y x y x x y f f y =+>∴=-?? ∴∈∈ ? ?? 题型三:

2sin 11sin 1sin ,1, 2112化简变形又sin 解不等式,求出,就是要求的答案y y y y y y θθ θθ-= ++=≤-+∴ ≤- 题型四: 2sin 11cos 2sin 1(1cos ),2sin cos 1)1,sin()sin()11 化简变形得即又由解不等式,求出,就是要求的答案 y y y y x y x x y θθ θθθθθθθ-= +-=+-=++=++= +≤ 题型五 222233 3(3),(3)30(3)430化简变形得由判别式解出x x y x x x y x x y x y y y y += -+=-+-+==--?≥V 反函数 1、反函数的定义域是原函数的值域

高考《数学》复习常见24个问题及解答

高考《数学》复习常见24个问题及解答 问题1:我的基础还可以,上课老师讲的也都能听懂,但是一到自己做就做不出来了,帮忙分析一下原因。 答:数学这个东西是靠着逻辑吃饭的,是靠着逻辑演绎向前推进和发展的。当一个老师把你抱到了逻辑的起点上,告诉你这个逻辑关系是怎样的,比如说饿了就应该找饭吃,下雨了就应该找伞来打,告诉你了这个逻辑规则,你自己肯定会按照逻辑的顺序往前跑,这就叫为什么上课听得懂。 为什么课下自己不会做了呢?是因为课下你找不到逻辑的起点,就像一个运动员空有一身本领,跑得飞快,没有找到起点,没有到起点做好认真的准备,结果人家一发令,你没反应。 有两种学习的模式,一种是靠效仿,老师给我变一个数,出两道类似的练习题,照老师的模子描下来,结果做对了,好象我学会了,这就是效仿的方式来学数学,这种方式在小学是主要手段,在初中,这种手段还占着百分之六七十的分量,但是到了高中就不行了,靠模仿能得到的分数也就是五六十分,其他的分数都要靠你的理解。 所谓理解就是听了老师的一段讲解,看了老师的一个解题过程,你要把他提炼、升华成理性认识,在你的头脑中,应该存下老师讲解的这一段知识和解答的这一道题,他所体现出来的规律性的东西。当你遇到新问题、新试题的时候,你应该拿着这个规律去面对它,这样的话,你就可以把老师讲解的东西很自然地、流畅地用在你的解题里,这就是所谓通过理解,通过顿悟来学习数学。那么高中数学百分之六七十的成分是要靠着这种方式进行学习的。 问题2:我有时候看基础知识的时候定义都没有问题,但是一做题的时候,就转不过来了,耗的时间比较多,怎么办? 答:那你就看看定理、定义、公式都是怎么使用,除了背下它们之外,关键是要把握住这些数学的定义、定理、公式、法则,在解题中是如何运用的,建议你好好从课本出发,如何利用刚才讲的这个定理或者定义去解题的,把它先搞清楚,适当的时候自己做做笔记,问问自己,这个定义是怎么使用的,在这个定理里怎么用的,你自己在旁边注上一两句话。若是一句话也写不出来,显然以后你还不会用。

江苏省2014年高考数学二轮专题复习素材:训练21

常考问题21 坐标系与参数方程 1.在极坐标系中,已知圆C 的圆心坐标为C ? ? ???2,π3,半径R =5,求圆C 的极 坐标方程. 解 将圆心C ? ? ???2,π3化成直角坐标为(1,3),半径R =5,故圆C 的方程为(x -1)2+(y -3)2=5. 再将C 化成极坐标方程,得(ρcos θ-1)2+(ρsin θ-3)2=5, 化简得ρ2 -4ρcos ? ?? ?? θ-π3-1=0. 此即为所求的圆C 的极坐标方程. 2.(2011·江苏卷)在平面直角坐标系xOy 中,求过椭圆??? x =5cos φ, y =3sin φ(φ为参数) 的右焦点,且与直线??? x =4-2t , y =3-t (t 为参数)平行的直线的普通方程. 解 由题意知,椭圆的长半轴长为a =5,短半轴长b =3,从而c =4,所以右焦点为(4,0),将已知直线的参数方程化为普通方程得x -2y +2=0,故所求的直线的斜率为12,因此所求的方程为y =1 2(x -4),即x -2y -4=0. 3.(2010·江苏卷)在极坐标系中,已知圆ρ=2cos θ与直线3ρcos θ+4ρsin θ+a =0相切,求实数a 的值. 解 将极坐标方程化为直角方程,得圆的方程为x 2+y 2=2x ,即(x -1)2+y 2=1,直线的方程为3x +4y +a =0. 由题设知,圆心(1,0)到直线的距离为1,即有|3×1+4×0+a | 32+4 2 =1, 解得a =-8或a =2, 故a 的值为-8或2. 4.已知曲线C 1:??? x =-4+cos t ,y =3+sin t (t 为参数),C 2:? ?? x =8cos θ,y =3sin θ

相关文档
最新文档