高中数学人教A版选修2-1求轨迹方程的常用方法

高中数学人教A版选修2-1求轨迹方程的常用方法
高中数学人教A版选修2-1求轨迹方程的常用方法

求轨迹方程的常用方法

重点:掌握常用求轨迹方法

难点:轨迹的定型及其纯粹性和完备性的讨论

【自主学习】

知识梳理:

(一)求轨迹方程的一般方法:

1.待定系数法:如果动点P的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。

2.直译法:如果动点P的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P 满足的等量关系易于建立,则可以先表示出点P所满足的几何上的等量关系,再用点P的坐标(x,y)表示该等量关系式,即可得到轨迹方程。

3.参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P运动的某个几何量t,以此量作为参变数,分别建立P点坐标x,y与该参数t的函数关系x=f(t),y=g(t),进而通过消参化为轨迹的普通方程F(x,y)=0。

4.代入法(相关点法):如果动点P的运动是由另外某一点P'的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P(x,y),用(x,y)表示出相关点P'的坐标,然后把P'的坐标代入已知曲线方程,即可得到动点P的轨迹方程。

5.几何法:若所求的轨迹满足某些几何性质(如线段的垂直平分线,角平分线的性质等),可以用几何法,列出几何式,再代入点的坐标较简单。

6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这灯问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程(若能直接消去两方程的参数,也可直接消去参数得到轨迹方程),该法经常与参数法并用。

(二)求轨迹方程的注意事项:

1.求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P 的运动规律,即P 点满足的等量关系,因此要学会动中求静,变中求不变。

)()()

(0)(.2为参数又可用参数方程表示程轨迹方程既可用普通方t t g y t f x ,y x ,F ??

?=== 来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为普通方程。 3.求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解,(即以该方程的某些解为坐标的点不在轨迹上),又要检验是否丢解。(即轨迹上的某些点未能用所求的方程表示),出现增解则要舍去,出现丢解,则需补充。检验方法:研究运动中的特殊情形或极端情形。

4.求轨迹方程还有整体法等其他方法。在此不一一缀述。

课前热身:

1.P 是椭圆5

92

2y x +=1上的动点,过P 作椭圆长轴的垂线,垂足为M ,则PM 中点的轨迹中点的轨迹方程为:()

A 、159422=+y x

B 、154922=+y x

C 、12092

2=+y x D 、5

3622y x +=1

【答案】:B

【解答】:令中点坐标为),(y x ,则点P 的坐标为()2,y x 代入椭圆方程得

15

492

2=+y x ,选B 2.圆心在抛物线)0(22

>=y x y 上,并且与抛物线的准线及x 轴都相切的圆的方程是()

A 04

1

22

2=-

--+y x y x

B 0122

2=+-++y x y x

C 0122

2

=+--+y x y x

D 04

1

22

2

=+

--+y x y x 【答案】:D

【解答】:令圆心坐标为(),22a a ,则由题意可得2122+=a a ,解得1=a ,则圆的方程为04

1

222=+

--+y x y x ,选D 3:一动圆与圆O :12

2

=+y x 外切,而与圆C :0862

2

=+-+x y x 内切,那么动圆的圆心M 的轨迹是:

A :抛物线

B :圆

C :椭圆

D :双曲线一支 【答案】:D

【解答】令动圆半径为R ,则有??

?-=+=1

||1

||R MC R MO ,则|MO|-|MC|=2,满足双曲线定义。故选D 。

4:点P(x 0,y 0)在圆x 2

+y 2

=1上运动,则点M (2x 0,y 0)的轨迹是() A.焦点在x 轴上的椭圆B.焦点在y 轴上的椭圆 C.焦点在y 轴上的双曲线D.焦点在X 轴上的双曲线 【答案】:A

【解答】:令M 的坐标为),,(y x 则?????

==????==y y x x y y x x 0

0022代入圆的方程中得1422=+y x ,选A

【互动平台】

名师点题一:用定义法求曲线轨迹

求曲线轨迹方程是解析几何的两个基本问题之一,求符合某种条件的动点轨迹方

程,其实质就是利用题设中的几何条件,通过坐标互化将其转化为寻求变量之间的关系,在求与圆锥曲线有关的轨迹问题时,要特别注意圆锥曲线的定义在求轨迹中的作用,只要动点满足已知曲线定义时,通过待定系数法就可以直接得出方程。

例1:已知ABC ?的顶点A ,B 的坐标分别为(-4,0),(4,0),C 为动点,且满足

,sin 4

5

sin sin C A B =+求点C 的轨迹。

【解析】由,sin 45sin sin C A B =+可知104

5

==+c a b ,即10||||=+BC AC ,满足椭

圆的定义。令椭圆方程为

12

'22

'2=+

b

y a

x ,则34,5'''=?==b c a ,则轨迹方程为

19

252

2=+y x ()5±≠x ,图形为椭圆(不含左,右顶点)。 【点评】熟悉一些基本曲线的定义是用定义法求曲线方程的关键。

(1) 圆:到定点的距离等于定长

(2) 椭圆:到两定点的距离之和为常数(大于两定点的距离)

(3) 双曲线:到两定点距离之差的绝对值为常数(小于两定点的距离) (4)

到定点与定直线距离相等。

【变式1】:1:已知圆的圆心为M 1,圆的圆心为M 2,

一动圆与这两个圆外切,求动圆圆心P 的轨迹方程。 解:设动圆的半径为R ,由两圆外切的条件可得:

∴动圆圆心P 的轨迹是以M 1、M 2为焦点的双曲线的右支,c=4,a=2,b 2=12。

故所求轨迹方程为

2:一动圆与圆O :12

2

=+y x 外切,而与圆C :0862

2

=+-+x y x 内切,那么动圆的圆

心M 的轨迹是:

A :抛物线

B :圆

C :椭圆

D :双曲线一支

【解答】令动圆半径为R ,则有?

?

?-=+=1||1

||R MC R MO ,则|MO|-|MC|=2,满足双曲线定义。故选D 。

二:用直译法求曲线轨迹方程

此类问题重在寻找数量关系。

例2:一条线段AB 的长等于2a ,两个端点A 和B 分别在x 轴和y 轴上滑动,求AB 中点P 的轨迹方程?

解设M 点的坐标为),(y x 由平几的中线定理:在直角三角形

AOB 中,OM=

,22

1

21a a AB =?= 22222,a y x a y x =+=+∴

M 点的轨迹是以O 为圆心,a 为半径的圆周.

【点评】此题中找到了OM=

AB 2

1

这一等量关系是此题成功的关键所在。一般直译法有下列几种情况:

1)代入题设中的已知等量关系:若动点的规律由题设中的已知等量关系明显给出,则采用直接将数量关系代数化的方法求其轨迹。

2)列出符合题设条件的等式:有时题中无坐标系,需选定适当位置的坐标系,再根据题设条件列出等式,得出其轨迹方程。

3)运用有关公式:有时要运用符合题设的有关公式,使其公式中含有动点坐标,并作相应的恒等变换即得其轨迹方程。

4)借助平几中的有关定理和性质:有时动点规律的数量关系不明显,这时可借助平面几何中的有关定理、性质、勾股定理、垂径定理、中线定理、连心线的性质等等,从而分析出其数量的关系,这种借助几何定理的方法是求动点轨迹的重要方法.

【变式2】:动点P (x,y )到两定点A (-3,0)和B (3,0)的距离的比等于2(即2|

||

|=PB PA ),求动点P 的轨迹方程?

【解答】∵|PA |=222

2

)3(||,)3(y x PB y x +-=

++

代入

2|||

|=PB PA 得22222

2224)3(4)3(2)3()3(y x y x y x y x +-=++?=+-++ 化简得(x -5)2

+y 2

=16,轨迹是以(5,0)为圆心,4为半径的圆.

三:用参数法求曲线轨迹方程

此类方法主要在于设置合适的参数,求出参数方程,最后消参,化为普通方程。注意参数的

取值范围。

例3.过点P (2,4

)作两条互相垂直的直线l 1,l 2,若l 1交x 轴于A 点,l 2交y 轴于B 点,求线段AB 的中点M 的轨迹方程。

【解析】

分析1:从运动的角度观察发现,点M 的运动是由直线l 1引发的,可设出l 1的斜率k 作为参数,建立动点M 坐标(x ,y )满足的参数方程。

解法1:设M (x ,y ),设直线l 1的方程为y -4=k (x -2),(k ≠0)

)2(1

4221--=-⊥x k

y l ,l l 的方程为则直线由

,,A x l )0k 4

2(1-∴的坐标为轴交点与

,k

,B y l )2

40(2+的坐标为轴交点与

∵M 为AB 的中点,

)(1222421242为参数k k k y k k x ????

?????

+=+

=-=-=∴

消去k ,得x +2y -5=0。

另外,当k =0时,AB 中点为M (1,2),满足上述轨迹方程; 当k 不存在时,AB 中点为M (1,2),也满足上述轨迹方程。 综上所述,M 的轨迹方程为x +2y -5=0。

分析2:解法1中在利用k 1k 2=-1时,需注意k 1、k 2是否存在,故而分情形讨论,能否避开讨论呢?只需利用△PAB 为直角三角形的几何特性:

||2

1

||AB MP =

解法2:设M (x ,y ),连结MP ,则A (2x ,0),B (0,2y ), ∵l 1⊥l 2,∴△PAB 为直角三角形

||2

1

||AB MP ,=

由直角三角形的性质 2222)2()2(·2

1

)4()2(y x y x +=-+-∴

化简,得x +2y -5=0,此即M 的轨迹方程。 分析3::设M (x ,y ),由已知l 1⊥l 2,联想到两直线垂直的充要条件:k 1k 2=-1,即

可列出轨迹方程,关键是如何用M 点坐标表示A 、B 两点坐标。事实上,由M 为AB 的中点,易找出它们的坐标之间的联系。

解法3:设M (x ,y ),∵M 为AB 中点,∴A (2x ,0),B (0,2y )。 又l 1,l 2过点P (2,4),且l 1⊥l 2 ∴PA ⊥PB ,从而k PA ·k PB =-1,

02242204--=

--=

y

,k x k PB PA 而 0521224·224=-+-=--∴y x y x ,化简,得 注意到l 1⊥x 轴时,l 2⊥y 轴,此时A (2,0),B (0,4) 中点M (1,2),经检验,它也满足方程x +2y -5=0 综上可知,点M 的轨迹方程为x +2y -5=0。

【点评】

1)解法1用了参数法,消参时应注意取值范围。解法2,3为直译法,运用了k PA ·k PB

=-1,||2

1

||AB MP =这些等量关系。。

用参数法求解时,一般参数可选用具有某种物理或几何意义的量,如时间,速度,距离,角度,有向线段的数量,直线的斜率,点的横,纵坐标等。也可以没有具体的意义,选定参变量还要特别注意它的取值范围对动点坐标取值范围的影响

【变式3】过圆O :x 2+y 2

=4外一点A (4,0),作圆的割线,求割线被圆截得的弦BC 的中点M 的轨迹。

解法一:“几何法”

设点M 的坐标为(x,y ),因为点M 是弦BC 的中点,所以OM ⊥BC,

所以|OM|2+|MA|2 =|OA|2 , 即(x 2+y 2)+(x -4)2+y 2

=16

化简得:(x -2)2+y 2

=4................................①

由方程①与方程x 2+y 2

=4得两圆的交点的横坐标为1,所以点M 的轨迹方程为

(x -2)2+y 2

=4(0≤x <1)。所以M 的轨迹是以(2,0)为圆心, 2为半径的圆在圆O 内的部分。

解法二:“参数法” 设点M 的坐标为(x,y ),B (x 1,y 1),C (x 2,y 2)直线AB 的方程为y=k(x -4),

由直线与圆的方程得(1+k 2)x 2-8k 2x+16k 2

-4=0...........(*),

由点M 为BC 的中点,所以x=2

2

21142k

k x x +=+...............(1),又OM ⊥BC ,所以k=

x

y

.................(2)由方程(1)(2) 消去k 得(x -2)2

+y 2

=4,又由方程(*)的△≥0得k 2

3

1

,所以x <1. 所以点M 的轨迹方程为(x -2)2

+y 2

=4(0≤x <1)所以M 的轨迹是以(2,0)为圆心, 2为半径的圆在圆O 内的部分。

四:用代入法等其它方法求轨迹方程

例4.的的中点求线段为定点上的动点是椭圆点M AB ,a ,

,A b

y a x B )02(122

22=+ 轨迹方程。

分析:题中涉及了三个点A 、B 、M ,其中A 为定点,而B 、M 为动点,且点B 的运动是有规律的,显然M 的运动是由B 的运动而引发的,可见M 、B 为相关点,故采用相关点法求动点M 的轨迹方程。

【解析】设动点M 的坐标为(x ,y ),而设B 点坐标为(x 0,y 0) 则由M 为线段AB 中点,可得

??

?=-=????????=+=+y y a x x y

y x a

x 2222

02

20000 即点B 坐标可表为(2x -2a ,2y )

上在椭圆点又1)(22

2200=+b y a x ,y x B Θ

,b y a a x b

y

a x 1)2()22(12

2

2222

022

0=+-=+∴从而有

14)(422

2

2=+-b

y a a x M ,的轨迹方程为得动点整理 【点评】代入法的关键在于找到动点和其相关点坐标间的等量关系

【变式4】如图所示,已知P (4,0)是圆x 2+y 2

=36内的一点,A 、B 是圆上两动点,且满

足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程

【解析】:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |又因为R 是弦AB

的中点,依垂径定理在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2

)

又|AR |=|PR |=22)4(y x +-

所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2

-4x -10=0

因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动

设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2

,241+=

+y y x , 代入方程x 2

+y 2

-4x -10=0,得

2

4

4)2()24(

22+?

-++x y x -10=0 整理得x 2+y 2

=56,这就是所求的轨迹方程 【备选题】

已知双曲线22

2x y -=的左、右焦点分别为1F ,2F ,过点2F 的动直线与双曲线相交于

A B ,两点.

(I )若动点M 满足1111FM F A F B FO =++u u u u r u u u r u u u r u u u r

(其中O 为坐标原点),求点M 的轨迹方程; (II )在x 轴上是否存在定点C ,使CA u u u r ·CB u u u r

为常数?若存在,求出点C 的坐标;若不存

在,请说明理由.

解:由条件知1(20)F -,

,2(20)F ,,设11()A x y ,,22()B x y ,. 解法一:(I )设()M x y ,,则则1(2)FM x y =+u u u u r ,,111(2)F A x y =+u u u r

,, 1221(2)(20)F B x y FO =+=u u u r u u u r ,,,,由1111FM F A F B FO =++u u u u r u u u r u u u r u u u r 得 121226x x x y y y +=++??

=+?,即1212

4x x x y y y +=-??+=?,

于是AB 的中点坐标为422x y -??

??

?,. 当AB 不与x 轴垂直时,1212248

22

y y y y x x x x -==

----,即1212()8y y y x x x -=--. 又因为A B ,两点在双曲线上,所以22112x y -=,22

222x y -=,两式相减得

12121212()()()()x x x x y y y y -+=-+,即1212()(4)()x x x y y y --=-.

将1212()8

y

y y x x x -=

--代入上式,化简得22(6)4x y --=. 当AB 与x 轴垂直时,122x x ==,求得(80)M ,,也满足上述方程. 所以点M 的轨迹方程是22

(6)4x y --=.

(II )假设在x 轴上存在定点(0)C m ,,使.为常数.

当AB 不与x 轴垂直时,设直线AB 的方程是(2)(1)y k x k =-≠±.

代入222x y -=有2222

(1)4(42)0k x k x k -+-+=.

则12x x ,是上述方程的两个实根,所以212241k x x k +=-,212242

1

k x x k +=-,

于是)2)(2())((.21221--+--=x x k m x m x

22221212(1)(2)()4k x x k m x x k m =+-++++

22222222

(1)(42)4(2)

411k k k k m k m k k +++=-++-- 222

22

2(12)2442(12)11

m k m m m m k k -+-=+=-++--. 因为.是与k 无关的常数,所以440m -=,即1m =,此时.=1-.

当AB 与x 轴垂直时,点A B ,

的坐标可分别设为(2

,(2,

, 此时1)2,1).(2,1(.-=-=.

故在x 轴上存在定点(10)C ,,使.为常数. 解法二:(I )同解法一的(I )有12124x x x y y y

+=-??

+=?,

当AB 不与x 轴垂直时,设直线AB 的方程是(2)(1)y k x k =-≠±. 代入2

2

2x y -=有2

2

2

2

(1)4(42)0k x k x k -+-+=.

则12x x ,是上述方程的两个实根,所以2

12241

k x x k +=-.

21212244(4)411k k

y y k x x k k k ??+=+-=-= ?--??

由①②③得2

2441k x k -=-.…………………………………………………④

2

41

k

y k =

-.……………………………………………………………………⑤ 当0k ≠时,0y ≠,由④⑤得,

4

x k y

-=,将其代入⑤有

222

2

4

44(4)(4)(4)1x y x y y x x y

y -?

-==----.整理得22

(6)4x y --=. 当0k =时,点M 的坐标为(40),,满足上述方程.

当AB 与x 轴垂直时,122x x ==,求得(80)M ,,也满足上述方程. 故点M 的轨迹方程是2

2

(6)4x y --=.

(II )假设在x 轴上存在定点点(0)C m ,,使CB CA .为常数,

当AB 不与x 轴垂直时,由(I )有212241k x x k +=-,2122421

k x x k +=-.

以上同解法一的(II ).

【误区警示】

1.错误诊断

【例题5】ABC ?中,B ,C 坐标分别为(-3,0),(3,0),且三角形周长为16,求点A 的

轨迹方程。

【常见错误】由题意可知,|AB|+|AC|=10,满足椭圆的定义。令椭圆方程为122

22=+b y a x ,

则由定义可知3,5==c a ,则4=b ,得轨迹方程为

116

252

2=+y x 【错因剖析】ABC 为三角形,故A ,B ,C 不能三点共线。

【正确解答】ABC 为三角形,故A ,B ,C 不能三点共线。轨迹方程里应除去点)0,5).(0,5(-,

即轨迹方程为

)5(116

252

2±≠=+x y x 2.误区警示

1:在求轨迹方程中易出错的是对轨迹纯粹性及完备性的忽略,因此,在求出曲线方程的方程之后,应仔细检查有无“不法分子”掺杂其中,将其剔除;另一方面,又要注意有无“漏网之鱼”仍逍遥法外,要将其“捉拿归案”。

2:求轨迹时方法选择尤为重要,首先应注意定义法,几何法,直接法等方法的选择。

3:求出轨迹后,一般画出所求轨迹,这样更易于检查是否有不合题意的部分或漏掉的部分。

【课外作业】

【基础训练】

1:已知两点)4

5,4(),45,1(--N M 给出下列曲线方程:①0124=-+y x ;②32

2=+y x ;

③122

2=+y x ;④12

22=-y x ,在曲线上存在点P 满足||||NP MP =的所有曲线方程是()

A ①③

B ②④

C ①②③

D ②③④

【答案】:D

【解答】:要使得曲线上存在点P 满足||||NP MP =,即要使得曲线与MN 的中垂线32--=x y 有交点.把直线方程分别与四个曲线方程联立求解,只有①无解,则选D 2.两条直线

01=--my x 与01=-+y mx 的交点的轨迹方程

是 .

【解答】:直接消去参数m 即得(交轨法):02

2=--+y x y x

3:已知圆的方程为(x-1)2

+y 2

=1,过原点O 作圆的弦0A ,则弦的中点M 的轨迹方程是 .

【解答】:令M 点的坐标为(),y x ,则A 的坐标为(2)2,y x ,代入圆的方程里面得:)0(4

1

)2

1(2

2≠=

+-x y x 4:当参数m 随意变化时,则抛物线()y x m x m =+++-22

211的顶点的轨迹方程为

___________。

【分析】:把所求轨迹上的动点坐标x ,y 分别用已有的参数m 来表示,然后消去参数m ,便可得到动点的轨迹方程。

【解答】:抛物线方程可化为x m y m ++?? ???=++?

? ??

?12542

它的顶点坐标为x m y m =--

=--1254

, 消去参数m 得:y x =-

34

故所求动点的轨迹方程为4430x y --=。

5:点M 到点F (4,0)的距离比它到直线x +=50的距离小1,则点M 的轨迹方程为____________。

【分析】:点M 到点F (4,0)的距离比它到直线x +=50的距离小1,意味着点M 到点F (4,0)的距离与它到直线x +=40的距离相等。由抛物线标准方程可写出点M 的轨迹方程。

【解答】:依题意,点M 到点F (4,0)的距离与它到直线x =-4的距离相等。则点M

的轨迹是以F (4,0)为焦点、x =-4为准线的抛物线。故所求轨迹方程为y x 2

16=。

6:求与两定点()()

O O A 1030,、,距离的比为1:2的点的轨迹方程为_________

【分析】:设动点为P ,由题意PO PA

=

1

2

,则依照点P 在运动中所遵循的条件,可列出等量关系式。

【解答】:设()

P x y ,是所求轨迹上一点,依题意得

PO PA

=

1

2

由两点间距离公式得:

()x y x y 22

22

312

+-+=

化简得:x y x 22

230++-=

7抛物线x y 42

=的通径(过焦点且垂直于对称轴的弦)与抛物线交于A 、B 两点,动点C 在抛物线上,求△ABC 重心P 的轨迹方程。

【分析】:抛物线x y 42

=的焦点为()01

,F 。设△ABC 重心P 的坐标为()x y ,,点C 的坐标为()x y 11,。其中11≠x

【解答】:因点()

P x y ,是重心,则由分点坐标公式得:3

3211y

y x x =+=

, 即y y x x 32311=-=,

由点()

C x y 11,在抛物线x y 42=上,得:12

14x y =

将y y x x 32311=-=,代入并化简,得:??

?

??-=

32342

x y ()1≠x 【能力训练】

8.已知双曲线中心在原点且一个焦点为F (,0),直线y=x -1与其相交于M 、N 两点,

MN 中点的横坐标为

,求此双曲线方程。

【解答】:设双曲线方程为122

22=-b

y a x 。将y=x -1代入方程整理得

由韦达定理得32

2,22

222122221-=-=+-=+b a a x x b a a x x 。又有

,联立方程组,

解得5,22

2==b a 。

∴此双曲线的方程为。

9.已知动点P 到定点F (1,0)和直线x=3的距离之和等于4,求点P 的轨迹方程。 【解答】:设点P 的坐标为(x ,y ),则由题意可得

(1)当x ≤3时,方程变为1)1(,43)1(2222+=+-=-++-x y x x y x ,化简得

)30(42≤≤=x x y 。

(2)当x>3时,方程变为x y x x y x -=+-=-++-7)1(,43)1(2

2

2

2

,化简得

故所求的点P 的轨迹方程是

10.过原点作直线l 和抛物线642+-=x x y 交于A 、B 两点,求线段AB 的中点M

的轨迹方程。

【解答】:由题意分析知直线l 的斜率一定存在,设直线l 的方程y=kx 。把它代

入抛物线方程,得。因为直线和抛物线相交,所以△>0,解得),624()624,(+∞+-?---∞∈x 。 设A (

),B (

),M (x ,y ),由韦达定理得

由消去k 得。

又,所以)

-

-∞

x。

?

,6

(+∞

(

,

)6

∴点M的轨迹方程为)

-

-∞

y。

-

x

x

=x

,

)6

(

?

,

,6

22+∞

4

(

【创新应用】

11.一个圆形纸片,圆心为O,F为圆内一定点,M是圆周上一动点,把纸片折叠使M与F重合,然后抹平纸片,折痕为CD,设CD与OM交于P,则P的轨迹是()

A:椭圆B:双曲线C:抛物线D:圆

【答案】:A

【解答】:由对称性可知||PF|=|PM|,则|PF|+|PO|=|PM|+|PO|=R(R为圆的半径),则P 的轨迹是椭圆,选A。

人教版高中数学选修44坐标系与参数方程全套教案

人教版高中数学选修4-4坐标系与参数方程全套教案 课型: 复习课 课时数: 1 讲学时间: 2010年1月18号 班级: 学号: 姓名: 一、【学习目标】: 1、了解在平面直角坐标系伸缩变换作用下平面图形的变化情况。 2、能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化。 3、能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程。通过比较这些图形在极坐标系和平面直角坐标系中的方程,体会在用方程刻画平面图形时选择适当坐标系的意义。 4、分析直线、圆和圆锥曲线的几何性质,选择适当的参数写出它们的参数方程,能进行参数方程与普通方程的互化。 二、【回归教材】: 1、阅读选修4-4《坐标系与参数方程》152P P -,试了解以下内容: (1)设点),(y x P 是平面直角坐标系中的任意一点,在伸缩变换公式???>?='>?=') 0()0(:μμλλ?y y x x 的作用下,如何找到点P 的对应点),(y x P '''?试找出x y sin =变换为x y 2sin 3=的伸缩变换公式 . (2)极坐标系是如何建立的?试类比平面直角坐标系的建立过程画一个,并写出点M 的极径与极角来 表示它的极坐标,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,写出极坐标和直角坐标的互化公式 . (3)在平面直角坐标系中,曲线C 可以用方程0),(=y x f 来表示,在极坐标系中,我们用什么方程来 表示这段曲线呢?例如圆222r y x =+,直线x y =,你是如何用极坐标方程表示它们的? 2、阅读选修4-4《坐标系与参数方程》3721P P -,了解以下内容: (1)直接给出这条曲线上点的坐标间的关系的方程叫做普通方程,那如果变数t 都是点坐标x ,y 的函 数,我们如何建立这条曲线的参数方程呢? (2)将曲线的参数方程化为普通方程,有利于识别曲线的类型,我们是如何做到的?在互化的过程中, 必须注意什么问题?试探究一下圆锥曲线的参数方程与普通方程的互化。

高中数学选修4-4极坐标与参数方程练习题

极坐标与参数方程单元练习1 一、选择题(每小题5分,共25分) 1、已知点M 的极坐标为?? ? ??35π,,下列所给出的四个坐标中能表示点M 的坐标是( )。 A. B. C. D. ?? ? ? ? -355π, 2、直线:3x-4y-9=0与圆:? ??==θθ sin 2cos 2y x ,(θ为参数)的位置关系是( ) A.相切 B.相离 C.直线过圆心 D.相交但直线不过圆心 3、在参数方程? ??+=+=θθ sin cos t b y t a x (t 为参数)所表示的曲线上有B 、C 两点,它们对应的参数值分别为t 1、 t 2,则线段BC 的中点M 对应的参数值是( ) 4、曲线的参数方程为???-=+=1 2 32 2t y t x (t 是参数),则曲线是( ) A 、线段 B 、双曲线的一支 C 、圆 D 、射线 5、实数x 、y 满足3x 2 +2y 2 =6x ,则x 2 +y 2 的最大值为( ) A 、 27 B 、4 C 、2 9 D 、5 二、填空题(每小题5分,共30分) 1、点()22-, 的极坐标为 。 2、若A ,B ?? ? ? ? -64π, ,则|AB|=___________,___________。(其中O 是极点) 3、极点到直线()cos sin 3ρθθ+=________ _____。 4、极坐标方程2sin 2cos 0ρθθ-?=表示的曲线是_______ _____。 5、圆锥曲线()为参数θθ θ ?? ?==sec 3tan 2y x 的准线方程是 。

6、直线l 过点()5,10M ,倾斜角是 3 π ,且与直线032=--y x 交于M ,则0MM 的长为 。 三、解答题(第1题14分,第2题16分,第3题15分;共45分) 1、求圆心为C ,半径为3的圆的极坐标方程。 2、已知直线l 经过点P(1,1),倾斜角6 π α=, (1)写出直线l 的参数方程。 (2)设l 与圆42 2=+y x 相交与两点A 、B ,求点P 到A 、B 两点的距离之积。 3、求椭圆14 92 2=+y x )之间距离的最小值,与定点(上一点01P 。 极坐标与参数方程单元练习1参考答案 【试题答案】一、选择题:1、D 2、D 3、B 4、D 5、B 二、填空题:1、??? ? ?-422π, 或写成?? ? ? ? 4722π,。 2、5,6。 3、。 4、()2 2sin 2cos 02y x ρθρθ-==,即,它表示抛物线。 5、13 13 9±=y 。6、3610+。 三、解答题 1、1、如下图,设圆上任一点为P ( ),则((((2366 OP POA OA π ρθ=∠=- =?=,, ((((cos Rt OAP OP OA POA ?=?∠中, 6cos 6πρθ? ?∴=- ???而点O )32,0(π A )6 ,0(π符合 2、解:(1)直线的参数方程是是参数)t t y t x (;211,23 1??? ????+=+= (2)因为点A,B 都在直线l 上,所以可设它们对应的参数为t 1和t 2,则点A,B 的坐标分别为 ),211,231(11t t A ++ )2 1 1,231(22t t B ++ 以直线L 的参数方程代入圆的方程42 2 =+y x 整理得到02)13(2=-++t t ① 因为t 1和t 2是方程①的解,从而t 1t 2=-2。所以|PA|·|PB|= |t 1t 2|=|-2|=2。 3、(先设出点P 的坐标,建立有关距离的函数关系)

最新高中数学参数方程大题(带答案)精选

参数方程极坐标系 解答题 1.已知曲线C:+=1,直线l:(t为参数) (Ⅰ)写出曲线C的参数方程,直线l的普通方程. (Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值. +=1 , , 的距离为 则 取得最小值,最小值为 2.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合,直线l的极坐标方程为: ,曲线C的参数方程为:(α为参数). (I)写出直线l的直角坐标方程; (Ⅱ)求曲线C上的点到直线l的距离的最大值. 的极坐标方程为: cos= ∴

y+1=0 ( d= 的距离的最大值. 3.已知曲线C1:(t为参数),C2:(θ为参数). (1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线; (2)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:(t为参数)距离的最小值. :(化为普通方程得:+ t=代入到曲线 sin =,),﹣

4.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立直角坐标系,圆C的极坐标方程为 ,直线l的参数方程为(t为参数),直线l和圆C交于A,B两点,P是圆C 上不同于A,B的任意一点. (Ⅰ)求圆心的极坐标; (Ⅱ)求△PAB面积的最大值. 的极坐标方程为,把 ,利用三角形的面积计算公式即可得出. 的极坐标方程为,化为= 把 ∴圆心极坐标为; (t , = 距离的最大值为 5.在平面直角坐标系xoy中,椭圆的参数方程为为参数).以o为极点,x轴正半轴为极轴建立极坐标系,直线的极坐标方程为.求椭圆上点到直线距离的最大值和最小值. 由题意椭圆的参数方程为为参数)直线的极坐标方程为

高中数学 《参数方程的概念》教案 新人教A版选修4-4

参数方程 目标点击: 1.理解参数方程的概念,了解某些参数的几何意义和物理意义; 2.熟悉参数方程与普通方程之间的联系和区别,掌握他们的互化法则; 3.会选择最常见的参数,建立最简单的参数方程,能够根据条件求出直线、圆锥曲线等常用曲线的一些参数方程并了解其参数的几何意义; 4.灵活运用常见曲线的参数方程解决有关的问题. 基础知识点击: 1、曲线的参数方程 在取定的坐标系中,如果曲线上任意一点的坐标x,y 都是某个变数t 的函数,?? ?==)()(t g y t f x (1) 并且对于t 的每一个允许值,由方程组(1)所确定的点M(x,y)都在这条曲线上,那么方程组(1)叫做这条曲线的参数方程. 联系x 、y 之间关系的变数叫做参变数,简称参数. 2、求曲线的参数方程 求曲线参数方程一般程序: (1) 设点:建立适当的直角坐标系,用(x,y)表示曲线上任意一点M 的坐标; (2) 选参:选择合适的参数; (3) 表示:依据题设、参数的几何或物理意义,建立参数与x ,y 的关系 式,并由此分别解出用参数表示的x 、y 的表达式. (4) 结论:用参数方程的形式表示曲线的方程 3、曲线的普通方程 相对与参数方程来说,把直接确定曲线C 上任一点的坐标(x,y )的方程F (x,y )=0叫做曲线C 的普通方程. 4、参数方程的几个基本问题 (1) 消去参数,把参数方程化为普通方程. (2) 由普通方程化为参数方程. (3) 利用参数求点的轨迹方程. (4) 常见曲线的参数方程. 5、几种常见曲线的参数方程 (1) 直线的参数方程 (ⅰ)过点P 0(00,y x ),倾斜角为α的直线的参数方程是 ? ??+=+=αα s i n c o s 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) 为直线上任意一点. (ⅱ)过点P 0(00,y x ),斜率为a b k =的直线的参数方程是 ???+=+=bt y y at x x 00 (t 为参数) (2)圆的参数方程

高中数学直线参数方程测试题

三直线的参数方程 (课前部分) 编写者: 【学习目标】 理解直线的参数式方程以及明确它的形式特征,明确参数t 的几何意思。 【学习重点】 直线的参数式方程以及参数t 的几何意义。 【学习难点】 理解直线的参数方程中t 的几何意义. 【学法指导】通过探究直线上两点间的距离及利用向量的有关知识,让学生积极、主动地参与观察,分析、进而得出直线的参数式方程,培养了学生运用类比法的数学思想方法解决问题 通过本节课的学习,不仅要让学生学会知识,更重要的是由学会变为会学,让学生在探究活动中,自主探究知识,逐步掌握自主获得知识的学习方法。 【复习回顾】 1 、我们知道经过平面内的定点M0(x0,y 0)及斜率k 应用直线方程的点斜式就可以写出直线方程,那么你认为有几种办法能确定斜率k 值呢? 2 、直线方程的方向向量如何确定?平面向量的共线定理是什么? 3 、数轴上两点对应的数分别为t1,t 2 ,则两点间的距离是什么? 【自主学习】 大家都知道,当我们把平面向量中所有的单位向量的起点放在坐标原点,那么他们的终点的轨迹是以坐标原点为圆心的单位圆。那么你能写出一个倾斜角为α的直线的一个方向单位向量吗? 已知直线上定点M 0,M 是直线上的任意一点,当M 移动时,M0M 发生了哪些变化?与直线L 的单位方向向量e 之间什么关系? 设直线l的倾斜角为,定点M 0、动点M 的坐标 分别为M0(x0,y0)、M (x,y) 如何用e和M 0的坐标表示直线上任意一点M的坐标? 通过对上面的问题的分析,你认为用哪个几何条件来建立参数方程比较好?又应当怎样选择参数呢?请同学们自己动手推导一下直线的参数方程的标准式,对比教材P35 的推导过程. 请同学们进一步思考直线的参数方程中哪些是变量?哪些是常量?每一个量的几何意义又是什么?形式上有什么要求? 根据直线的参数方程的公式请大家写出经过点M0(-2,3),倾斜角为30°的直线L 的参数方程? 通过这个方程请大家求出:(1)当t=1 时对应的点P1的坐标。(2)当t= -1 时对应的点P2的坐标。(3)当t=0 时对应的点P3的坐标。(4)求出直线L 上与点M0相距为 2 的点的坐标。 画图找到这些点,做好标注! 有人说t>0 时,t 表示向量M 0M 的长度,你同意吗?t<0 时又如何呢?通过对以上的分析你能总结出参数t 的几何意义吗?如有困难参看教材P36例 1 的上面部分。 由于直线的倾斜角α [0 ,),所以这个方向单位向量很特别,方向如何?请同学们自己动手 画出图形,写出这个向量e 的坐标。 当你竭尽全力,时间自会主持公道1

最新高考数学解题技巧-极坐标与参数方程

2018高考数学解题技巧 解答题模板3:极坐标与参数方程 1、 题型与考点(1){极坐标与普通方程的互相转化 极坐标与直角坐标的互相转化 (2) {参数方程与普通方程互化参数方程与直角坐标方程互化 (3) {利用参数方程求值域参数方程的几何意义 2、【知识汇编】 参数方程:直线参数方程:00cos ()sin x x t t y y t θθ=+??=+?为参数 00(,)x y 为直线上的定点, t 为直线上任一点(,)x y 到定 点00(,)x y 的数量; 圆锥曲线参数方程:圆的参数方程:cos ()sin x a r y b r θθθ=+?? =+?为参数(a,b)为圆心,r 为半径; 椭圆22221x y a b +=的参数方程是cos ()sin x a y b θθθ=??=? 为参数; 双曲线2222-1x y a b =的参数方程是sec ()tan x a y b φθφ=??=? 为参数; 抛物线22y px =的参数方程是2 2()2x pt t y pt ?=?=?为参数 极坐标与直角坐标互化公式: 若以直角坐标系的原点为极点,x 轴正半轴为极轴建立坐标系,点P 的极坐标为(,)ρθ,直角坐标为(,)x y , 则cos x ρθ=, sin y ρθ=, 222x y ρ=+, tan y x θ=。 解题方法及步骤 (1)、参数方程与普通方程的互化 化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法;化普通方程为参数方程的基本思路是引入参数,即选定合适的参数t ,先确定一个关系()x f t =(或()y g t =,再代入普通方程(),0F x y =,求得另一关系()y g t =(或()x f t =).一般地,常选择的参数有角、有向线段的数量、斜率,某一点的横坐标(或纵坐标) 例1、方程?????+=-=--t t t t y x 2 222(t 为参数)表示的曲线是( ) A. 双曲线 B.双曲线的上支 C.双曲线的下支 D.圆 解析:注意到2t t 与2t -互为倒数,故将参数方程的两个等式两边分别平方,再相减,即可消去含t 的项,4)22()22(2222-=+--=---t t t t y x ,即有422=+y x ,又注意到 02>t ,222222=?≥+--t t t t ,即

高中数学全参数方程知识点大全

高考复习之参数方程 一、考纲要求 1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方 程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程. 2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为 直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数 方程或极坐标方程求两条曲线的交点. 二、知识结构 1.直线的参数方程 (1)标准式 过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是 ? ? ?+=+=a t y y a t x x sin cos 00 (t 为参数) (2)一般式 过定点P 0(x 0,y 0)斜率k=tg α= a b 的直线的参数方程是 ?? ?+=+=bt y y at x x 00(t 不参数) ② 在一般式②中,参数t 不具备标准式中t 的几何意义,若a 2 +b 2 =1,②即为标准式,此 时, | t |表示直线上动点P 到定点P 0的距离;若a 2+b 2 ≠1,则动点P 到定点P 0的距离是 22b a +|t |. 直线参数方程的应用 设过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是 ? ??+=+=a t y y a t x x sin cos 00 (t 为参数) 若P 1、P 2是l 上的两点,它们所对应的参数分别为t 1,t 2,则 (1)P 1、P 2两点的坐标分别是 (x 0+t 1cos α,y 0+t 1sin α) (x 0+t 2cos α,y 0+t 2sin α); (2)|P 1P 2|=|t 1-t 2|; (3)线段P 1P 2的中点P 所对应的参数为t ,则 t= 2 2 1t t + 中点P 到定点P 0的距离|PP 0|=|t |=|2 2 1t t +| (4)若P 0为线段P 1P 2的中点,则 t 1+t 2=0.

高中数学选修4-4-极坐标与参数方程-知识点与题型

选做题部分 极坐标系与参数方程 一、极坐标系 1.极坐标系与点的极坐标 (1)极坐标系:如图4-4-1所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. (2)极坐标:平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ来刻画,这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.其中ρ称为点M 的极径,θ称为点M 的极角. 2.极坐标与直角坐标的互化 点M 直角坐标(x ,y ) 极坐标(ρ,θ) 互化公式 题型一 极坐标与直角坐标的互化 1、已知点P 的极坐标为)4 ,2(π ,则点P 的直角坐标为 ( ) A.(1,1) B.(1,-1) C.(-1,1) D.(-1,-1) 2、设点P 的直角坐标为(3,3)-,以原点为极点,实轴正半轴为极轴建立极坐标系(02)θπ≤<,则点P 的极坐标为( ) A .3(32, )4π B .5(32,)4π- C .5(3,)4π D .3(3,)4 π- 3.若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________. 4.在极坐标系中,过点(1,0)并且与极轴垂直的直线方程是( ) A .ρ=cos θ B .ρ=sin θ C .ρcos θ=1 D .ρsin θ=1 5.曲线C 的直角坐标方程为x 2+y 2-2x =0,以原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________. 6. 在极坐标系中,求圆ρ=2cos θ与直线θ=π 4 (ρ>0)所表示的图形的交点的极坐标.

高中数学极坐标与参数方程试题精选(8套)选修4-4

极坐标与参数方程单元练习3 一.选择题(每题5分共60分) 1.设椭圆的参数方程为()πθθ θ ≤≤?? ?==0sin cos b y a x ,()1 1 ,y x M ,()2 2 ,y x N 是椭圆上两点,M ,N 对应的参数为2 1 ,θθ且21 x x <,则 A .21 θθ < B .21θθ> C .21θθ≥ D .21θθ≤ 2.直线:3x-4y-9=0与圆:?? ?==θ θ sin 2cos 2y x ,(θ为参数)的位置关系是( ) A.相切 B.相离 C.直线过圆心 D.相交但直线不过圆心 3.经过点M(1,5)且倾斜角为3 π的直线,以定点M 到动 点P 的位移t 为参数的参数方程是( ) A.???????-=+=t y t x 235211 B. ???????+=-=t y t x 235211 C. ???????-=-=t y t x 235211 D. ??? ????+=+=t y t x 235211 4.参数方程????? -=+ =2 1y t t x (t 为参数)所表示的曲线是 ( ) A.一条射线 B.两条射线 C.一条直线 D.两条直线

5.若动点(x ,y )在曲线1422 2=+b y x (b >0)上变化,则 x 22y 的最大值为 (A) ?????≥<<+)4(2)40(442b b b b ; (B) ?????≥<<+)2(2) 20(442 b b b b ;(C) 442+b (D) 2b 。 6.实数x 、y 满足3x 2+2y 2=6x ,则x 2+y 2的最大值为( ) A 、2 7 B 、4 C 、2 9 D 、5 7.曲线的参数方程为???-=+=1 2 32 2t y t x (t 是参数),则曲线是 A 、线段 B 、双曲线的一支 C 、圆 D 、射线 8. 已知动园: ),,(0sin 2cos 222是参数是正常数θθθb ,a b a by ax y x ≠=--+,则圆心的 轨迹是 A 、直线 B 、圆 C 、抛物线的一部分 D 、椭圆

人教版高中数学选修2-1优秀全套教案

高中数学人教版选修2-1全套教案 第一章常用逻辑用语 日期: 1.1.1命题 (一)教学目标 1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式; 2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力; 3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。 (二)教学重点与难点 重点:命题的概念、命题的构成 难点:分清命题的条件、结论和判断命题的真假 教具准备:与教材内容相关的资料。 教学设想:通过学生的参与,激发学生学习数学的兴趣。 教学时间 (三)教学过程 学生探究过程: 1.复习回顾 初中已学过命题的知识,请同学们回顾:什么叫做命题? 2.思考、分析 下列语句的表述形式有什么特点?你能判断他们的真假吗? (1)若直线a∥b,则直线a与直线b没有公共点. (2)2+4=7. (3)垂直于同一条直线的两个平面平行. (4)若x2=1,则x=1. (5)两个全等三角形的面积相等. (6)3能被2整除. 3.讨论、判断 学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。 教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。 4.抽象、归纳 定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.命题的定义的要点:能判断真假的陈述句. 在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.

高中数学选修4-4-极坐标与参数方程-知识点与题型

一、极坐标系 1.极坐标系与点的极坐标 (1)极坐标系:如图4-4-1所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. (2)极坐标:平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ来刻画,这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.其中ρ称为点M 的极径,θ称为点M 的极角. 2 题型一 极坐标与直角坐标的互化 1、已知点P 的极坐标为,则点P 的直角坐标为 ( ) A.(1,1) B.(1,-1) C.(-1,1) D.(-1,-1) 2、设点的直角坐标为,以原点为极点,实轴正半轴为极轴建立极坐标系,则点的极坐标为( ) A . B . C . D . 3.若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________. 4.在极坐标系中,过点(1,0)并且与极轴垂直的直线方程是( ) A .ρ=cos θ B .ρ=sin θ C .ρcos θ=1 D .ρsin θ=1 5.曲线C 的直角坐标方程为x 2+y 2-2x =0,以原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________. 6. 在极坐标系中,求圆ρ=2cos θ与直线θ=π 4 (ρ>0)所表示的图形的交点的极坐标. 题型二 极坐标方程的应用 由极坐标方程求曲线交点、距离等几何问题时,如果不能直接用极坐标解决,可先转化为直角坐标方程,然后求解.

高考数学参数方程大题

高考数学参数方程大题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高三最后一题 1、以平面直角坐标系的原点为极点,x 轴正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,设点A 的极坐标为)6 ,2(π ,直线l 过点A 且与极轴成角 为 3π,圆C 的极坐标方程为)4 cos(2πθρ-=. (1)写出直线l 参数方程,并把圆C 的方程化为直角坐标方程; (2)设直线l 与曲线圆C 交于B 、C 两点,求AC AB .的值. 【答案】(1)直线l C 的直角坐标方程为02222=--+y x y x ;(2 2、已知曲线C 的参数方程为31x y α α ?=+??=+??(α为参数),以直角坐标系原点 为极点,x 轴正半轴为极轴建立极坐标系. (1)求曲线C 的极坐标方程,并说明其表示什么轨迹. (2)若直线的极坐标方程为1 sin cos θθρ -= ,求直线被曲线C 截得的弦长. 【答案】(1)6cos 2sin ρθθ=+(2 3、在直角坐标系xOy 中,直线l 的参数方程为t t y t x (22522 5??? ??? ?+=+ -=为参数),若以 O 点为极点,x 轴正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为 θρcos 4=。 (1)求曲线C 的直角坐标方程及直线l 的普通方程; (2)将曲线C 上各点的横坐标缩短为原来的 2 1 ,再将所得曲线向左平移1个单位,得到曲线1C ,求曲线1C 上的点到直线l 的距离的最小值 【答案】(1)() 422 2 =+-y x ,052=+-y x (2 )

高中数学选修4-4坐标系与参数方程-高考真题演练

高中数学选修4-4坐标系与参数方程------高考真题演练 1(1)(2018全国卷III ) 在平面直角坐标系xOy 中,O ⊙的参数方程为cos sin x y θθ=?? =? , (θ为参数), 过点(0,且倾斜角为α的直线l 与O ⊙交于A B ,两点. (1)求α的取值范围; (2)求AB 中点P 的轨迹的参数方程. 1(2)(2018全国卷II )在直角坐标系中,曲线的参数方程为(为参 数),直线的参数方程为(为参数). (1)求和的直角坐标方程; (2)若曲线截直线所得线段的中点坐标为,求的斜率. 1(3)(2018全国卷I )在直角坐标系 中,曲线的方程为,以坐标原点为 极点,轴正半轴为极轴建立极坐标系,曲线 的极坐标方程为 (1)求的直角坐标方程 (2)若 与有且仅有三个公共点,求 的方程 1(1)(2018全国卷III ) 在平面直角坐标系xOy 中,O ⊙的参数方程为cos sin x y θθ =?? =?, (θ为参数), 过点(0,且倾斜角为α的直线l 与O ⊙交于A B ,两点. (1)求α的取值范围; (2)求AB 中点P 的轨迹的参数方程. xOy C 2cos 4sin x θy θ=?? =? , θl 1cos 2sin x t αy t α=+??=+? , t C l C l (1,2) l

解:(1)O e 的参数方程为cos sin x y θθ =?? =?,∴O e 的普通方程为22 1x y +=,当90α=?时, 直线::0l x =与O e 有两个交点,当90α≠?时,设直线l 的方程为tan y x α=-直线l 与O e 1<,得2tan 1α>,∴tan 1α>或tan 1α<-,∴ 4590α?<

高考数学参数方程所有经典类型

高考数学参数方程所有经典类型(必刷题) 1.极坐标系与直角坐标系xoy 有相同的长度单位,以原点O 为极点,以x 轴正半轴为 极轴.已知直线l 的参数方程为1222 x t y ?=+????=??(t 为参数),曲线C 的极坐标方程为 2sin 8cos ρθθ=. (Ⅰ)求C 的直角坐标方程; (Ⅱ)设直线l 与曲线C 交于,A B 两点,求弦长||AB . 2.已知直线l 经过点1 (,1)2P ,倾斜角α=6 π,圆C 的极坐标方程为)4πρθ=-. (1)写出直线l 的参数方程,并把圆C 的方程化为直角坐标方程; (2)设l 与圆C 相交于两点A 、B ,求点P 到A 、B 两点的距离之积. 3.在平面直角坐标系xOy 中,已知曲线1C :cos sin θθ=??=? x y (θ为参数),将1C 上的所有 和2倍后得到曲线2C .以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l :sin )4ρθθ+=. (1)试写出曲线1C 的极坐标方程与曲线2C 的参数方程; (2)在曲线2C 上求一点P ,使点P 到直线l 的距离最小,并求此最小值. 4.在直角坐标系xoy 中,直线l 的方程为40x y -+=,曲线C 的参数方程为

x 3cos y sin ααα ?=??=??(为参数). (1)已知在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为(4,)2π ,判断点P 与直线l 的位置关系; (2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值. 5.在平面直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐V 标方程为πcos =13ρθ? ?- ??? ,M ,N 分别为曲线C 与x 轴、y 轴的交点. (1)写出曲线C 的直角坐标方程,并求M ,N 的极坐标; (2)求直线OM 的极坐标方程. 6.(本小题满分10分)选修4-4:坐标系与参数方程 已知曲线 (为参数),(为参数). (1)化 的方程为普通方程; (2)若上的点P 对应的参数为为上的动点,求中点到直线 (为参数)距离的最小值.

高中数学选修4-4坐标系与参数方程完整教案

第一讲坐标系 一平面直角坐标系 课题:1、平面直角坐标系 教学目的: 知识与技能:回顾在平面直角坐标系中刻画点的位置的方法 能力与与方法:体会坐标系的作用 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。 教学重点:体会直角坐标系的作用 教学难点:能够建立适当的直角坐标系,解决数学问题 授课类型:新授课 教学模式:启发、诱导发现教学. 教具:多媒体、实物投影仪 教学过程: 一、复习引入: 情境1:为了确保宇宙飞船在预定的轨道上运行,并在按计划完成科学考察任务后,安全、准确的返回地球,从火箭升空的时刻开始,需要随时测定飞船在空中的位 置机器运动的轨迹。 情境2:运动会的开幕式上常常有大型团体操的表演,其中不断变化的背景图案是由看台上座位排列整齐的人群不断翻动手中的一本画布构成的。要出现正确的背景 图案,需要缺点不同的画布所在的位置。 问题1:如何刻画一个几何图形的位置? 问题2:如何创建坐标系? 二、学生活动 学生回顾 刻画一个几何图形的位置,需要设定一个参照系 1、数轴它使直线上任一点P都可以由惟一的实数x确定 2、平面直角坐标系 在平面上,当取定两条互相垂直的直线的交点为原点,并确定了度量单位和这两条直线的方向,就建立了平面直角坐标系。它使平面上任一点P都可以由惟一的实数对(x,y)确定 3、空间直角坐标系 在空间中,选择两两垂直且交于一点的三条直线,当取定这三条直线的交点为原点,并确定了度量单位和这三条直线方向,就建立了空间直角坐标系。它使空间上任一点P 都可以由惟一的实数对(x,y,z)确定 三、讲解新课: 1、建立坐标系是为了确定点的位置,因此,在所建的坐标系中应满足: 任意一点都有确定的坐标与其对应;反之,依据一个点的坐标就能确定这个点的位置 2、确定点的位置就是求出这个点在设定的坐标系中的坐标 四、数学运用 例1 选择适当的平面直角坐标系,表示边长为1的正六边形的顶点。

极坐标与参数方程经典练习题含答案详解

一、选择题:本大题共12小题,每小题5分,共60分,在每个小题给出的四个选项中,只有一项是符合题目要求的. 1.曲线25()12x t t y t =-+?? =-?为参数与坐标轴的交点是( ). A .21(0,)(,0)5 2 、 B .11(0,)(,0)5 2 、 C .(0,4)(8,0)-、 D .5(0,)(8,0)9 、 2.把方程1xy =化为以t 参数的参数方程是( ). A .1 21 2x t y t -?=???=? B .sin 1sin x t y t =???=?? C .cos 1cos x t y t =???=?? D .tan 1tan x t y t =???=?? 3.若直线的参数方程为12()23x t t y t =+?? =-?为参数,则直线的斜率为( ). A . 23 B .23- C .32 D .32 - 4.点(1,2)在圆18cos 8sin x y θ θ =-+?? =?的( ). A .内部 B .外部 C .圆上 D .与θ的值有关 5.参数方程为1()2 x t t t y ? =+ ???=?为参数表示的曲线是( ). A .一条直线 B .两条直线 C .一条射线 D .两条射线 6.两圆???+=+-=θθsin 24cos 23y x 与???==θ θ sin 3cos 3y x 的位置关系是( ). A .内切 B .外切 C .相离 D .内含 7.与参数方程为()21x t t y t ?=?? =-??为参数等价的普通方程为( ). A .22 14y x += B .221(01)4 y x x +=≤≤ C .22 1(02)4y x y +=≤≤ D .221(01,02)4 y x x y +=≤≤≤≤

人教版高中数学选修1-1知识点总结

高中数学选修1-1知识点总结 1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句. 2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论. 3、原命题:“若p ,则q ” 逆命题: “若q ,则p ” 否命题:“若p ?,则q ?” 逆否命题:“若q ?,则p ?” 4、四种命题的真假性之间的关系: (1)两个命题互为逆否命题,它们有相同的真假性; (2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 5、若p q ?,则p 是q 的充分条件,q 是p 的必要条件. 若p q ?,则p 是q 的充要条件(充分必要条件). 利用集合间的包含关系: 例如:若B A ?,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件; 6、逻辑联结词:⑴且(and) :命题形式p q ∧;⑵或(or ):命题形式p q ∨; ⑶非(not ):命题形式p ?. 7、⑴全称量词——“所有的”、“任意一个”等,用“ 全称命题p :)(,x p M x ∈?; 全称命题p 的否定?p :)(,x p M x ?∈?。 ⑵存在量词——“存在一个”、“至少有一个”等,用“?”表示;

特称命题p :)(,x p M x ∈?; 特称命题p 的否定?p :)(,x p M x ?∈?; 第二章 圆锥曲线 1、平面内与两个定点1F ,2F 的距离之和等于常数(大于 12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。 这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质:

高中数学选修坐标系与参数方程知识点总结

坐标系与参数方程 知识点 1.平面直角坐标系中的坐标伸缩变换 设点P(x,y)是平面直角坐标系中的任意一点,在变换(0):(0) x x y y λλ?μμ'=>?? '=>?g g 的作用下,点P(x,y)对应到点(,)P x y ''',称?为平面直角坐标系中的坐标伸 缩变换,简称伸缩变换. 2.极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. 注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系. (2)极坐标:设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对(,)ρθ叫做点M 的极坐标,记作(,)M ρθ. 一般地,不作特殊说明时,我们认为0,ρ≥θ可取任意实数. 特别地,当点M 在极点时,它的极坐标为(0, θ)(θ∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示. 如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的.

3.极坐标和直角坐标的互化 (1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示: (2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)ρθ(0ρ≥),于是极坐标与直角坐标的互化公式如表: 在一般情况下,由tan θ确定角时,可根据点M 所在的象限最小正角. 4.常见曲线的极坐标方程

高中数学参数方程应用大题(带答案)

参数方程极坐标系解答题 一、圆上的点到直线的距离最大值 1.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合,直线l的极坐标方程为: ,曲线C的参数方程为:(α为参数). (I)写出直线l的直角坐标方程; (Ⅱ)求曲线C上的点到直线l的距离的最大值. 考点:参数方程化成普通方程. 专题:坐标系和参数方程. 分析:(1)首先,将直线的极坐标方程中消去参数,化为直角坐标方程即可; (2)首先,化简曲线C的参数方程,然后,根据直线与圆的位置关系进行转化求解. 解答: 解:(1)∵直线l的极坐标方程为:, ∴ρ(sinθ﹣cosθ)=, ∴, ∴x﹣y+1=0. (2)根据曲线C的参数方程为:(α为参数). 得 (x﹣2)2+y2=4, 它表示一个以(2,0)为圆心,以2为半径的圆, 圆心到直线的距离为: d=, ∴曲线C上的点到直线l的距离的最大值=. 点评:本题重点考查了直线的极坐标方程、曲线的参数方程、及其之间的互化等知识,属于中档题.2.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立直角坐标系,圆C的极坐标方程为 ,直线l的参数方程为(t为参数),直线l和圆C交于A,B两点,P是圆C 上不同于A,B的任意一点. (Ⅰ)求圆心的极坐标; (Ⅱ)求△PAB面积的最大值. 考点:参数方程化成普通方程;简单曲线的极坐标方程. 专题:坐标系和参数方程. 分析: (Ⅰ)由圆C的极坐标方程为,化为ρ2=,把代入即可得出. (II)把直线的参数方程化为普通方程,利用点到直线的距离公式可得圆心到直线的距离d,再利用弦长公式

可得|AB|=2,利用三角形的面积计算公式即可得出. 解答: 解:(Ⅰ)由圆C的极坐标方程为,化为ρ2=,把代入可得:圆C的普通方程为x2+y2﹣2x+2y=0,即(x﹣1)2+(y+1)2=2. ∴圆心坐标为(1,﹣1), ∴圆心极坐标为; (Ⅱ)由直线l的参数方程(t为参数),把t=x代入y=﹣1+2t可得直线l的普通方程: , ∴圆心到直线l的距离, ∴|AB|=2==, 点P直线AB距离的最大值为, . 点评:本题考查了把直线的参数方程化为普通方程、极坐标化为直角坐标方程、点到直线的距离公式、弦长公式、三角形的面积计算公式,考查了推理能力与计算能力,属于中档题. 3.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立坐标系,直线l的极坐标方程为ρsin(θ+)=,圆C的参数方程为,(θ为参数,r>0) (Ⅰ)求圆心C的极坐标; (Ⅱ)当r为何值时,圆C上的点到直线l的最大距离为3. 考点:简单曲线的极坐标方程;直线与圆的位置关系. 专题:计算题. 分析:(1)利用两角差的余弦公式及极坐标与直角坐标的互化公式可得直线l的普通方程;利用同角三角函数的基本关系, 消去θ可得曲线C的普通方程,得出圆心的直角坐标后再化面极坐标即可. (2)由点到直线的距离公式、两角和的正弦公式,及正弦函数的有界性求得点P到直线l的距离的最大值,最后列出关于r的方程即可求出r值. 解答: 解:(1)由ρsin(θ+)=,得ρ(cosθ+sinθ)=1,∴直线l:x+y﹣1=0. 由得C:圆心(﹣,﹣).

高中数学 选修4-4参数方程讲义

——基础梳理—— 1.椭圆的参数方程 (1)中心在原点,焦点在x 轴上的椭圆x 2a 2+y 2b 2=1(a >b >0)的参数方程是__________.规定参数φ的取值范围为__________. (2)中心在(h ,k)的椭圆的普通方程为-a2+-b2=1,则其参数方程为__________. 2.双曲线的参数方程 (1)中心在原点,焦点在x 轴上的双曲线x2a2-y2b2 =1(a >0,b >0)的参数方程是__________.规定参数φ的取值范围为__________. (2)中心在原点,焦点在y 轴上的双曲线y2a2-x2b2 =1(a >0,b >0)的参数方程是__________. 3.抛物线的参数方程 (1)抛物线y2=2px(p >0)的参数方程为__________,t ∈__________. (2)参数t 的几何意义是__________. [答案] 1.(1)????? x =acos φy =bsin φ(φ为参数) [0,2π) (2)????? x =h +acos φy =k +bsin φ (φ为参数) 2.(1)????? x =asec φy =btan φ (φ为参数) [0,2π),且φ≠π2,φ≠3π2 (2)????? x =btan φy =asec φ(φ为参数) 3.(1)????? x =2pt2y =2pt (t 为参数) (-∞,+∞) (2)抛物线上除顶点外的任意一点与原点连线的斜率的倒数 自主演练 1.已知方程x2+my2=1表示焦点在y 轴上的椭圆,则() A .m <1 B .-1<m <1 C .m >1 D .0<m <1 [解析]方程化为x2+y21m =1,若要表示焦点在y 轴上的椭圆,需要1m >1,解得0<m <1.故应选D.

相关文档
最新文档