五、几何法求轨迹方程(高中数学解题妙法)
高中解析几何求轨迹方程的常用方法(精华-例题和练习)

sin B sin A
5 sin C , 求点 C 的轨迹。 4
【变式】 :已知圆
的圆心为 M1,圆
的圆心为 M2,一动圆与
这两个圆外切,求动圆圆心 P 的轨迹方程。
二:用直译法求轨迹方程 此类问题重在寻找数量关系。 例 2: 一条线段两个端点 A 和 B 分别在 x 轴和 y 轴上滑动, 且 BM=a, AM=b, 求 AB 中点 M 的轨迹方程?
5 sin C , 求点 C 的轨迹。 4 5 5 【解析】由 sin B sin A sin C , 可知 b a c 10 ,即 | AC | | BC | 10 ,满足椭 4 4 sin B sin A
圆的定义。令椭圆方程为
x2 a
'2
y2 b
'2
1 ,则 a ' 5, c ' 4 b ' 3 ,则轨迹方程为
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
新疆 源头学子小屋
/wxc/
特级教师 王新敞
wxckt@
y
B
Q R A
o
P
x
五、用交轨法求轨迹方程 例 5.已知椭圆
x2 y 2 1(a>b>o)的两个顶点为 A1 ( a, 0) , A2 (a, 0) ,与 y 轴平行的直 a 2 b2
x 2 y 2 a, x 2 y 2 a 2
M 点的轨迹是以 O 为圆心,a 为半径的圆周. 【点评】此题中找到了 OM=
1 AB 这一等量关系是此题成功的关键所在。一般直译法有下 2
列几种情况: 1)代入题设中的已知等量关系:若动点的规律由题设中的已知等量关系明显给出,则采用 直接将数量关系代数化的方法求其轨迹。 2)列出符合题设条件的等式:有时题中无坐标系,需选定适当位置的坐标系,再根据题设 条件列出等式,得出其轨迹方程。 3)运用有关公式:有时要运用符合题设的有关公式,使其公式中含有动点坐标,并作相应 的恒等变换即得其轨迹方程。 4)借助平几中的有关定理和性质:有时动点规律的数量关系不明显,这时可借助平面几何 中的有关定理、性质、勾股定理、垂径定理、中线定理、连心线的性质等等,从而分析出其 数量的关系,这种借助几何定理的方法是求动点轨迹的重要方法. 【变式 2】 : 动点 P (x,y) 到两定点 A (-3, 0) 和B (3, 0) 的距离的比等于 2 (即 求动点 P 的轨迹方程? 【解答】∵|PA|= ( x 3) y , | PB |
高中数学解题方法-----求轨迹方程的常用方法

练习
1.一动圆与圆
外切,同时与圆 x2 + y2 − 6x − 91 = 0内切,求动圆圆心
M 的轨迹方程,并说明它是什么样的曲线。
2. 动圆 M 过定点 P(-4,0),且与圆 :C x2+ -y2 8x = 0 相切,求动圆圆心 M 的轨迹方程。 1.在∆ABC 中,B,C 坐标分别为(-3,0),(3,0),且三角形周长为 16,则点 A 的轨迹方 程是_______________________________.
高中数学解题方法
---求轨迹方程的常用方法
(一)求轨迹方程的一般方法: 物1线.)定的义定法义:,如则果可动先点设P出的轨运迹动方规程律,合再乎根我据们已已知知条的件某,种待曲定线方(程如中圆的、常椭数圆,即、可双得曲到线轨、迹抛 方程。 P 满2.足直的译等法量:关如系果易动于点建立P 的,运则动可规以律先是表否示合出乎点我P们所熟满知足的的某几些何曲上线的的等定量义关难系以,判再用断点,但P 点的 坐标(x,y)表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点 P 运动的某个几何 量y=tg,(以t)此,量进作而为通参过变消数参,化分为别轨建迹立的普P 点通坐方标程xF,(yx与,该y)参=数0。t 的函数关系 x=f(t), 4. 代入法(相关点法):如果动点 P 的运动是由另外某一点 P'的运动引发的,而该点的 运出动相规关律点已P'知的,坐(标该,点然坐后标把满P足'的某坐已标知代曲入线已方知程曲),线则方可程以,设即出可得P(到x动,点y),P 的用轨(迹x,方y程)。表示
题目 6:已知点 P 是圆(x +1)2 + y2 =16 上的动点,圆心为 B ,A(1,0) 是圆内的定点;PA 的中垂线交 BP 于点Q .(1)求点Q 的轨迹C 的方程;
高中数学求轨迹方程的六种常用技法

求轨迹方程六种常用技法轨迹方程探求是解析几何中根本问题之一,也是近几年来高考中常见题型之一。
学生解这类问题时,不善于提醒问题内部规律及知识之间相互联系,动辄就是罗列一大堆坐标关系,进展无目大运动量运算,致使不少学生丧失信心,半途而废,因此,在平时教学中,总结与归纳探求轨迹方程常用技法,对提高学生解题能力、优化学生解题思路很有帮助。
本文通过典型例子阐述探求轨迹方程常用技法。
1.直接法根据条件及一些根本公式如两点间距离公式,点到直线距离公式,直线斜率公式等,直接列出动点满足等量关系式,从而求得轨迹方程。
例1.线段,直线相交于,且它们斜率之积是,求点轨迹方程。
解:以所在直线为轴,垂直平分线为轴建立坐标系,那么,设点坐标为,那么直线斜率,直线斜率由有化简,整理得点轨迹方程为练习:1.平面内动点到点距离与到直线距离之比为2,那么点轨迹方程是。
2.设动直线垂直于轴,且与椭圆交于、两点,是上满足点,求点轨迹方程。
3. 到两互相垂直异面直线距离相等点,在过其中一条直线且平行于另一条直线平面内轨迹是〔〕A.直线B.椭圆C.抛物线D.双曲线2.定义法通过图形几何性质判断动点轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹定义,如线段垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何一些性质定理。
例2.假设为两顶点,与两边上中线长之与是,那么重心轨迹方程是_______________。
解:设重心为,那么由与两边上中线长之与是可得,而点为定点,所以点轨迹为以为焦点椭圆。
所以由可得故重心轨迹方程是练习:4.方程表示曲线是〔〕A.椭圆 B.双曲线 C.线段 D.抛物线3.点差法圆锥曲线中与弦中点有关问题可用点差法,其根本方法是把弦两端点坐标代入圆锥曲线方程,然而相减,利用平方差公式可得,,,等关系式,由于弦中点坐标满足,且直线斜率为,由此可求得弦中点轨迹方程。
例3.椭圆中,过弦恰被点平分,那么该弦所在直线方程为_________________。
求轨迹方程的思路,方法和对应的题型

求轨迹方程的思路,方法和对应的题型全文共四篇示例,供读者参考第一篇示例:求轨迹方程是高中数学中一个重要的话题,不仅是对数学知识综合运用的考验,也是培养学生逻辑思维和解决问题能力的一个重要环节。
在学习求轨迹方程的过程中,学生需要掌握一定的方法和技巧,同时要注意对不同类型的题目进行分类和分析,以便能够正确地找到轨迹方程。
一、思路和方法求轨迹方程的基本思路是根据给定的条件,建立方程,然后通过逻辑推理和代数计算,最终得到表达轨迹的方程。
在具体进行求解的过程中,我们可以采用以下几种方法:1. 笛卡尔坐标系法在求轨迹方程的过程中,我们常常需要用到二维平面坐标系。
通过设定坐标轴,建立直角坐标系,将问题中的各个点的坐标表示成(x,y),然后根据给定条件进行分析,建立方程,最终得到轨迹方程。
2. 参数法有时候通过引入参数,可以简化问题的解决过程。
我们可以设一个参数t,用其作为辅助变量,来表达轨迹上各点的位置关系。
通过对参数的变化范围和步骤进行分析,最终得到轨迹方程。
3. 抽象化方法对于一些复杂的问题,我们可以通过抽象化的方法来求解轨迹方程。
将问题转化成一个更加简单的形式,然后进行分析和计算,最终得到轨迹方程。
二、对应的题型在求轨迹方程的过程中,我们会遇到各种各样的题目,不同的题目需要采用不同的方法和技巧进行求解。
下面列举一些常见的求轨迹方程的题型:1. 直线的轨迹方程有时候给定直线上的一个点和直线的方向向量,我们需要求直线的轨迹方程。
这时可以通过点斜式或者两点式求解。
给定圆心和半径,求圆的轨迹方程。
可以通过圆的标准方程(x-a)²+(y-b)²=r²来求解。
有时候会给定一组参数方程,我们需要求这些参数方程表示的轨迹方程。
可以通过把参数方程组合起来,得到关于自变量的函数表达式,最终得到轨迹方程。
第二篇示例:求轨迹方程是一种常见的数学问题,涉及到解析几何和函数方程的知识。
在数学学习中,经常会遇到求轨迹方程的题目,需要运用相关的方法和思路来解决。
【高考数学解题指导】高中数学轨迹方程求法梳理

高中数学轨迹方程求法梳理1.求轨迹方程的常用方法(1)直接法如果动点满足的几何条件本身就是一些几何量的等量关系,或这些几何条件简单明了且易于表达,只需把这种关系“翻译”成含x,y的等式,就得到曲线的轨迹方程.由于这种求轨迹方程的过程直接以曲线方程的定义为依据求解,所以称之为直接法.步骤:(1)建系,目前大部分题目都已经建好坐标系了,一般可以省略;x y;(2)设点,直接设动点坐标为(,)(3)写式,运用一定平面几何知识,写出题目中动点满足的几何关系式;(4)代入,将动点坐标、已知数据全部代入关系式;(5)化简,化简式子,注意等价性;(6)证明,证明轨迹的完备性和纯粹性,由于前几步的等价性,所以现已省略此步.(2)几何法若所求的轨迹满足某些几何性质(如线段的垂直平分线、角平分线的性质等),则可以用几何法,列出几何式,再代入点的坐标,较简单(一般通过几何法分析转变为直接法和定义法).几个常见定义:(1)到定点的距离等于定值的点的轨迹--------圆;(2)到定直线的距离等于定值的点的轨迹------两条平行线;(3)到两定点的距离之和为定值的点的轨迹(该和大于两定点间的距离)------椭圆(4)到两定点的距离之和为定值的点的轨迹(该和等于两定点间的距离)------线段(5)到两定点的距离之差的绝对值为定值的点的轨迹(差绝对值小于两定点间的距离)------双曲线(6)到两定点的距离之差的为定值的点的轨迹(差绝对值小于两定点间的距离)------双曲线的一支(7)到两定点的距离之差的绝对值为定值的点的轨迹(差绝对值等于两定点间距离)-----两条射线(8)到两定点的距离之差的为定值的点的轨迹(差的绝对值等于两定点间距离)----------一条射线(9)到定点与到定直线距离相等的点的轨迹(该定点不在定直线上)------抛物线(10)到定点与到定直线距离相等的点的轨迹(该定点在定直线上)-------直线注意:1..理论上,所有的几何定义法的题目都可以用直接法解决,但往往计算量大,容易出错2.而在用几何定义法做题时,也不是万能的,一定要注意定义的细节以及等价原则3.曲线的定义与方程无关,并不是说所有题一定都是标准方程(3)定义法若动点的轨迹符合某一基本轨迹的定义,则可根据定义法直接设出所求方程,再确定系数求出动点的轨迹方程.(4)相关点法(代入法或转移法)有些问题中,若动点满足的条件不便用等式列出,但动点是随着另一动点(称之为相关点)的运动而运动的.如果相关点所满足的条件是明显的,或是可分析的,这时可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程,这种求轨迹的方法叫作相关点法或坐标代入法.解题步骤:第一,需找到动点和相关点之间的坐标关系,进行表示和反表示,就是坐标转移;第二,需找到相关点在运动时满足的那个关键式,代入关键式;第三,化简即可,注意范围。
求轨迹方程的常用技巧

求轨迹方程的常用方法(一)求轨迹方程的一般方法:1. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。
2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。
3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。
4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。
5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。
一:用定义法求轨迹方程例1:已知ABC ∆的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足,sin 45sin sin C A B =+求点C 的轨迹。
【变式】:已知圆的圆心为M 1,圆的圆心为M 2,一动圆与这两个圆外切,求动圆圆心P 的轨迹方程。
二:用直译法求轨迹方程此类问题重在寻找数量关系。
例2:一条线段两个端点A 和B 分别在x 轴和y 轴上滑动,且BM=a ,AM=b ,求AB 中点M 的轨迹方程?【变式】: 动点P (x,y )到两定点A (-3,0)和B (3,0)的距离的比等于2(即2||||=PB PA ),求动点P 的轨迹方程?三:用参数法求轨迹方程此类方法主要在于设置合适的参数,求出参数方程,最后消参,化为普通方程。
高考解析几何轨迹问题解题策略

高考解析几何轨迹问题解题策略
一、轨迹方程的求法
1. 直接法:直接法就是不设出动点的坐标,而是根据题设条件,直接列出轨迹上满足的点的几何条件,并从这个条件对方程进行整理,得到轨迹方程.
2. 定义法:定义法就是根据已知条件,结合所学过的圆锥曲线的定义直接写出曲线的方程.
3. 参数法:参数法是指先引入一个参数,如时间、速度等,根据已知条件,写出参数方程,再消去参数化为普通方程.
4. 交轨法:交轨法是指利用圆锥曲线统一定义,通过求交点坐标来求轨迹方程的方法.
二、轨迹问题的解题策略
1. 转化化归:将待求问题转化为已知问题,将复杂问题转化为简单问题,将抽象问题转化为具体问题,这是解决轨迹问题的基本策略.
2. 设而不求:在轨迹问题中,设点而不求出点的坐标是常用的一种解题策略.
3. 整体代换:在轨迹问题中,有时通过整体代换可以简化运算.
4. 坐标转移:在轨迹问题中,有时可以通过坐标转移来转化问题.
5. 逆向思维:在轨迹问题中,有时通过逆向思维可以简化运算.。
高中求轨迹方程的方法

高中求轨迹方程的方法
答案:
1.直译法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,易于表述成含x,y的等式,就得到轨迹方程,这种方法称之为直译法。
用直接法求动点轨迹一般有建系,设点,列式,化简,证明五个步骤,最后的证明可以省略,但要注意“挖”与“补”。
2.定义法:运用解析几何中一些常用定义(例如圆锥曲线的定义),可从曲线定义出发直接写出轨迹方程,或从曲线定义出发建立关系式,从而求出轨迹方程。
3.待定系数法:若动点轨迹题意已直接告知,即为椭圆、双曲线、抛物线、圆或直线,则据题意直接用待定系数法求解。
4.代入法:动点所满足的条件不易表述或求出,但形成轨迹的动点P (x,y)却随另一动点Q(x',y')的运动而有规律的运动,且动点Q的轨迹为给定或容易求得,则可先将x',y'表示为x,y的式子,再代入Q的轨迹方程,然而整理得P的轨迹方程,代入法也称相关点法。
5.参数法:求轨迹方程有时很难直接找到动点的横坐标、纵坐标之间的关系,则可借助中间变量(参数),使x,y之间建立起联系,然而再从所求式子中消去参数,得出动点的轨迹方程。
6.交轨法:求两动曲线交点轨迹时,可由方程直接消去参数,例如求两动直线的交点时常用此法,也可以引入参数来建立这些动曲线的联系,然而消去参数得到轨迹方程。
可以说是参数法的一种变种。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五、几何法求轨迹方程
本内容主要研究几何法求轨迹方程.几何法是指利用平面几何或解析几何知识分析图形性质,发现动点的运动规律和要满足的条件,从而得到动点的轨迹方程.借助平面几何中的有关定理、性质、勾股定理、垂径定理、中线定理、连心线的性质等等,从而分析出其数量的关系,这种借助几何定理的方法是求动点轨迹的重要方法.
例:一条线段AB的长等于2a,两个端点A和B分别在x轴和y轴上滑动,求AB中点P的轨迹方程?
整理:
借助平面几何中的有关定理、性质、勾股定理、垂径定理等等,这种借助几何的方法是
求动点轨迹方程的重要方法,称为几何法.
再看一个例题,加深印象
例:过圆O:x2 +y2= 4 外一点A(4,0),作圆的割线,求割线被圆截得的弦BC的中点M 的轨迹.
注意:自变量的取值范围.
总结:
1.求轨迹方程时,有时动点规律的数量关系不明显,这时可借助平面几何中的有关定理、性质、勾股定理、垂径定理、中线定理、连心线的性质等等,从而分析出其数量的关系,这种借助几何定理的方法是求动点轨迹的重要方法.
2.求轨迹方程时,最后要注意它的完备性与纯粹性,多余的点要去掉,遗漏的点要补上.
练习:
1.已知点)2,3(-A 、)4,1(-B ,过A 、B 作两条互相垂直的直线1l 和2l ,求1l 和2l 的交
点M 的轨迹方程.
2.一个圆形纸片,圆心为O ,F 为圆内一定点,M 是圆周上一动点,把纸片折叠使M 与F 重合,然后抹平纸片,折痕为CD ,设CD 与OM 交于P ,则P 的轨迹是( )
A.椭圆
B.双曲线
C.抛物线
D.圆
3. 设圆C :(x -1)2+y 2=1,过原点O 作圆的任意弦,求所作弦的中点的轨迹方程.
答案:
方程为13)1()1(22=+++y x . 故M 的轨迹方程为13)1()1(22=+++y x . 2.解:由对称性可知||PF|=|PM|,则|PF|+|PO|=|PM|+|PO|=R (R 为圆的半径),则P 的轨迹是椭圆,选A.。