高中数学求轨迹方程的六种常用技法汇总

高中数学求轨迹方程的六种常用技法汇总
高中数学求轨迹方程的六种常用技法汇总

------------------------------------------------------------精品文档--------------------------------------------------------

求轨迹方程的六种常用技法

轨迹方程的探求是解析几何中的基本问题之一,也是近几年来高考中的常见题型之一。学生解这类问题时,不善于揭示问题的内部规律及知识之间的相互联系,动辄就是罗列一大堆的坐标关系,进行无目的大运动量运算,致使不少学生丧失信心,半途而废,因此,在平时教学中,总结和归纳探求轨迹方程的常用技法,对提高学生的解题能力、优化学生的解题思路很有帮助。本文通过典型例子阐述探求轨迹方程的常用技法。

1.直接法

根据已知条件及一些基本公式如两点间距离公式,点到直线的距离公式,直线的斜率公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。

4MM6AB?BMAM,相交于,直线.已知线段,求点,且它们的斜率之积是例19的轨迹方程。x ABAB(3,0)B(A?3,0),y,所在直线为垂直平分线为解:以轴,轴建立坐标系,则

y(k?x??3)BMMAM)y(x,的斜,直线,则直线设点的坐标为的斜率AM x?3y(x?3)k?率AM3?x4yy3)???(x?由已知有9?x3x?322yx??1(x??3)M的轨迹方程为化简,整理得点94练习:

Px?4P(10,0)F的轨迹方.1平面内动点,到点则点的距离之比为的距离与到直线2程

是。

22x ABPll4??2yx上满足交于.设动直线两点,垂直于、轴,且与椭圆是2PA?PB?1P的轨迹方程。的点,求点

3. 到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是()

A.直线B.椭圆C.抛物线D.双曲线

2.定义法

通过图形的几何性质判断动点的轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹的定义,如线段的垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何的一些性质定理。

AB30ABCAC?(8,0)B(C?8,0),,2例.若的两顶点,和为两边上的中线长之和是?ABC。

_______________的重心轨迹方程是则.

AB30ABCAC?)(x,yG可得,则由两边上的中线长之和是的重心为和解:设

2?30??CG?20BGG(8,0)8,0),CB(?B,C的轨迹为以,而点为定点,所以点3为焦点的椭圆。

228?20,c?2a?c?a6?a?10,b可得所以由22yx??1(y?0)?ABC的重心轨迹方程是故

10036练习:

22?|x?y?(y?1)x2(?1)2|?表示的曲线是( 4).方程

A.椭圆B.双曲线C.线段D.抛物线

3.点差法

圆锥曲线中与弦的中点有关的问题可用点差法,其基本方法是把弦的两端点A(x,y),B(x,y)x?x,的坐标代入圆锥曲线方程,然而相减,利用平方差公式可得221211x?x2x?x?xyy?yy?AB),yP(x,

的中点等关系式,由于弦,,的坐标满足21212121y?y12y??y2y ABAB中点的轨迹方程。,由此可

求得弦且直线的斜率为21x?x1222yx??1P(1,1)P点平分,则该弦所在直线方程为的弦

恰被例中,过3.椭圆42_________________。

A(x,y)B(x,y)(1,1)P,则有、的直线交椭圆于解:设过点11222222yyxx2112??1??1② ① 4242(x?x)(x?x)(y?y)(y?y)21121122??0?②可得①

242?yx?x?2,y?AB(1,1)P的中点,故有而为线段

2112(x?x)?2(y?y)?2y?y11121122k?????0??所以,即

AB2x?242x211(x?1)y?1??02?y?3x?所以所求直线方程为化简可得2练习:

22ABABM2)P(2,my?2x?的中点交于、.5已知以为圆心的圆与椭圆两点,求弦的轨迹方程。.

2y2?1x?PlB(1,1),AP能否作一条直线使,6.已知双曲线与双曲线交于两点,过点2AB的

中点?为线段4.转移法

转移法求曲线方程时一般有两个动点,一个是主动的,另一个是次动的。

当题目中的条件同时具有以下特征时,一般可以用转移法求其轨迹方程:

P在已知方程的曲线上移动;①某个动点MP的变化而变化;②另一个动点随PM满足一定

的规律。③在变化过程中和22yx??1FF,FFP?PG的重心是以为焦点的双曲线求上的动点,的例4.已知2121169轨迹方程。

P(x,y)F(?4,0),F(4,0)),yG(x,因为解:设重心,点2010?4?4?x?022?xyx?xx?3? ?0003

代入则有,故1???? y?0?0y3y?16900???y? 3?2x92?1(yy?0)?得所求轨迹方程162FABAFl yx4?1)(0,?、再以作直线两点交抛物线的焦点为5.抛物线,,过点、例BFAFBRR的轨迹方程。为邻边作平行四边形,试求动点xy?1)P(,AFBR(0,1)FR(x,y),∴平

行四边形,的中心为解法一:(转移法)设,∵22204?x?4kx?1y?kx?,代入抛物线

方程,,得将

)(xy,,A(xy),B,则设22112?1?|k|16k??160???????k?4??4kxx??xx①

??2211??4?4?xxxx????2211222xx)?2x(x?xx?2221112y?2?y?4??k∴,

2144.

x?xx?21??2k?x?4k??22?ABPk∵得为∴的中点.,消去

??y?y21y?y?4k?3??2211???2k? 22?22R?4(y?3)(|xx|?4)3)?4(xy?4||?x。的轨迹方程为,由①得,,故动点xy?1),P(AFBR(0,1))FR(x,y,,∵的中心为,∴平行四边形解法二:(点差法)设22)yA(x,y),B(x,设,则有211222?4xyyx4?②①

2211?(x?x)(x?x)?4(y?y)?x?x?4k由①③②得l12211122y?1?1xy?3

2x?x?2??x,k??ABPl1)?(0,代的中点且直线,所以而过点为l21x2x

22?x123y?2x?4?x?4y?12?y?④,化简可得入③可得

x4xy?1xy?122?8(y?4??x)()P(,1)?⑤在抛物线口内,可得由点

22222?12x22?16?|x|??1)?x4x?8(将④式代入⑤可得42R?4(y?3)(|xx|?4)。的轨迹方程为故动点

练习:

P4)(1,1,0),BA(?QQ 4QB ?QA ?关于直线7,点,在平面上动点.已知是点满足P4)x ??y2(的轨迹方程。的对称点,求动点

5.参数法

求曲线的轨迹方程是解析几何的两个基本问题之一,求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,通过“坐标互化”将其转化为寻求变量间的关系。在确定了轨迹方程之后,有时题目会就方程中的参数进行讨论;参数取值的变化使方程表示不同的曲线;参数取值的不同使其与其他曲线的位置关系不同;参数取值的变化引起另外某些变量的取值范围的变化等等。

22OB ?OA ?OP BAl 1??yx 2,0)M(? 已知于.例6过点、作直线交双曲线。两点,P (1)求点的轨迹方程,并说明轨迹是什么曲线;OAPBll 的方程;若不存在,矩形?若存在,求出,使)是否存在这样的直线2

说明理由。22ll 1??yx 0)2)(k ??k(x ?y 的方程为,代入方程解:当直线的斜率存在时,设,得2222

0?k)x1?4k ?x ?(1?k4

2)B(x,yA(x,y),0k ?1?l 因为直线,设与双曲线有两个交点,所以,则2112221?44kk ??,xxx ?x ①

2211221?kk ?12kk4?k4?k ?4x ?x)?4k ?y ?k(x ?2)?k(x ?2)?k(y ? 22112122k11?k ?2kk44OBOA ?OP ?)yP(x, ,由设得),,y ?y)?((x,y)?(x ?x

212122k1?k ?12?k4x4?x ?

2k ?1xk4y ??y ?yk ? 可得,代入∴ 所以,化简得? x 2k1?y k42?)1?(?y y ? 2k1??22224?2)y ?y ??4x ?0(xx ? 即 ②l4,0)P(?程为,故得所求轨迹方满足方程②当直线易的斜率不存在时,求220)?4((x ?2)y ?y ?,其轨迹为双曲线。(也可考虑用点差法求解曲线方程)

0OA ?OB ?0?yy ?xx OPAB 为矩形的充要条件是③即(2)平行四边 2112

BAk 3)??(?2,2,3)( 坐标分别为不存在时,,不满足③式、当、

222kkx ?x)??(1k ?)xx ?2k4(k ?yxx ?y ?xxk(x ?2)(x ?2) 存在时,当

221212************?kk ?2k4)(1?k4(1?k)20?4k ???0? 化简得,

2221kk1??1?kOPABl 使此方程无实数解,故不存在直线为矩形。 练习:

2y 2?x ?1OABl(0,1)M 设椭圆方程为,过点.的直线是坐标原点交椭圆于点,、8, 4111)(),(OAOP ??OBMPNl : 点,,满足点的坐标为绕点求旋转时,当 222P |NP|的最小值与最大值。(1)动点 (2)的轨迹方程;

2ABOOA ?OB 0)?p ?y4px(,过以外的两个动点,且上原点.设点9和为抛物线MMABOMO ?的轨迹方程。,求点作 于6.交轨法

若动点是两曲线的交点,可以通过这两曲线的方程直接求出交点的方程,也可以解方程 组先求出交点的参数方程,再化为普通方程。

22yx ABMN 是椭圆长轴的两个端是椭圆中垂直于长轴的动弦,例7.已知、1??

22ab MANBP 的轨迹方程。和 点,求直线的交点M(x,y)N(x,?y) ,则解1:(利用点的坐标作参数)令1111AMNBP(x,0),y)(A(?a,0),Ba .而设的交点为与yyyy11N,BA,M,P,P 共线,所以因为 共线,所以因为 ??? x ?ax ?ax ?ax ?a112222222y yx)?(abx y11112两式相乘

得①,而代入① 即??1??y?1

2222222x?ax?a aba12222yxbx P的轨迹方程为,得即交点1???

22222baax?a解2: (利用角作参数)

????)bcossin,,bsin?)N(aM(cosa,则设??yysinbbsin?两式相乘消去 , 所以???

???aacos?ax?ax?aacos22yx P点的轨迹方程为。即可得所求的1?? 22ab练习:

ax?y?1?0x?ay?1?0(a??1)的交点的轨迹方程是___ ______和。10.两条直线

总结归纳

1.要注意有的轨迹问题包含一定隐含条件,也就是曲线上点的坐标的取值范围.由曲线和方程的概念可知,在求曲线方程时一定要注意它的“完备性”和“纯粹性”,即轨迹若x x,y的取值范围。的取值范围,或同时注明是曲线的一部分,应对方程注明2.“轨迹”与“轨迹方程”

既有区别又有联系,求“轨迹”时首先要求出“轨迹方程”,然后再说明方程的轨迹图形,最后“补漏”和“去掉增多”的点,若轨迹有不同的情况,应分别讨论,以保证它的完整性。.

练习参考答案22y?2)(x1??.1 48162x4?22P?y?)y(x,4??2yx,得2.解:设,则由方程点的坐标为22?x?AB?2l、由于直线,故与椭圆交于两点

22x4?4?x BA)x,?(x,),B(A、两点的坐标分别为即22

22x44?x?PA?(0,?y),PB?(0,??y)∴2222x?44?x

PA?PB?1(0,?y)?(0,??y)?1即由题知22222yx4?x

222?2)y2?x???1?1(?P6?2yx?∴的轨迹方程为即所以点326ABCD?ABCD

中建立如图所示的【解析】在长方体3.D

1111CD AD是异面垂直的两空间直角坐标系,易知直线与11CD ABCDAD,设与条直线,过直

线平行的平面是面11CD ADABCD),yM(x与内动点在平面满足到直线11MMPMM?NCDMN?,,于的距离相等,作于11CDNP??MNPMP面知连结平,于易,11CMM??PDCMPCDD,M有,,则1111222222aCD AD a?y|x?|a?xy?因此动点)间的距离(其中是异面直线,与即有,11M D.

的轨迹是双曲线,选A

.4)yx,,y),B((Ax),yM(x设,.5解2112y

2222y2y?y?xxx??2,,由,则xx2?y2?y?mm?21122211.P

A .(x?x)得两式相减并同除以B

M 21O x

x?y?yxx11y?y2121????12?k , 而

AB y22y?yx?x x?x2211212?y?k1?kk??AB?PM , 又因为所以

PMPMAB2x?21xy?1????M0?4y?xy?2x化简得点的轨迹方程22yx?0y?1?2x?,但此时直线与双曲线并无交点,所以这样的直线不存在。.先用点差法求出6中点弦问题,注意双曲线与椭圆的不同之处,椭圆不须对判别式进行检验,而双曲线必须进行检

验。)(x,yQ),4?yy),QB?(1?xQA?(?1?x,?.解:设,则

74)?y?(?y)(4?)?4?(?1?x)(1?x)?QA?QB?4?(?1x,?y)?(1?x,4?y由2223?(y?2)x?即

2)C(0,Q 3为半径的圆。的轨迹是以为圆心,以所以点

P4)x?y?2(Q∵点的对称点。是点关于直线),yy)C(xC(x,P是点的轨迹是一个以的圆,其中∴动点为圆心,半径为3000000CCCC4)??2(xC(0,2)y?2(x?4)y的中点,过关于直线且与的对称点,即直线002?y?01??2?? 8?4?0x2y?x???0x????0000?即垂直,于是有

???20y??y?2x?18??0y?2x?????0000042???? 2?222P9?8)?(y?2)(x?的轨迹方

程为。故动点llk1y?kx?M(0,1) ,,设其斜率为解法一:直线则过点的方程为

(1)8.解:)yx,)xB(,y),(x,y(,A(xy)BA的坐标、记、由题设可得点、是方程组212122111y?kx?

①??的解2?y2?1x?②? 4?k2?,x??x??21

2?k4?22x?k)(4??2kx?30,所以,于是将①代入②并化简得?8?.?y?y21

?2k?4?x?xy?y1?k41122).(,?)OP?(),?OBOA(? 22222k?4k?4.k??,x?? 2?k?422Pk0?y4x??y),(xy,消去参数设点则的坐标为得③?4?.y?

?2k4??PABk(0,0)的轨迹方程为不存在时, 、,中点为坐标原点也满足方程③,所以点当

220?4xy?y?

)x,yx,y)B((A P)y(x,在椭圆上,所以、,解法二:设点因的坐标为211222yy2221.1,??1x??x⑤ ④ 1244122220(y?x?x?y)?④—⑤得,所以

221141.0y)?y?x)?(y?y)(?)((x?xx222111124y?y112xx?.?)?0?(y?yx?x时,有当⑥ 212121x?4x21?x?x21,x?? 2?yy??2212,?y.?y4x??y0⑦ 将⑦代入

⑥并整理得并且⑧? 2?yy?1y??21.??

xxx??21xx?PAB2)?(0,2),(0,(0,0),时点,这时点当、的坐标为的坐标为2112)?(y2x2P?1?的轨迹方程为也满足⑧,所以点114161112????xxP,即所以(2)解:由点的轨迹方程知4164711111222222?)?3(x?)??(x)???4x??|NP|?(x)(?y

126222411121|NPNP|||?当;x?x?最小值为取得最小值,取得最大值,故当, 时,最大值为6446)),,xA(y,yxB(),x(My:1 解法9.(,则设)常规设参,2211.2??4ypx11?2??4ypx2?22?p16yy??12??yy(※)?21??py41???y?y?? ??12xx

21x??y?yy12?1??? ?xxx2?1?2yyy4p4p121A,M,B共线得由则y?x?)x?y?y?(1

y?yy?yy?y4p21212124pxx22M?4px?0(?yx?0)x) 的轨迹方程为(※)代入上式得化简得把??y? yy1x?y?OBOA0)k??kx(y的方程为的方程为: (变换方向) 设,则解法2k1?p22p kx?y x?y???2,)A()pk,?2pkB(2得得,由由k??2

k(x?2y?p)AB①的方程为所以直线

2kk pxy?22??px?y2?

2k?12k?1xy??OMOM?AB的方程为② 因为,所以直线k22M?4px?0(xx??y0)①×②即得: 的轨迹方程M(x,y)OMM?ABAB的,由令解法3: (转换观点) 视点可得直线为定点,00x02)x(?y??x?y?4ypx y线物, 与抛为方程联立消去得00

y04py4pp4222220y?(x?y)?y0?yy??(x?y)),yB(x,y),(xA,则, 设201000

2112xxx0002OB?OA,所以又因为p??16yy214p22222p?16??xy)?(x?y?4px?0故即

00000x022M x?y?4px?0(x?0)点的轨迹方程为所以22)y0x0yxyx????(?,?0.10.

求轨迹方程的几种常用方法

求轨迹方程的几种常用方法 求轨迹的方程,是学习解析几何的基础,求轨迹的方程常用的方法主要有: 1直接法: 若命题中所求曲线上的动点与已知条件能直接发生关系,这时,设曲线上动点坐标为( x, y )后,就可根据命题中的已知条件,研究动点形成的几何特征,在此基础上运用几何或代数的基本公式、定理等列出含有x,y 的关系式。从而得到轨迹方程,这种求轨迹方程的方法称作直接法。 例1 :在直角△ ABC中,斜边是定长2a (a 0),求直角顶点C的轨迹方程。 解:由于未给定坐标系,为此,首先建立直角坐标系,取AB所在的直线为X轴,AB的中点0为坐 标原点,过0与AB垂直的直线为y轴(如图).则有A ( a,0), B (a,0)。 设动点C为(x, y), ??? | AC |2 |BC |2 |AB|2, a)2y2]2h(x a)2y2]24a2, 即x2 由于C点到达A、B位置时直角三角形ABC不存在,轨迹中应除去A、B两点, 故所求方程为x2y2a2( x a )。 2?代入法(或利用相关点法): 即利用动点是定曲线上的动点,另一动点依赖于它,那么可寻求它们坐标之间的关系,然后代入定曲线的方程进行求解,就得到原动点的轨迹。 例2 :已知一条长为6的线段两端点A、B分别在x、y轴上滑动,点M在线段AB上,且AM : MB 1:2,求动点M的轨迹方程。 解:设 A (a,0) , B (0, b), M (x, y), 一方面,. 另一方面, 36 , M分AB的比为 1 , 2

评注:本例中,由于 M 点的坐标随着 A 、B 的变化而变化,因而动点 M 的坐标(x, y)可以用A 、B 点 的坐标来表示,而点 M 又满足已知条件,从而得到 M 的轨迹方程。此外,与上例一样,求曲线的方程时, 要充分注意化简过程是否完全同解变形,还要考虑曲线上的一些特殊点。 3.几何法: 求动点轨迹问题时,动点的几何特征与平面几何中的定理及有关平面几何知识有着直接或间接的联 系,且利用平面几何的知识得到包含已知量和动点坐标的等式,化简后就可以得到动点的轨迹方程,这种 求轨迹方程的方法称作几何法。 求动点P 的轨迹方程。 解:设P (x, y),由题 APO BPO ,由三角形角平分线定理有 L P A | ^A 0-1 |PB| |BO| ..(x 6)2 y 2 3 3 , (x 2)2 y 2 整理得x 2 y 2 6x 0,当x 0时,y 0, P 和O 重合,无 意义,??? x 0, 又易知P 落在x 轴上时,除线段AB 以外的任何点均有 APO BPO 00 , ? y 0 ( x 6或x 2)也满足要求。 综上,轨迹方程为 x 2 y 2 6x 0 ( x 0)或y 0 (x 6或x 2 )。 评注:本例利用平面几何的知识(三角形的角平分线定理进行解题) ,方便了求轨迹的方程。 4.参数法: 有时很难直接找出动点的横、纵坐标之间关系。如果借助中间量(参数) 联系,然后再从所求式子中消去参数,这便可得动点的轨迹方程。 0 -b _2_ 1 - -b 3 a x 2 b 3y ②代入①得: 3 2 2 (評(3y) 2 36,即一 16 例3 :如图,已知两定点 A ( 6,0 ), B ( 2,0 ), O 为原点,动点 P 与线段AO 、BO 所张的角相等, ,使(x, y)之间的关系建立起

(完整版)轨迹方程的五种求法例题

动点轨迹方程的求法 一、直接法 按求动点轨迹方程的一般步骤求,其过程是建系设点,列出几何等式,坐标代换,化简整理,主要用于动点具有的几何条件比较明显时. 例1已知直角坐标平面上点Q (2,0)和圆C :,动点M 到圆C 的切线长与的比等于常数(如图),求动点M 的轨迹方程,说明它表示什么曲线. 【解析】:设M (x ,y ),直线MN 切圆C 于N ,则有 ,即 , .整理得,这就是动点 M 的轨迹方程.若,方程化为,它表示过点和x 轴垂直的一条直线;若λ≠1,方程化为,它表示以为圆心,为半径的圆. 二、代入法 若动点M (x ,y )依赖已知曲线上的动点N 而运动,则可将转化后的动点N 的坐标入已知曲线的方程或满足的几何条件,从而求得动点M 的轨迹方程,此法称为代入法,一般用于两个或两个以上动点的情况. 例2 已知抛物线,定点A (3,1),B 为抛物线上任意一点,点P 在线段AB 上,且有BP :PA =1:2,当点B 在抛物线上变动时,求点P 的轨迹方程,并指出这个轨迹为哪种曲线. 【解析】:设,由题设,P 分线段AB 的比,∴ 解得.又点B 在抛物线上,其坐标适合抛物线方程,∴ 整理得点P 的轨迹方程为其轨迹为抛物线. 三、定义法 若动点运动的规律满足某种曲线的定义,则可根据曲线的定义直接写出动点的轨迹方程.此法一般用于求圆锥曲线的方程,在高考中常填空、选择题的形式出现. 例3 若动圆与圆外切且与直线x =2相切,则动圆圆心的轨迹方程是 12 2 =+y x MQ ()0>λλλ=MQ MN λ=-MQ ON MO 2 2λ=+--+2 222)2(1y x y x 0)41(4)1()1(222222=++--+-λλλλx y x 1=λ45= x )0,4 5 (2 222 222)1(3112-+=+-λλλλy x )-()0,12(2 2-λλ1 3122-+λλ12 +=x y ),(),,(11y x B y x P 2== PB AP λ.2121,212311++=++= y y x x 2 1 23,232311-=-=y y x x 12+=x y .1)2 3 23()2123( 2+-=-x y ),3 1 (32)31(2-=-x y 4)2(2 2 =++y x

高中数学求轨迹方程的六种常用技法汇总

------------------------------------------------------------精品文档-------------------------------------------------------- 求轨迹方程的六种常用技法 轨迹方程的探求是解析几何中的基本问题之一,也是近几年来高考中的常见题型之一。学生解这类问题时,不善于揭示问题的内部规律及知识之间的相互联系,动辄就是罗列一大堆的坐标关系,进行无目的大运动量运算,致使不少学生丧失信心,半途而废,因此,在平时教学中,总结和归纳探求轨迹方程的常用技法,对提高学生的解题能力、优化学生的解题思路很有帮助。本文通过典型例子阐述探求轨迹方程的常用技法。 1.直接法 根据已知条件及一些基本公式如两点间距离公式,点到直线的距离公式,直线的斜率公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。 4MM6AB?BMAM,相交于,直线.已知线段,求点,且它们的斜率之积是例19的轨迹方程。x ABAB(3,0)B(A?3,0),y,所在直线为垂直平分线为解:以轴,轴建立坐标系,则 y(k?x??3)BMMAM)y(x,的斜,直线,则直线设点的坐标为的斜率AM x?3y(x?3)k?率AM3?x4yy3)???(x?由已知有9?x3x?322yx??1(x??3)M的轨迹方程为化简,整理得点94练习: Px?4P(10,0)F的轨迹方.1平面内动点,到点则点的距离之比为的距离与到直线2程 是。 22x ABPll4??2yx上满足交于.设动直线两点,垂直于、轴,且与椭圆是2PA?PB?1P的轨迹方程。的点,求点 3. 到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是() A.直线B.椭圆C.抛物线D.双曲线 2.定义法 通过图形的几何性质判断动点的轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹的定义,如线段的垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何的一些性质定理。 AB30ABCAC?(8,0)B(C?8,0),,2例.若的两顶点,和为两边上的中线长之和是?ABC。 _______________的重心轨迹方程是则. AB30ABCAC?)(x,yG可得,则由两边上的中线长之和是的重心为和解:设 2?30??CG?20BGG(8,0)8,0),CB(?B,C的轨迹为以,而点为定点,所以点3为焦点的椭圆。 228?20,c?2a?c?a6?a?10,b可得所以由22yx??1(y?0)?ABC的重心轨迹方程是故 10036练习: 22?|x?y?(y?1)x2(?1)2|?表示的曲线是( 4).方程 A.椭圆B.双曲线C.线段D.抛物线 3.点差法 圆锥曲线中与弦的中点有关的问题可用点差法,其基本方法是把弦的两端点A(x,y),B(x,y)x?x,的坐标代入圆锥曲线方程,然而相减,利用平方差公式可得221211x?x2x?x?xyy?yy?AB),yP(x,

求轨迹方程的常用方法(例题及变式)

求轨迹方程的常用方法: 题型一 直接法 此法是求轨迹方程最基本的方法,根据所满足的几何条件,将几何条件)}(|{M P M 直接翻译成y x ,的形式0),(=y x f ,然后进行等价变换,化简0),(=y x f ,要注意轨迹方程的纯粹性和完备性,即曲线上没有坐标不满足方程的点,也就是说曲线上所有的点适合这个条件而毫无例外(纯粹性);反之,适合条件的所有点都在曲线上而毫无遗漏(完备性)。 例1 过点)3,2(A 任作互相垂直的两直线AM 和AN ,分别交y x ,轴于点N M ,,求线段MN 中点P 的轨迹方程。 解:设P 点坐标为),(y x P ,由中点坐标公式及N M ,在轴上得)2,0(y M ,)0,2(x N ),(R y x ∈ ∴12 0322230-=--?--y x )1(≠x ,化简得01364=-+y x )1(≠x 当1=x 时,)3,0(M ,)0,2(N ,此时MN 的中点)2 3,1(P 它也满足方程01364=-+y x ,所以中点P 的轨迹方程为01364=-+y x 。 变式1 已知动点(,)M x y 到直线:4l x =的距离是它到点(1,0)N 的距离的2倍。 (1) 求动点M 的轨迹C 的方程; (2) 过点(0,3)P 的直线m 与轨迹C 交于,A B 两点。若A 是PB 的中点,求直线m 的斜 率。 题型二 定义法 圆锥曲线定义所包含的几何意义十分重要,应特别重视利用圆锥曲线的定义解题,包括用定义法求轨迹方程。 例2 动圆M 过定点)0,4(-P ,且与圆08:2 2=-+x y x C 相切,求动圆圆心M 的轨迹方程。 解:根据题意4||||||=-MP MC ,说明点M 到定点P C 、的距离之差的绝对值为定值,故点M 的轨迹是双曲线。 ∴2=a ,4=c 故动圆圆心M 的轨迹方程为112 42 2=-y x 变式2 在ABC △中,24BC AC AB =,,上的两条中线长度之和为39, 求ABC △的重心的轨迹方程.

高考数学难点之轨迹方程的求法

高考数学难点之轨迹方程的求法 求曲线的轨迹方程是解析几何的两个基本问题之一.求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点. ●难点磁场 (★★★★)已知A 、B 为两定点,动点M 到A 与到B 的距离比为常数λ,求点M 的轨迹方程,并注明轨迹是什么曲线. ●案例探究 [例1]如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程. 命题意图:本题主要考查利用“相关点代入法”求曲线的轨迹方程,属★★★★★级题目. 知识依托:利用平面几何的基本知识和两点间的距离公式建立线段AB 中点的轨迹方程. 错解分析:欲求Q 的轨迹方程,应先求R 的轨迹方程,若学生思考不深刻,发现不了问题的实质,很难解决此题. 技巧与方法:对某些较复杂的探求轨迹方程的问题,可先确定一个较易于求得的点的轨迹方程,再以此点作为主动点,所求的轨迹上的点为相关点,求得轨迹方程. 解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |. 又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2) 又|AR |=|PR |=22)4(y x +- 所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0 因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2 ,241+= +y y x , 代入方程x 2+y 2-4x -10=0,得 2 4 4)2()24( 22+? -++x y x -10=0 整理得:x 2+y 2=56,这就是所求的轨迹方程. [例2]设点A 和B 为抛物线 y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线.(2000年北京、安徽春招) 命题意图:本题主要考查“参数法”求曲线的轨迹方程,属★★★★★级题目. 知识依托:直线与抛物线的位置关系. 错解分析:当设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2)时,注意对“x 1=x 2”的讨论.

高考动点轨迹方程的常用求法(含练习题及答案)

轨迹方程的经典求法 一、定义法:运用有关曲线的定义求轨迹方程. 例2:在ABC △中,24BC AC AB =,,上的两条中线长度之和为39,求ABC △的重心的轨迹方程. 解:以线段BC 所在直线为x 轴,线段BC 的中垂线为y 轴建立直角坐标系,如图1,M 为重心,则有 2 39263 BM CM +=?=. M ∴点的轨迹是以B C ,为焦点的椭圆, 其中1213c a ==, .5b =∴. ∴所求ABC △的重心的轨迹方程为 22 1(0)16925 x y y +=≠. 二、直接法:直接根据等量关系式建立方程. 例1:已知点(20)(30)A B -,,,,动点()P x y ,满足2PA PB x = ·,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线 解析:由题知(2)PA x y =--- ,,(3)PB x y =-- ,,由2P AP B x = ·,得22(2)(3)x x y x ---+=,即26y x =+, P ∴点轨迹为抛物线.故选D . 三、代入法:此方法适用于动点随已知曲线上点的变化而变化的轨迹问题. 例3:已知△ABC 的顶点(30)(10)B C -,,,,顶点A 在抛物线2y x =上运动,求ABC △的重心G 的轨迹方程. 解:设()G x y ,,00()A x y ,,由重心公式,得003133x x y y -++? =????=?? ,,00323x x y y =+??=?, ①∴. ② 又00()A x y ,∵在抛物线2y x =上,2 00y x =∴. ③ 将①,②代入③,得23(32)(0)y x y =+≠,即所求曲线方程是24 34(0)3 y x x y =++≠. 四、待定系数法:当曲线的形状已知时,一般可用待定系数法解决. 例5:已知A ,B ,D 三点不在一条直线上,且(20)A -, ,(20)B ,,2AD = ,1()2 AE AB AD =+ . (1)求E 点轨迹方程; (2)过A 作直线交以A B ,为焦点的椭圆于M N ,两点,线段MN 的中点到y 轴的距离为4 5 ,且直线MN 与E 点的轨迹相切,求椭圆方程. 解:(1)设()E x y ,,由1()2 AE AB AD =+ 知E 为BD 中点,易知(222)D x y -, . 又2AD = ,则22(222)(2)4x y -++=. 即E 点轨迹方程为221(0)x y y +=≠; (2)设1122()()M x y N x y ,,,,中点00()x y ,. 由题意设椭圆方程为22 2214 x y a a +=-,直线MN 方程为(2)y k x =+.

高中数学动点轨迹问题专题讲解

动点轨迹问题专题讲解 一.专题内容: 求动点(, )P x y 的轨迹方程实质上是建立动点的坐标, x y 之间的关系式,首先要分析形成轨迹的点和已知条件的内在联系,选择最便于反映这种联系的坐标形式,寻求适当关系建立等式,常用方法有: (1)等量关系法.....:根据题意,列出限制动点的条件等式,这种求轨迹的方法叫做等量关系法,利用这种方法时,要求对平面几何中常用的定理和解析几何中的有关基本公式很熟悉. (2)定义法...:如果动点满足的条件符合某种已知曲线(如圆锥曲线)的定义,可根据其定义用待定系数法求出轨迹方程. (3)转移代入法.....:如果所求轨迹上的点(, )P x y 是随另一个在已知曲线C :(, )0F x y =上的动点00(, )M x y 的变化而变化,且00, x y 能用, x y 表示,即0(, )x f x y =,0(, )y g x y =,则将00, x y 代入已知曲线(, )0F x y =,化简后即为所求的轨迹方程. (4)参数法...:选取适当的参数(如直线斜率k 等),分别求出动点坐标, x y 与参数的关系式,得出所求轨迹的参数方程,消去参数即可. (5)交轨法...:即求两动直线交点的轨迹,可选取同一个参数,建立两动直线的方程,然后消去参数,即可(有时还可以由三点共线,斜率相等寻找关系).

注意:轨迹的完备性和纯粹性!一定要检验特殊点和线! 二.相关试题训练 (一)选择、填空题 1.( )已知1F 、2F 是定点,12||8F F =,动点M 满足12||||8MF MF +=,则动点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D )线段 2.( )设(0,5)M ,(0,5)N -,MNP ?的周长为36,则MNP ?的顶点P 的轨迹方程是 (A )22125169x y + =(0x ≠) (B )22 1144169 x y +=(0x ≠) (C ) 22116925x y +=(0y ≠) (D )22 1169144 x y +=(0y ≠) 3.与圆2240x y x +-=外切,又与y 轴相切的圆的圆心轨迹方程是 ; 4.P 在以1F 、2F 为焦点的双曲线22 1169 x y -=上运动,则12F F P ?的重心G 的轨迹方程是 ; 5.已知圆C : 22(16x y +=内一点)A ,圆C 上一动点Q , AQ 的垂直平

解析几何求轨迹方程的常用方法

解析几何求轨迹方程的常用方法 求轨迹方程的一般方法: 1. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。 2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。 4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 一:用定义法求轨迹方程 例1:已知ABC ?的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足,sin 4 5 sin sin C A B =+求点C 的轨迹。

例2: 已知ABC ?中,A ∠、B ∠、C ∠的对边分别为a 、b 、c ,若b c a ,,依次构成等差数列,且b c a >>, 2=AB ,求顶点C 的轨迹方程. 【变式】:已知圆 的圆心为M 1,圆 的圆心为M 2,一动圆与这两个圆外切,求动 圆圆心P 的轨迹方程。 【变式】:⊙C :22(3)16x y ++=内部一点(3,0)A 与圆周上动点Q 连线AQ 的中垂线交CQ 于P ,求点P 的轨迹方程. 二:用直译法求轨迹方程 例3:一条线段两个端点A 和B 分别在x 轴和y 轴上滑动,且BM=a ,AM=b ,求AB 中点M 的轨迹方程?

解析几何求轨迹方程的常用方法讲解

解析几何求轨迹方程的常用方法 求轨迹方程的一般方法: 1. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。 2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。 4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 一:用定义法求轨迹方程 例1:已知ABC ?的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足,sin 4 5 sin sin C A B =+求点C 的轨迹。

例2: 已知ABC ?中,A ∠、B ∠、 C ∠的对边分别为a 、b 、c ,若b c a ,,依次构成等差数列,且b c a >>,2=AB ,求顶点C 的轨迹方程. 【变式】:已知圆的圆心为M 1,圆 的圆心为M 2,一动圆与这两个圆外切,求动圆 圆心P 的轨迹方程。 【变式】:⊙C :22(3)16x y ++=内部一点(3,0)A 与圆周上动点Q 连线AQ 的中垂线交CQ 于P ,求点P 的轨迹方程. 二:用直译法求轨迹方程 例3:一条线段两个端点A 和B 分别在x 轴和y 轴上滑动,且BM=a ,AM=b ,求AB 中点M 的轨迹方程?

高中数学轨迹求法

一、直接法 按求动点轨迹方程的一般步骤求,其过程是建系设点,列出几何等式,坐标代换,化简整理,主要用于动点具有的几何条件比较明显时 1.三角形ABC 中, ,且,则三角形ABC 面积最大值为__________. 2、 动点P (x,y )到两定点A (-3,0)和B (3,0)的距离的比等于2(即2| || |=PB PA ),求动点P 的轨迹方程? 3、一动点到y 轴距离比到点()2,0的距离小2,则此动点的轨迹方程为 .1. 4.已知()1,0A -, ()2,0B ,动点(),M x y 满足 1 2 MA MB = .设动点M 的轨迹为C . (1)求动点M 的轨迹方程,并说明轨迹C 是什么图形; (2)求动点M 与定点B 连线的斜率的最小值; 5、已知曲线C 是动点M 到两个定点()0,0O 、()3,0A 距离之比为1 2 的点的轨迹. (1)求曲线C 的方程; (2)求过点()1,3N 且与曲线C 相切的直线方程. 6.一条线段的长等于10,两端点,A B 分别在x 轴和y 轴上滑动,M 在线段AB 上且 4AM MB =u u u u r u u u r ,则点M 的轨迹方程是( ) A .221664x y += B .22 1664x y += C .22168x y += D .22 168x y += B 7.已知坐标平面上一点M (x ,y )与两个定点M 1(26,1),M 2(2,1),且 =5. (Ⅰ)求点M 的轨迹方程,并说明轨迹是什么图形; (Ⅱ)记(Ⅰ)中的轨迹为C ,过点M (﹣2,3)的直线l 被C 所截得的线段的长为8,求直线l 的方程. 1、【解析】建立如图所示的平面直角坐标系,则: ,设点A 的坐标为 ,由题意有: , 整理可得: ,结合三角形 的性质可得点C 的轨迹方程为以 为圆 心, 为半径的圆出去其与x 轴的交点,据此可得三角形ABC 面积的最大值为

求轨迹方程的常用方法例题及变式

求轨迹方程的常用方法: 题型一直接法 此法是求轨迹方程最基本的方法, 根据所满足的几何条件, 将几何条件{M | P(M )}直接翻 译成x, y 的形式f(x, y) 0 ,然后进行等价变换,化简 f (x,y) 0,要注意轨迹方程的纯 粹性和完备性,即曲线上没有坐标不满足方程的点, 也就是说曲线上所有的点适合这个条件 而毫无例外(纯粹性);反之,适合条件的所有点都在曲线上而毫无遗漏(完备性) 。 例1过点A(2,3)任作互相垂直的两直线 AM 和AN ,分别交x,y 轴于点M , N ,求线段 MN 中点P 的轨迹方程。 解:设P 点坐标为P(x, y),由中点坐标公式及M,N 在轴上得M (0,2y), AM AN k AM k AN 所以中点P 的轨迹方程为4x 6y 13 0。 变式1 已知动点M (x, y)到直线l : x 4的距离是它到点 (1) 求动点M 的轨迹C 的方程; (2) 过点P(0,3)的直线m 与轨迹C 交于A, B 两点。若A 是PB 的中点,求直线 m 的斜 率。 题型二定义法 圆锥曲线定义所包含的几何意义十分重要, 应特别重视利用圆锥曲线的定义解题, 包括用定 义法求轨迹方程。 2 2 例2 动圆M 过定点P( 4,0),且与圆C :x y 8x 0相切,求动圆圆心 M 的轨迹 方程。 解:根据题意|| MC | |MP || 4,说明点M 到定点C 、P 的距离之差的绝对值为定值, N(2x,0)(x,y R) 0 3 2y 2x 2 0 2 3 1 (x 1),化简得 4x 6y 13 0 (x 1) 当x 1时,M(0,3),N(2,0),此时MN 的中点 P(1,|)它也满足方程4x 6y 13 0, N (1,0)的距离的2倍。

求轨迹方程的常用方法(经典)

求轨迹方程的常用方法 (一)求轨迹方程的一般方法: 1. 待定系数法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。 2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ),y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。 4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。 6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 (二)求轨迹方程的注意事项: 1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变。 )() ()(0)(.2为参数又可用参数方程表示程轨迹方程既可用普通方t t g y t f x ,y x ,F ???=== 来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。 3. 求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解,(即以该方程的某些解为坐标的点不在轨迹上),又要检验是否丢解。(即轨迹上的某些点未能用所求的方程表示),出现增解则要舍去,出现丢解,则需补充。检验方法:研究运动中的特殊情形或极端情形。 4.求轨迹方程还有整体法等其他方法。在此不一一缀述。 课前热身: 1. P 是椭圆5 92 2y x +=1上的动点,过P 作椭圆长轴的垂线,垂足为M ,则PM 中点的轨迹中点的轨迹方程为:( )【答案】:B A 、159422=+y x B 、154922=+y x C 、12092 2=+y x D 、5 3622y x + 【解答】:令中点坐标为),(y x ,则点P 的坐标为()2,y x 代入椭圆方程得15 4922=+y x ,选B 2. 圆心在抛物线)0(22 >=y x y 上,并且与抛物线的准线及x 轴都相切的圆的方程是

轨迹方程的 几种求法整理(例题+答案)

轨迹方程的六种求法整理 求轨迹方程是高考中常见的一类问题.本文对曲线方程轨迹的求法做一归纳,供同学们参考. 求轨迹方程的一般方法: 1. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。 2. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。 4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 5. 交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 6. 待定系数法:已知曲线是圆,椭圆,抛物线,双曲线等 一、直接法 把题目中的等量关系直接转化为关于x,y,的方程基本步骤是:建系。设点。列式。化简。说明等,圆锥曲线标准方程的推导。 1. 已知点(20)(30)A B -,, ,,动点()P x y ,满足2PA PB x = ·,求点P 的轨迹。26y x =+, 2. 2.已知点B (-1,0),C (1,0),P 是平面上一动点,且满足.||||CB PB BC PC ?=? (1)求点P 的轨迹C 对应的方程; (2)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD 和AE ,且AD ⊥AE ,判断:直线DE 是否过定点?试证明你的结论. (3)已知点A (m,2)在曲线C 上,过点A 作曲线C 的两条弦AD ,AE ,且AD ,AE 的斜率k 1、k 2满足k 1·k 2=2.求证:直线DE 过定点,并求出这个定点. 解:(1)设.4,1)1(||||),(222x y x y x CB PB BC PC y x P =+=+-?=?化简得得 代入 二、定义法 利用所学过的圆的定义、椭圆的定义、双曲线的定义、抛物线的定义直接写出所求的动点的轨迹方程,这种方法叫做定义法.这种方法要求题设中有定点与定直线及两定点距离之和或差为定值的条件,或利用平面几何知识分析得出这些条件. 1、 若动圆与圆4)2(2 2 =++y x 外切且与直线x =2相切,则动圆圆心的轨迹 方程是

求轨迹方程题型全归纳

求轨迹方程题型全归纳

2 求轨迹方程的六种常用方法 1.直接法 根据已知条件及一些基本公式如两点间距离公式,点到直线的距离公式,直线的斜率公式等,直接列出动点满足的等量关系式,从而求得轨迹方程。 例1.已知线段6=AB ,直线BM AM ,相交于M , 且它们的斜率之积是4 9,求点M 的轨迹 方程。 解:以AB 所在直线为x 轴,AB 垂直平分线为y 轴建立坐标系,则(3,0),(3,0)A B -,设点M 的坐标为 (,) x y ,则直线 AM 的斜率 (3)3 AM y k x x = ≠-+,直线BM 的斜率(3)3 AM y k x x = ≠- 由已知有4 (3)339 y y x x x ?=≠±+- 化简,整理得点 M 的轨迹方程为 22 1(3)94 x y x -=≠± 练习: 1.平面内动点P 到点(10,0)F 的距离与到直线

4 x=的距离之比为2,则点P的轨迹方程是。 2.设动直线l垂直于x轴,且与椭圆2224 x y +=交 u u u r u u u r的点,求于A、B两点,P是l上满足1 ?= PA PB 点P的轨迹方程。 3. 到两互相垂直的异面直线的距离相等的 点,在过其中一条直线且平行于另一条直线的平面内的轨迹是()A.直线B.椭圆C.抛物线D.双曲线 3

4 2.定义法 通过图形的几何性质判断动点的轨迹是何种图形,再求其轨迹方程,这种方法叫做定义法,运用定义法,求其轨迹,一要熟练掌握常用轨迹的定义,如线段的垂直平分线,圆、椭圆、双曲线、抛物线等,二是熟练掌握平面几何的一些性质定理。 例2.若(8,0),(8,0)B C -为ABC ?的两顶点,AC 和AB 两 边上的中线长之和是30,则ABC ?的重心轨迹方程是_______________。 解:设ABC ?的重心为(,)G x y ,则由AC 和AB 两边上的中线长之和是30可得 2 3020 3 BG CG +=?=,而点(8,0),(8,0)B C -为定点, 所以点G 的轨迹为以,B C 为焦点的椭圆。 所以由220,8a c ==可得2 2 10,6a b a c ==-= 故ABC ?的重心轨迹方程是 22 1(0)10036 x y y +=≠ 练习: 4.方程2 2 2(1)(1)|2|x y x y -+-=++表示的曲线是 ( ) A .椭圆 B .双曲线 C .线段 D .抛物线

圆锥曲线之轨迹方程的求法

圆锥曲线之轨迹方程的求法(一) (制卷:周芳明) 【复习目标】 □1. 了解曲线与方程的对应关系,掌握求曲线方程的一般步骤; □2. 会用直接法、定义法、相关点法(坐标代换法)求方程。 【基础练习】 1.到两坐标轴的距离相等的动点的轨迹方程是( ) A .y x = B .||y x = C .22y x = D .220x y += 2.已知点(,)P x y 4,则动点P 的轨迹是 ( ) A .椭圆 B .双曲线 C .两条射线 D .以上都不对 3.设定点1(0,3)F -、2(0,3)F ,动点P 满足条件129(0)PF PF a a a +=+>,则点P 的轨迹( ) A .椭圆 B .线段 C. 不存在 D .椭圆或线段 4.动点P 与定点(1,0)A -、(1,0)B 的连线的斜率之积为1-,则P 点的轨迹方程为______________. 【例题精选】 一、直接法求曲线方程 根据题目条件,直译为关于动点的几何关系,再利用解析几何有关公式(两点距离公式、点到直线距离公式、夹角公式等)进行整理、化简。即把这种关系“翻译”成含x ,y 的等式就得到曲线的轨迹方程了。 例1.已知ABC ?中,2,AB BC m AC ==,试求A 点的轨迹方程,并说明轨迹是什么图形. 练习:已知两点M (-1,0)、N (1,0),且点P 使MP MN ,PM PN ,NM NP 成公差小于零的等差数列。点P 的轨迹是什么曲线?

二定义法 若动点轨迹满足已知曲线的定义,可先设定方程,再确定其中的基本量,求出动点的轨迹方程。 例1.⊙C :22(3)16x y ++=内部一点(3,0)A 与圆周上动点Q 连线AQ 的中垂线交CQ 于P ,求点P 的轨迹方程. 例2.设动点(,)(0)P x y x ≥到定点1(,0)2F 的距离比它到y 轴的距离大12 。记点P 的轨迹为 曲线C 求点P 的轨迹方程; 练习.若动圆与圆1)2(:2 21=++y x C 相外切,且与直线1=x 相切,则动圆圆心轨迹方程是 . 三代入法 有些问题中,其动点满足的条件不便用等式列出,但动点是随着另一动点(称之为相关点)而运动的。如果相关点所满足的条件是明显的,或是可分析,这时我们可以用动点坐标表示相关点坐标,根据相关点所满足的方程即可求得动点的轨迹方程,这种求轨迹的方法叫做相关点法。这种方法是一种极常用的方法,连续好几年高考都考查。 例1、已知定点A ( 3, 0 ),P 是圆x 2 + y 2 = 1上的动点,∠AOP 的平分线交AP 于M , 求M 点的轨迹。

求轨迹方程的常用方法

高二(上)求轨迹方程的常用方法 姓名________ (一)求轨迹方程的一般方法: 1. 定义法:如果动点P 的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程。 2. 直译法:如果动点P 的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P 所满足的几何上的等量关系,再用点P 的坐标(x ,y )表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P 运动的某个几何量t ,以此量作为参变数,分别建立P 点坐标x ,y 与该参数t 的函数关系x =f (t ), y =g (t ),进而通过消参化为轨迹的普通方程F (x ,y )=0。 4. 代入法(相关点法):如果动点P 的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P (x ,y ),用(x ,y )表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P 的轨迹方程。 5:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这种问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 一:用定义法求轨迹方程 例1:已知ABC ?的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足 ,sin 4 5 sin sin C A B = +求点C 的轨迹。 【变式】:已知圆的圆心为M 1,圆的圆心为M 2,一动圆与这两个圆外切,求动圆圆心P 的轨迹方程。 二:用直译法求轨迹方程 此类问题重在寻找数量关系。 例2:一条线段两个端点A 和B 分别在x 轴和y 轴上滑动,且BM=a ,AM=b ,求AB 中点M 的轨迹方程?

高中数学人教A版选修2-1求轨迹方程的常用方法

求轨迹方程的常用方法 重点:掌握常用求轨迹方法 难点:轨迹的定型及其纯粹性和完备性的讨论 【自主学习】 知识梳理: (一)求轨迹方程的一般方法: 1.待定系数法:如果动点P的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。 2.直译法:如果动点P的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P所满足的几何上的等量关系,再用点P的坐标(x,y)表示该等量关系式,即可得到轨迹方程。 3.参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P运动的某个几何量t,以此量作为参变数,分别建立P点坐标x,y与该参数t的函数关系x=f(t),y=g(t),进而通过消参化为轨迹的普通方程F(x,y)=0。 4.代入法(相关点法):如果动点P的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P(x,y),用(x,y)表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P的轨迹方程。 5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。 6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。 (二)求轨迹方程的注意事项:

求曲线轨迹方程的常用方法

高考数学专题:求曲线轨迹方程的常用方法 昕 省潼关县潼关高级中学 714399 求曲线的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查考生对曲线的定义、性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力.因此要分析轨迹的动点和已知条件的在联系,选择最便于反映这种联系的形式建立等式.其常见方法如下:(1)直接法:直接法就是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程,这种求轨迹方程 的方法就称为直接法,直接法求轨迹经常要联系平面图形的性 质. (2)定义法:若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可以设出其标准方程,然后用待定系 数法求解.这种求轨迹方程的方法称为定义法,利用定义法求方 程要善于抓住曲线的定义特征. (3)代入法:根据相关点所满足的方程,通过转换而求动点的轨迹方程.这就叫代入法. (4)参数法:若动点的坐标(x,y)中的x,y分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方 程,消去参数来求轨迹方程. (5)几何法:根据曲线的某种几何性质和特征,通过推理列出等式求轨迹方程,这种求轨迹的方法叫做几何法.

(6) 交轨法:在求动点轨迹方程时,经常遇到求两动曲线的交点轨 迹方程问题,我们列出两动曲线的方程再设法消去曲线中的参数即可得到交点的轨迹方程. 典型例题示讲解: 设圆C :22(1)1x y -+=,过原点作圆的弦0A ,求OA 中点B 的轨迹方程. 【解】:法一:(直接法) 如图,设B (x ,y ),由题得2OB +2BC =2OC , 即x 2+y 2 +[22(1)x y -+]=1 即OA 中点B 的轨迹方程为2211()24 x y -+= (x ≠0). 法二:(定义法) 设B (x ,y ),如上图,因为B 是OA 的中点 所以∠OBC= 90?, 则B 在以OC 为直径的圆上, 故B 点的轨迹方程是2211()24 x y -+=(x ≠0). 法三:(代入法) 设A (1x ,1y ),B (x ,y ),

相关文档
最新文档