高中数学常见题型解法归纳 - 轨迹方程的求法

高中数学常见题型解法归纳 - 轨迹方程的求法
高中数学常见题型解法归纳 - 轨迹方程的求法

高中数学常见题型解法归纳 - 轨迹方程的求法

【知识要点】

一、“曲线的方程”、“方程的曲线”的定义

在直角坐标系中,如果曲线上的点与一个二元方程的实数解建立了如下关系:(1)曲线上的点的坐标都是这个方程的解(纯粹性);(2)以这个方程的解为坐标的点都在曲线上(完备性).那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线.

二、求简单的曲线方程的一般步骤:建设限代化

(1)建立直角坐标系:利用垂直性和对称性建立适当的坐标系;

(2)设点:用有序实数对表示曲线上任意一点的坐标(不要把其它的点的坐标设成);

(3)列出动点满足的限制条件:用坐标表示条件,列出方程;

(4)代点坐标到方程;

(5)化简:化方程为最简形式;

(6)检验:检验某些特殊点是否满足题意,把不满足的点排除,把满足的点补充上来.(可以省略)

三、求轨迹方程的四种主要方法:轨迹四法待代直参

(1)待定系数法:通过对已知条件的分析,发现动点满足某个曲线(圆、圆锥曲线)的定义,然后设出曲线的方程,求出其中的待定系数,从而得到动点的轨迹方程.

(2)代入法:如果点的运动是由于点的运动引起的,可以先用点的坐标表示点

的坐标,然后代入点满足的方程,即得动点的轨迹方程.

(3)直接法:直接把已知的方程和条件化简即得动点的轨迹方程.

(4)参数法:动点的运动主要是由于某个参数的变化引起的,可以选参、设

参,然后用这个参数表示动点的坐标,即,再消参.

四、轨迹和轨迹方程

轨迹和轨迹方程是两个不同的概念,轨迹表示的曲线的简单特征的描述,而求轨迹方程

只求那个方程即可,不需描述曲线的特征.

【方法讲评】

【例1】线段与互相垂直平分于点,,,动点满足

,求动点的轨迹方程.

【解析】

【点评】(1)这种题目由于已知中没有直角坐标系,所以首先要根据垂直性和对称性建立直角坐标系,由于建立坐标系的方法有多种,所以求出的轨迹方程有多种,但是都是对的;(2)这道题是直接用坐标化简已知中的得到的轨迹方程,运用的是直接法.

【例2】已知圆:,由动点向圆引两条切线、,

切点分别为、,并且,求点的轨迹.

【点评】(1)这道题运用的是直接法,但是它是把已知条件转化得到的一个等式

,不是现存的等式.(2)轨迹和轨迹方程是两个不同的概念,轨迹包含轨迹方程和对轨迹方程表示的曲线的简单特征的描述,而求轨迹方程只求那个方程即可,不需描述曲线的特征.所以本题要描述轨迹的基本特征.

【反馈检测1】在平面直角坐标系中,两点的坐标分别为、,动点满足:直线与直线的斜率之积为.

(1)求动点的轨迹方程;

(2)设为动点的轨迹的左右顶点,为直线上的一动点(点不在x 轴上),连[交的轨迹于点,连并延长交的轨迹于点,试问直线是否过定点?若成立,请求出该定点坐标,若不成立,请说明理由.

【反馈检测2】一条双曲线的左、右顶点分别为,点,

是双曲线上不同的两个动点.

(1)求直线与交点的轨迹的方程式;

(2)若过点()的两条直线和与轨迹都只有一个交点,且 ,求的值.

高中数学必修四----常见题型归类

高中数学必修四 题型归类 山石 第一章 三角函数 1.1任意角和弧度制 题型一:终边相同角 1.与 2003-终边相同的最小正角是______________,最大负角是_________。 2.终边在y 轴上的角的集合为________。 3.若角α与5α的终边关于y 轴对称,则角α的集合________ __ 。 题型二:区域角 1.第二象限的角的集合为______ __ 2.如图,终边落在阴影部分(含边界)的角的集合是______ __ 3.若α是第二象限的角,确定2α的终边所在位置 .确定2 α 的终边所在位置 . 题型三:弧度制 1.若扇形的面积是1cm 2,它的周长是4cm 2,则扇形圆心角的弧度数为 . 2.若扇形周长为一定值c (c >0),当α= ,该扇形面积最大. 1.2任意角的三角函数 题型一:三角函数定义

1.α是第二象限角,P (x ,5)为其终边上一点,且cos α= 4 2x ,则sin α的值为 . 2.已知角α的终边在直线3x+y=0上,则sin α= ,tan α= 题型二:三角函数值的符号与角所在象限的关系 1.4tan 3cos 2sin 的值。A 小于0 B 大于0 C 等于0 D 无法确定 ( ) 2.已知|cos θ|=cos θ,|tan θ|=-tan θ,则θ 2 的终边在 ( ) A .第二、四象限 B .第一、三象限 C .第一、三象限或x 轴上 D .第二、四象限或x 轴上 题型三:三角函数线 1.设MP 和OM 分别是角 18 19π 的正弦线和余弦线,则MP 、OM 和0的大小关系为______ 2.1sin 、1cos 、1tan 的大小关系为_______________ 题型四:同角公式 1.化简1-2sin200°cos160°=________. 2.222tan1tan 2tan 88tan 89sin 1sin 2sin 89 οοοοοοο ???????++???+的值为________. 3.已知ααcos sin 2 1 =,求下列各式的值: (1) α αααcos 9sin 4cos 3sin 2--; (2) 4sin 2α-3sin αcos α-5cos 2 α. 4.tan110°=k ,则sin70°的值为 ( ) A .-k 1+k 2 B.k 1+k 2 C.1+k 2k D .-1+k 2 k

高中数学求轨迹方程的六种常用技法汇总

------------------------------------------------------------精品文档-------------------------------------------------------- 求轨迹方程的六种常用技法 轨迹方程的探求是解析几何中的基本问题之一,也是近几年来高考中的常见题型之一。学生解这类问题时,不善于揭示问题的内部规律及知识之间的相互联系,动辄就是罗列一大堆的坐标关系,进行无目的大运动量运算,致使不少学生丧失信心,半途而废,因此,在平时教学中,总结和归纳探求轨迹方程的常用技法,对提高学生的解题能力、优化学生的解题思路很有帮助。本文通过典型例子阐述探求轨迹方程的常用技法。 1.直接法 根据已知条件及一些基本公式如两点间距离公式,点到直线的距离公式,直线的斜率公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。 4MM6AB?BMAM,相交于,直线.已知线段,求点,且它们的斜率之积是例19的轨迹方程。x ABAB(3,0)B(A?3,0),y,所在直线为垂直平分线为解:以轴,轴建立坐标系,则 y(k?x??3)BMMAM)y(x,的斜,直线,则直线设点的坐标为的斜率AM x?3y(x?3)k?率AM3?x4yy3)???(x?由已知有9?x3x?322yx??1(x??3)M的轨迹方程为化简,整理得点94练习: Px?4P(10,0)F的轨迹方.1平面内动点,到点则点的距离之比为的距离与到直线2程 是。 22x ABPll4??2yx上满足交于.设动直线两点,垂直于、轴,且与椭圆是2PA?PB?1P的轨迹方程。的点,求点 3. 到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是() A.直线B.椭圆C.抛物线D.双曲线 2.定义法 通过图形的几何性质判断动点的轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹的定义,如线段的垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何的一些性质定理。 AB30ABCAC?(8,0)B(C?8,0),,2例.若的两顶点,和为两边上的中线长之和是?ABC。 _______________的重心轨迹方程是则. AB30ABCAC?)(x,yG可得,则由两边上的中线长之和是的重心为和解:设 2?30??CG?20BGG(8,0)8,0),CB(?B,C的轨迹为以,而点为定点,所以点3为焦点的椭圆。 228?20,c?2a?c?a6?a?10,b可得所以由22yx??1(y?0)?ABC的重心轨迹方程是故 10036练习: 22?|x?y?(y?1)x2(?1)2|?表示的曲线是( 4).方程 A.椭圆B.双曲线C.线段D.抛物线 3.点差法 圆锥曲线中与弦的中点有关的问题可用点差法,其基本方法是把弦的两端点A(x,y),B(x,y)x?x,的坐标代入圆锥曲线方程,然而相减,利用平方差公式可得221211x?x2x?x?xyy?yy?AB),yP(x,

高中数学三角函数基础知识点及答案

高中数学三角函数基础知识点及答案 1、角的概念的推广:平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。射线的起始位置称为始边,终止位置称为终边。 2、象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。如果角的终边在坐标轴上,就认为这个角不属于任何象限。 3. 终边相同的角的表示: (1)α终边与θ终边相同(α的终边在θ终边所在射线上)?2()k k αθπ=+∈Z , 注意:相等的角的终边一定相同,终边相同的角不一定相等.如与角 1825-的终边相同,且绝对值最小的角的度数是___,合___弧度。 弧度:一周的弧度数为2πr/r=2π,360°角=2π弧度,因此,1弧度约为57.3°,即57°17'44.806'', 1°为π/180弧度,近似值为0.01745弧度,周角为2π弧度,平角(即180°角)为π弧度, 直角为π/2弧度。(答:25-;5 36 π- ) (2)α终边与θ终边共线(α的终边在θ终边所在直线上) ?()k k αθπ=+∈Z . (3)α终边与θ终边关于x 轴对称?2()k k αθπ=-+∈Z . (4)α终边与θ终边关于y 轴对称?2()k k απθπ=-+∈Z . (5)α终边与θ终边关于原点对称?2()k k απθπ=++∈Z . (6)α终边在x 轴上的角可表示为:,k k Z απ=∈; α终边在y 轴上的角可表示为:,2k k Z παπ=+∈;α终边在坐标轴上的角可表示为:,2 k k Z π α=∈. 如α的终边与 6 π 的终边关于直线x y =对称,则α=____________。 (答:Z k k ∈+ ,3 2π π) 4、α与2α的终边关系:由“两等分各象限、一二三四”确定.如若α是第 二象限角,则2 α 是第_____象限角 (答:一、三) 5.弧长公式:||l R α=,扇形面积公式:211||22 S lR R α==,1弧度 (1rad)57.3≈. 如已知扇形AOB 的周长是6cm ,该扇形的中心角是1弧度,求该扇形的面积。 (答:22cm ) 6、任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是220r x y =+>,那么 s i n ,c o s y x r r αα==,()tan ,0y x x α=≠,cot x y α=(0)y ≠,sec r x α=()0x ≠, ()csc 0r y y α=≠。三角函数值只与角的大小有关,而与终边上点P 的位置无关。

排列组合题型总结

排列组合题型总结 排列组合问题千变万化,解法灵活,条件隐晦,思维抽象,难以找到解题的突破口。因而在求解排列组合应用题时,除做到:排列组合分清,加乘原理辩明,避免重复遗漏外,还应注意积累排列组合问题得以快速准确求解。 一.直接法、 1. 特殊元素法 例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个 (1)数字1不排在个位和千位 (2)数字1不在个位,数字6不在千位。 分析:(1)个位和千位有5个数字可供选择25A ,其余2位有四个可供选择24A ,由乘法原理: 25A 24A =240 2.特殊位置法 (2)当1在千位时余下三位有35A =60,1不在千位时,千位有14A 种选法,个位有14A 种,余下的有24A , 共有14A 1 4A 24A =192所以总共有192+60=252 二.间接法当直接法求解类别比较大时,应采用间接法。如上例中(2)可用间接法2435462A A A +-=252 例2 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三维书? 分析:此例正面求解需考虑0与1卡片用与不用,且用此卡片又分使用0与使用1,类别较复杂,因 而可使用间接计算:任取三张卡片可以组成不同的三位数333352A C ??个,其中0在百位的有 2242?C ?22A 个,这是不合题意的。故共可组成不同的三位数333352A C ??-2242?C ?22A =432 (个) 三.插空法 当需排元素中有不能相邻的元素时,宜用插空法。 例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方 法? 分析:原有的8个节目中含有9个空档,插入一个节目后,空档变为10个,故有11019A A ?=100中插 入方法。 四.捆绑法 当需排元素中有必须相邻的元素时,宜用捆绑法。 例4 4名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种? 分析:先将男生捆绑在一起看成一个大元素与女生全排列有44A 种排法,而男生之间又有44A 种排法,又乘法原理满足条件的排法有:44A ×4 4A =576 练习1.四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有 种(3324A C ) 2. 某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校

高中数学必修一常见题型归类

常见题型归类 第一章集合与函数概念 1.1集合 题型1集合与元素 题型2 集合的表示 题型3 空集与0 题型4 子集、真子集 题型5 集合运算 题型5.1 已知集合,求集合运算 题型5.2 已知集合运算,求集合 题型5.3已知集合运算,求参数 题型6 “二维”集合运算 题型6自定义的集合 1.2函数及其表示 题型1 映射概念 题型2 函数概念 题型3 同一函数 题型4 函数的表示 题型5 已知函数解析式求值 题型6 求解析式 题型7定义域 题型7.1 求函数的定义域 题型7.2 已知函数的定义域问题 题型8 值域 题型8.1 图像法求函数的值域 题型8.2 转化为二次函数,求函数的值域 题型8.3转化为反比例函数,求函数的值域 题型8.4 利用有界性,求函数的值域 题型8.5单调性法求函数的值域 题型8.6 判别式法求函数的值域

题型8.7 几何法求函数值域 题型9 已知函数值域,求系数 1.3函数的基本性质单调性 题型1 判断函数的单调区间 题型2已知函数的单调区间,求参数 题型3 已知函数的单调性,比较大小 题型4 已知函数的单调性,求范围 1.4函数的基本性质奇偶性 题型1 判断函数的奇偶性 题型2 已知函数的奇偶性,求解析式 题型3 已知函数的奇偶性,求参数 题型4 已知函数的奇偶性,求值或解集等 1.5函数的图像 题型1 函数图像 题型2 去绝对值作函数图像 题型3 利用图像变换作函数图像 题型4 已知函数解析式判断图像 题型5 研究函数性质作函数图像 题型6 函数图像的对称性 第二章基本初等函数 2.1指数函数 题型1 指数运算7 题型2指数函数概念 题型3指数函数型的定义域、值域 题型4 指数函数型恒过定点 题型5 单调性 题型6 奇偶性 题型7图像 题型8方程、不等式 2.2对数函数

高考数学难点之轨迹方程的求法

高考数学难点之轨迹方程的求法 求曲线的轨迹方程是解析几何的两个基本问题之一.求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点. ●难点磁场 (★★★★)已知A 、B 为两定点,动点M 到A 与到B 的距离比为常数λ,求点M 的轨迹方程,并注明轨迹是什么曲线. ●案例探究 [例1]如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程. 命题意图:本题主要考查利用“相关点代入法”求曲线的轨迹方程,属★★★★★级题目. 知识依托:利用平面几何的基本知识和两点间的距离公式建立线段AB 中点的轨迹方程. 错解分析:欲求Q 的轨迹方程,应先求R 的轨迹方程,若学生思考不深刻,发现不了问题的实质,很难解决此题. 技巧与方法:对某些较复杂的探求轨迹方程的问题,可先确定一个较易于求得的点的轨迹方程,再以此点作为主动点,所求的轨迹上的点为相关点,求得轨迹方程. 解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |. 又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2) 又|AR |=|PR |=22)4(y x +- 所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0 因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2 ,241+= +y y x , 代入方程x 2+y 2-4x -10=0,得 2 4 4)2()24( 22+? -++x y x -10=0 整理得:x 2+y 2=56,这就是所求的轨迹方程. [例2]设点A 和B 为抛物线 y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线.(2000年北京、安徽春招) 命题意图:本题主要考查“参数法”求曲线的轨迹方程,属★★★★★级题目. 知识依托:直线与抛物线的位置关系. 错解分析:当设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2)时,注意对“x 1=x 2”的讨论.

人教版高中数学基础知识归类

高中数学基础知识归类——献给2012年高三(理科)考生 一.集合与简易逻辑 1.注意区分集合中元素的形式.如:{|lg }x y x =—函数的定义域;{|lg }y y x =—函数的值域; {(,)|lg }x y y x =—函数图象上的点集. 2.集合的性质: ①任何一个集合A 是它本身的子集,记为A A ?. ②空集是任何集合的子集,记为A ??. ③空集是任何非空集合的真子集;注意:条件为A B ?,在讨论的时候不要遗忘了A =?的情况 如:}012|{2=--=x ax x A ,如果A R + =?,求a 的取值.(答:0a ≤) ④()U U U C A B C A C B =,()U U U C A B C A C B =;A B C A B C =()(); A B C A B C =()(). ⑤A B A A B B =?=U U A B C B C A ????U A C B ?=?U C A B R ?=. ⑥A B 元素的个数:()()card A B cardA cardB card A B =+-. ⑦含n 个元素的集合的子集个数为2n ;真子集(非空子集)个数为 21n -;非空真子集个数为22n -. 3.补集思想常运用于解决否定型或正面较复杂的有关问题。 如:已知函数12)2(24)(22+----=p p x p x x f 在区间]1,1[-上至少存在一个实数c ,使 0)(>c f ,求实数p 的取值范围.(答:32 (3,)-) 4.原命题: p q ?;逆命题: q p ?;否命题: p q ???;逆否命题: q p ???;互为逆否的两 个命题是等价的.如:“βαsin sin ≠”是“βα≠”的 条件.(答:充分非必要条件) 5.若p q ?且q p ≠>,则p 是q 的充分非必要条件(或q 是p 的必要非充分条件). 6.注意命题p q ?的否定与它的否命题的区别: 命题p q ?的否定是p q ??;否命题是p q ???. 命题“p 或q ”的否定是“p ?且q ?”;“p 且q ”的否定是“p ?或q ?”. 如:“若a 和b 都是偶数,则b a +是偶数”的否命题是“若a 和b 不都是偶数,则b a +是奇数” 否定是“若a 和b 都是偶数,则b a +是奇数”. 二.函数 1.①映射f :A B →是:⑴ “一对一或多对一”的对应;⑵集合A 中的元素必有象且A 中不 同元素在B 中可以有相同的象;集合B 中的元素不一定有原象(即象集B ?). ②一一映射f :A B →: ⑴“一对一”的对应;⑵A 中不同元素的象必不同,B 中元素都有原象. 2.函数f : A B →是特殊的映射.特殊在定义域A 和值域B 都是非空数集!据此可知函数图像与x 轴

高考专题---总结排列组合题型

总结排列组合题型 一.直接法 1.特殊元素法 例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个 (1)数字1不排在个位和千位 (2)数字1不在个位,数字6不在千位。 分析:(1)个位和千位有5个数字可供选择,其余2位有四个可供选择,由乘法原理:=240 2.特殊位置法 (2)当1在千位时余下三位有=60,1不在千位时,千位有种选法,个位有种,余下的有,共有=192所以总共有192+60=252 二.间接法当直接法求解类别比较大时,应采用间接法。如上例中(2)可用间接法=252 例2 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三维书? 分析:此例正面求解需考虑0与1卡片用与不用,且用此卡片又分使用0与使用1,类别较复杂,因而可使用间接计算:任取三张卡片可以组成不同的三位数个,其中0在百位的有个,这是不合题意的。故共可组成不同的三位数-=432(个) 三.插空法当需排元素中有不能相邻的元素时,宜用插空法。 例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法? 分析:原有的8个节目中含有9个空档,插入一个节目后,空档变为10个,故有=100中插入方法。 四.捆绑法当需排元素中有必须相邻的元素时,宜用捆绑法。 例4 4名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种? 分析:先将男生捆绑在一起看成一个大元素与女生全排列有种排法,而男生之间又有种排

法,又乘法原理满足条件的排法有:×=576 练习1.四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有种() 2.某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校人数较多,要安排连续参观2天,其余只参观一天,则植物园30天内不同的安排方法有()(注意连续参观2天,即需把30天种的连续两天捆绑看成一天作为一个整体来选有 其余的就是19所学校选28天进行排列) 五.阁板法名额分配或相同物品的分配问题,适宜采阁板用法 例5 某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共种。 分析:此例的实质是12个名额分配给8个班,每班至少一个名额,可在12个名额种的11个空当中插入7块闸板,一种插法对应一种名额的分配方式,故有种 练习1.(a+b+c+d)15有多少项? 当项中只有一个字母时,有种(即a.b.c.d而指数只有15故。 当项中有2个字母时,有而指数和为15,即将15分配给2个字母时,如何分,闸板法一分为2,即 当项中有3个字母时指数15分给3个字母分三组即可 当项种4个字母都在时四者都相加即可. 练习2.有20个不加区别的小球放入编号为1,2,3的三个盒子里,要求每个盒子内的球数不少编号数,问有多少种不同的方法?() 3.不定方程X 1+X 2 +X 3 +…+X 50 =100中不同的整数解有() 六.平均分堆问题例6 6本不同的书平均分成三堆,有多少种不同的方法? 分析:分出三堆书(a 1,a 2 ),(a 3 ,a 4 ),(a 5 ,a 6 )由顺序不同可以有=6种,而这6种分法只算一 种分堆方式,故6本不同的书平均分成三堆方式有=15种 练习:1.6本书分三份,2份1本,1份4本,则有不同分法? 2.某年级6个班的数学课,分配给甲乙丙三名数学教师任教,每人教两个班,则分派方法的种数。

高中数学基础知识汇总

第一部分 集合 1.理解集合中元素的意义..... 是解决集合问题的关键:元素是函数关系中自变量的取值?还是因变量的 取值?还是曲线上的点?… ; 2.研究集合问题,一定要抓住集合的代表元素,如:{}x y x lg |=与{}x y y lg |=及 {}x y y x lg |),(= 3.数形结合.... 是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决; 4.(1)含n 个元素的集合的子集个数为2n ,真子集(非空子集)个数为2n -1; (2);B B A A B A B A =?=?? 注意:讨论的时候不要遗忘了φ=A 的情况。 5.φ是任何集合的子集,是任何非空集合的真子集。 第二部分 函数与导数 1.映射:注意 ①第一个集合中的元素必须有象;②一对一,或多对一。

2.函数值域的求法:①分析法 ;②配方法 ;③判别式法 ;④利用函数单调性 ; ⑤换元法 ;⑥利用均值不等式 2222b a b a ab +≤+≤; ⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性(x a 、x sin 、x cos 等);⑨导数法 3.复合函数的有关问题 (1)复合函数定义域求法: ① 若f(x)的定义域为[a ,b ],则复合函数f[g(x)] 的定义域由不等式a≤g(x)≤b 解出 ② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域, 相当于x ∈[a,b]时,求g(x)的值域。 (2)复合函数单调性的判定: ①首先将原函数)]([x g f y =分解为基本函数:内函 数)(x g u =与外函数)(u f y =; ②分别研究内、外函数在各自定义域内的单调性; ③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。

高中数学排列组合例题

到车间也有7种分依此类推由分步计数原理共有76种不同的排法 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数 . 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这 两个位置 先排末位共有C 3 然后排首位共有C i 最后排其它位置共有A 3 113 由分步计数原理得 C 4C 3A 4 =288 练习题:7种不同的花种在排成一列的花盆里 ,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二. 相邻元素捆绑策略 例2. 7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内 5 2 2 部进行自排。由分步计数原理可得共有 A 5A 2A ; =480种不同的排法 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素 的位置,没有限制地安排在 m 个位置上的排列数为 m n 种 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新果将这两个节目插入原节目单中,那么不同插法的种数为 _42_ 2. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯六. 环排问题线排策略 例6. 8人围桌而坐,共有多少种坐法? 解:围桌而坐与坐成一排的不同点在于,坐成圆形没有首尾之分,所以 从此位置把圆形展成直线其余7人共有(8-1 )!种排法即7 ! 要求某几个元素必须排在一起的问题 ,可以用捆绑法来解决问题 ?即将需要相邻的元素合并 为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也必须排列 ?练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三. 不相邻问题插空策略 例3. 一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续岀场,则节目的岀场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有 A 5种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 Ae 不同的方法,由分步计数原理,节目的不同顺序共有 A 5A 4 ______ 种 元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两 练习 一5个节目已排成节目单,开演前又增加了两个新节目 ----------- 插入原节目单中, 且两个新 节目不相邻,那么不同插法的种数为 JQ_ 四. 定序问题倍缩空位插入策略 例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题 ,可先把这几个元素与其他元素一起进行排列 ,然后用总排列数除以这几个 元素之间 的全排列数,则共有不同排法种数是: A 7∕A 3 (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 A 7 种方法,其余的三个位置甲乙丙共有 丄种坐法,则共有 A :种 方法。 思考:可以先让甲乙丙就坐吗 ? — — (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 ___________ 方法 定序问题可以用倍缩法,还可转化为占位插 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? C 15O 五. 重排问题求幕策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 J-种分法.把第二名实习生分配 排列组合 A 4并 -CKMXxMXXX) ABCDEFGHA D- B E A F H G

高一数学上册基础知识点总结

数学必修一基础要点归纳 第一章 集合与函数的概念 一、集合的概念与运算: 1、集合的特性与表示法:集合中的元素应具有:确定性、互异性、无序性;集合的表示法 有:列举法、描述法、文氏图等。 2、集合的分类:①有限集、无限集、空集。 ②数集:{ } 2 2y y x =- 点集: (){},1x y x y += 3、子集与真子集:若x A ∈则x B ∈?A B ? 若A B ?但A ≠B ?A B 若{}123,n A a a a a = ,,,则它的子集个数为2n 个 4、集合的运算:①{} A B x x A x B =∈∈ 且,若A B A = 则A B ? ②{}A B x x A x B = ∈∈ 或,若A B A = 则B A ? ③ { } U C A x x U x A =∈?但 5、映射:对于集合A 中的任一元素a,按照某个对应法则f ,集合B 中都有唯一的元素b 与之 对应,则称:f A B →为A 到的映射,其中a 叫做b 的原象,b 叫a 的象。 二、函数的概念及函数的性质: 1、函数的概念:对于非空的数集A 与B ,我们称映射:f A B →为函数,记作()y f x =, 其中,x A y B ∈∈,集合A 即是函数的定义域,值域是B 的子集。定义域、值域、对应法则称为函数的三要素。 2、 函数的性质: ⑴ 定义域:0 1 简单函数的定义域:使函数有意义的x 的取值范围,例: y = 的定义域为:25053302x x x ->??<? 2 复合函数的定义域:若()y f x =的定义域为[),x a b ∈,则复合函数 ()y f g x =????的定义域为不等式()a g x b ≤<的解集。 0 3 实际问题的定义域要根据实际问题的实际意义来确定定义域。

高中数学排列组合典型例题精讲

概念形成 1、元素:我们把问题中被取的对象叫做元素 2、排列:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺.... 序.排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.... 。 说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列(与位置有关) (2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同 合作探究二 排列数的定义及公式 3、排列数:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出 m 元素的排列数,用符号m n A 表示 议一议:“排列”和“排列数”有什么区别和联系? 4、排列数公式推导 探究:从n 个不同元素中取出2个元素的排列数2n A 是多少?3n A 呢?m A n 呢? )1()2)(1(+-?--=m n n n n A m n (,,m n N m n *∈≤) 说明:公式特征:(1)第一个因数是n ,后面每一个因数比它前面一个少1,最后一个 因数是1n m -+,共有m 个因数; (2),,m n N m n *∈≤ 即学即练: 1.计算 (1)410A ; (2)25A ;(3)3355A A ÷ 2.已知101095m A =???,那么m = 3.,k N +∈且40,k ≤则(50)(51)(52)(79)k k k k ----用排列数符号表示为( ) A .5079k k A -- B .2979k A - C .3079k A - D .3050k A - 例1. 计算从c b a ,,这三个元素中,取出3个元素的排列数,并写出所有的排列。 5 、全排列:n 个不同元素全部取出的一个排列,叫做n 个不同元素的全排列。 此时在排列数公式中, m = n 全排列数:(1)(2)21!n n A n n n n =--?=(叫做n 的阶乘). 即学即练:口答(用阶乘表示):(1)334A (2)44A (3))!1(-?n n 排列数公式的另一种形式: )! (!m n n A m n -= 另外,我们规定 0! =1 .

高中数学解析几何常考题型整理归纳

高中数学解析几何常考题型整理归纳 题型一 :圆锥曲线的标准方程与几何性质 圆锥曲线的标准方程是高考的必考题型,圆锥曲线的几何性质是高考考查的重点,求离心率、准线、 双曲线的渐近线是常考题型 . 22 【例 1】(1)已知双曲线 a x 2- y b 2=1(a >0,b >0)的一个焦点为 F (2, 0),且双曲线的渐近线与圆 (x - 2)2 +y 2=3 相切,则双曲线的方程为 ( 22 A.x2-y2=1 A. 9 -13= 2 C.x 3-y 2=1 22 (2)若点 M (2,1),点 C 是椭圆 1x 6+y 7 22 (3)已知椭圆 x 2+y 2=1(a >b >0)与抛物线 y 2=2px (p >0)有相同的焦点 F ,P ,Q 是椭圆与抛物线的交点, ab 22 若直线 PQ 经过焦点 F ,则椭圆 a x 2+ y b 2=1(a >b >0)的离心率为 ___ . 答案 (1)D (2)8- 26 (3) 2- 1 22 解析 (1)双曲线 x a 2-y b 2=1 的一个焦点为 F (2,0), 则 a 2+ b 2= 4,① 双曲线的渐近线方程为 y =±b a x , a 由题意得 22b 2= 3,② a 2+b 2 联立①② 解得 b = 3,a =1, 2 所求双曲线的方程为 x 2-y 3 =1,选 D. (2)设点 B 为椭圆的左焦点,点 M (2,1)在椭圆内,那么 |BM|+|AM|+|AC|≥|AB|+|AC|=2a ,所以 |AM| +|AC|≥2a -|BM|,而 a =4,|BM|= (2+3)2+1= 26,所以 (|AM|+ |AC|)最小=8- 26. ) 22 B.x - y =1 B.13- 9 =1 2 D.x 2 -y 3=1 1 的右焦点,点 A 是椭圆的动点,则 |AM|+ |AC|的最小值为

(完整版)高中数学知识点体系框架超全超完美

高中数学基础知识整合 函数与方程区间建立函数模型 抽象函数复合函数分段函数求根法、二分法、图象法;一元二次方程根的分布 单调性:同增异减赋值法,典型的函数 零点函数的应用 A 中元素在 B 中都有唯一的象;可一对一(一一映射),也可多对一,但不可一对多 函数的基本性质 单调性奇偶性周期性 对称性 最值 1.求单调区间:定义法、导数法、用已知函数的单调性。 2.复合函数单调性:同增异减。 1.先看定义域是否关于原点对称,再看f (-x )=f (x )还是-f (x ). 2.奇函数图象关于原点对称,若x =0有意义,则f (0)=0. 3.偶函数图象关于y 轴对称,反之也成立。 f (x +T)=f (x );周期为T 的奇函数有:f (T)=f (T/2)= f (0)=0.二次函数、基本不等式,对勾函数、三角函数有界性、线性规划、导数、利用单调性、数形结合等。 函数的概念 定义 列表法解析法图象法 表示三要素使解析式有意义及实际意义 常用换元法求解析式 观察法、判别式法、分离常数法、单调性法、最值法、重要不等式、三角法、图象法、线性规划等 定义域 对应关系值域 函数常见的几种变换平移变换、对称变换翻折变换、伸缩变换 基本初等函数正(反)比例函数、一次(二次)函数幂函数 指数函数与对数函数三角函数 定义、图象、性质和应用 函数 映 射 第二部分映射、函数、导数、定积分与微积分 退出 上一页 第二部分映射、函数、导数、定积分与微积分 导数 导数概念函数的平均变化率运动的平均速度曲线的割线的斜率 函数的瞬时变化率运动的瞬时速度曲线的切线的斜率 ()()的区别 与0x f x f ' '0 t t t v a S v ==,() 0' x f k =导数概念 基本初等函数求导 导数的四则运算法则简单复合函数的导数()()()()()()()().ln 1ln ln 1 log sin cos cos sin 01x x x x a n n e e a a a x x a x x x x x x nx x c c ==== -====-;;;;;;; 为常数()()()()[]()() ()()[]()()()()()()()()()()()[]2)3()2()1(x g x g x f x g x f x g x f x g x f x g x f x g x f x g x f x g x f x g x f -=? ? ????+=?±=±是可导的,则有:,设()()[]()() x u u f x g f ' ' ' ?=1.极值点的导数为0,但导数为0的点不一定是极值点; 2.闭区间一定有最值,开区间不一定有最值。导数应用函数的单调性研究函数的极值与最值 曲线的切线变速运动的速度生活中最优化问题 ()()()(). 00''在该区间递减在该区间递增,x f x f x f x f ?1.曲线上某点处切线,只有一条;2.过某点的曲线的切线不一定只一条,要设切点坐标。 一般步骤:1.建模,列关系式;2.求导数,解导数方程;3.比较区间端点函数值与极值,找到最大(最小)值。 定 积分与微积分 定积分概念 定理应用 性质定理含意微积分基本 定理 曲边梯形的面积变力所做的功 ()的极限 和式i n i i x f ?∑-=1 1 ξ定义及几何意义 1.用定义求:分割、近似代替、求和、取极限; 2.用公式。 ()()()()[]()()()()()()()() c b a dx x f dx x f dx x f dx x f dx x f dx x g dx x f dx x g x f dx x f k dx x kf c b b a c a a b b a b a b a b a b a b a <<=-=±=±=?????????? .;;;()()()()()() 莱布尼兹公式牛顿则若--==?a F b F dx x f x f x F b a ,'1.求平面图形面积;2.在物理中的应用(1)求变速运动的路程: (2)求变力所作的功; ()?=b a dx x F W ()dt t v s a b ?=

高中数学题型总结与易错点提示(排列组合)

排列组合 复习巩固 1.分类计数原理(加法原理) 完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =+++ 种不同的方法. 2.分步计数原理(乘法原理) 完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有: 12n N m m m =??? 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 以免不合要求的元素占了这两个位置. 先排末位共有1 3C 然后排首位共有14C 最后排其它位置共有 34A 由分步计数原理得11 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 乙 甲丁 丙 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 C 1 4 A 3 4 C 1 3 要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素 一起作排列,同时要注意合并元素内部也必须排列. 元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两端 定序问题可以用倍缩法,还可转化为占位插空模型处理

高中数学数列复习题型归纳解题方法整理

数列 一、等差数列与等比数列 1.基本量的思想: 常设首项、(公差)比为基本量,借助于消元思想及解方程组思想等。转化为“基本量”是解决问题的基本方法。 2.等差数列与等比数列的联系 1)若数列{}n a 是等差数列,则数列}{n a a 是等比数列,公比为d a ,其中a 是常数,d 是{}n a 的公差。 (a>0且a ≠1); 2)若数列{}n a 是等比数列,且0n a >,则数列{}log a n a 是等差数列,公差为log a q ,其中a 是常数且 0,1a a >≠,q 是{}n a 的公比。 3)若{}n a 既是等差数列又是等比数列,则{}n a 是非零常数数列。 3.等差与等比数列的比较

4、典型例题分析 【题型1】等差数列与等比数列的联系 例1 (2010陕西文16)已知{}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(Ⅰ)求数列{}的通项;(Ⅱ)求数列{2}的前n项和. 解:(Ⅰ)由题设知公差d≠0, 由a1=1,a1,a3,a9成等比数列得12 1 d + = 18 12 d d + + , 解得d=1,d=0(舍去),故{}的通项=1+(n-1)×1=n. (Ⅱ)由(Ⅰ)知2m a=2n,由等比数列前n项和公式得 2+22+23+…+22(12) 12 n - - 21-2. 小结与拓展:数列{}n a是等差数列,则数列} {n a a是等比数列,公比为d a,其中a是常数,d是{}n a的公差。(a>0且a≠1). 【题型2】与“前n项和与通项”、常用求通项公式的结合 例2 已知数列{}的前三项与数列{}的前三项对应相同,且a1+2a2+22a3+…+2n-1=8n对任意的n∈N*都成立,数列{+1-}是等差数列.求数列{}与{}的通项公式。 解:a1+2a2+22a3+…+2n-1=8n(n∈N*) ① 当n≥2时,a1+2a2+22a3+…+2n-2-1=8(n-1)(n∈N*) ② ①-②得2n-1=8,求得=24-n, 在①中令n=1,可得a1=8=24-1, ∴=24-n(n∈N*).由题意知b1=8,b2=4,b3=2,∴b2-b1=-4,b3-b2=-2, ∴数列{+1-}的公差为-2-(-4)=2,∴+1-=-4+(n-1)×2=2n-6,

相关文档
最新文档