高中数学动点轨迹问题专题讲解

合集下载

动点轨迹方程问题的解法

动点轨迹方程问题的解法

考点透视董纪琴动点的轨迹方程问题主要考查圆锥曲线的定义与几何性质,通常要求根据已知的条件,求动点的轨迹方程.此类问题具有较强的抽象性,且解题过程中的运算量较大.很多同学由于在解题时没有选择合适的方法,导致解题失败.下面,笔者结合例题探讨一下动点轨迹方程问题的解法.一、直接法运用直接法求解动点的轨迹方程问题,需充分利用题设中的几何条件,寻找与动点有关的几何量或等量关系,并将其转化为关于动点的坐标的关系式,进而得到动点的轨迹方程.其解题步骤为:(1)设动点的坐标;(2)找等量关系;(3)根据已知条件列出方程;(4)整理化简该方程,求得动点的轨迹方程.例1.已知点A(-2,0),B(2,0),直线AM与BM的斜率之积为-12,求点M的轨迹C的方程,并说明C是什么曲线.解:由题意知kAM=yx+2,kBM=yx-2.因为直线AM与BM的斜率之积为-12,故y x+2∙y x-2=-12,化简得x24+y22=1(||x≠2),故曲线C为中心在坐标原点,半长轴为2,半短轴为2,焦点在x轴上,且不含左、右顶点的椭圆.运用直接法求动点的轨迹方程,通常需仔细寻找与动点有关的一些几何量,如相等距离、相等角、成比例的线段等,然后根据两点间的距离公式、点到直线的距离公式、斜率公式、相似三角形的性质等建立关于x,y的等量关系式,再通过化简,就能求出动点轨迹的方程.二、参数法若题目较为复杂,根据题意难以快速建立与动点有关的关系式,或明确动点的运动轨迹,就可以运用参数法,设出相关参数,建立关于参数的方程,再通过化简、消去参数,进而得到动点的轨迹方程.例2.若点A在x轴上移动,点B在y轴上移动,线段AB的长为a,点P是AB上的一动点,且||AP=2||PB,求点P的轨迹方程.解:过点P作PM⊥x轴于M,过点P作PN⊥y轴于N.设点P()x,y,AB与x轴的夹角为θ(||θ≤π2),则||AP=2a3,||BP=a3,于是x=13a cosθ,y=23a sinθ,消去参数,可得æèöø3xa2+æèçöø÷3y2a2=1,即动点的P轨迹方程为36x2+9y2=4a2.由于A,B为动点,所以直线AB与x轴的夹角直接影响着A、B点的横、纵坐标,此时我们要引入参数,运用参数法解题.根据题意绘制出相应的几何图形,再添加合适的辅助线,并根据直角三角形的性质列出关于参数的方程,就能通过消参,快速得出动点的轨迹方程.三、相关点法若动点P随点Q的变化而变化,就可以采用相关点法来求动点的轨迹方程.在解题时,我们首先要设出点P与点Q的坐标,然后根据题意建立两点之间的关系式,再将其代入关系式中进行运算,即可求出动点的轨迹方程.例3.已知点B为椭圆x2a2+y2b2=1(a>b>0)上的动点,点A(2a,0)为定点,试求线段AB的中点M的轨迹方程.解:设中点M的坐标为()x,y,B点的坐标为()x0,y0,因为M为线段AB的中点,所以ìíîïïx0+2a2=x,y0+02=y,可得{x0=2x-2a,y0=2y,则B(2x-2a,2y),因为点B在椭圆x2a2+y2b2=1,所以x02a2+y02b2=1,即(2x-2a)2a2+(2y)2b2=1,整理可得4(x-a)2a2+4y2b2=1,该方程即为中点M的轨迹方程.仔细分析题意可以知道,点M都随着点B的变化而变化,因此需采用相关点法解题比较便捷,用M点的坐标表示B点的坐标,再将其代入题设中进行运算,化简所得的结果,即可快速求得问题的答案.由此可见,无论运用哪种方法求动点的轨迹方程,都要设出动点的坐标,建立关于动点的坐标与已知曲线方程之间的关系式,再通过化简,求得关于动点坐标的方程,从而求出动点的轨迹方程.虽然此类问题较为复杂,难度系数较大,但是只要明确题目中与动点相关的已知条件,选择与之相应的方法进行求解,问题就能迎刃而解.(作者单位:南京航空航天大学附属高级中学)37。

例谈动点的轨迹方程的四种求法

例谈动点的轨迹方程的四种求法

思路探寻求动点的轨迹方程问题经常出现在解析几何试题中,这类问题侧重于考查同学们的推理、分析以及运算能力.求解这类问题的主要方法有定义法、参数法、相关点法和交轨法.下面结合实例,谈一谈这四种方法的特点以及应用技巧.一、定义法定义法是指运用圆锥曲线的定义解题.若发现动点的轨迹形如椭圆、圆、双曲线、抛物线或其中的一部分曲线,就可以根据椭圆、圆、双曲线、抛物线的定义,确定定点、焦点、焦点与动点之间的关系,求得椭圆、圆、双曲线、抛物线方程中的各个参数,便可以快速确定曲线的轨迹方程.例1.如图1所示,已知圆C1:x2+(y+4)2=25和圆C2:x2+(y-4)2=1,某动圆C分别与圆C1和圆C2外切,求动圆圆心C的轨迹方程.图1解:由题意知两圆的圆心为C1(0,-4),C2(0,4),半径为r1=5,r2=1,设动圆C的半径为r,因为圆C分别与圆C1和圆C2外切,所以||CC1=r+5,||CC2=r+1,所以||CC1-||CC2=4<8,即点C到两定点C1、C2的距离之差为常数4,所以动圆圆心C的轨迹是以C1、C2为焦点的双曲线的上支,可得2a=4,2c=||C1C2=8,所以b2=c2-a2=12.所以动圆圆心C的轨迹方程是y24-x212=1(y≥2).结合图形分析动圆C与圆C1、圆C2的位置关系,即可发现||CC1=r+5,||CC2=r+1,即可得出||CC1-||CC2=4<8,由此可联想到双曲线的定义,即平面内到两定点的距离之差为定值的点的轨迹,确定动点的轨迹,求得a、b、c值,即可求得动点的轨迹方程.二、参数法参数法是解答数学问题的重要方法.若动点受某些变量的影响,而我们又无法确定这些变量的取值,则需运用参数法,即用参数表示出变量,设出直线的斜率、点的坐标、曲线的方程等,然后将其代入题设中,建立关系式,通过恒等变换消去参数,即可求得动点的轨迹方程.例2.已知抛物线y2=4px(p>0)的顶点为O,A,B是抛物线上的两个动点,且OA⊥OB,OM⊥AB于点M,求点M的轨迹方程.解:设M(x,y),直线AB的方程为y=kx+b,因为OA⊥OB,所以k=-xy,由ìíîy2=4px,y=kx+b,得k2x2+(2kb-4p)x+b2=0,所以x1x2=-b2k2,y1y2=-4pb k,因为OA⊥OB,所以y1y2=-x1x2,所以-4pbk=-b2k2,即b=-4kp,所以直线AB的方程为y=kx+b=k(x-4p),将k=-xy代入,得x2+y2-4px=0(x≠0),即所求点M的轨迹方程为x2+y2-4px=0(x≠0).解答本题主要运用了参数法,即先引入参数x、y,49k 、b 、x 1、x 2、y 1、y 2,设出动点M 的坐标、直线AB 的方程以及A 、B 两点的坐标;然后将直线与抛物线的方程联立,根据一元二次方程的根与系数的关系建立关系式;最后通过恒等变换消去参数,得到关于x 、y 的方程,即为动点的轨迹方程.三、相关点法若两个动点之间存在某种特定的关系,则可以采用相关点法求解.先分别设出两个动点的坐标,并根据二者之间的关系,用所求动点的坐标表示另一个动点的坐标;然后根据另一个动点的几何关系,建立关于所求动点坐标的关系式,从而求得动点的轨迹方程.运用相关点法解题,要注意寻找两个动点之间的联系,并确定另一个动点所满足的几何关系.例3.如图2所示,在圆x 2+y 2=4上任意选取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足,求线段PD中点M 的轨迹方程.图2解:设点M (x ,y ),P (x 0,y 0),因为M 为线段PD 的中点,所以ìíîïïx =x 0,y =y 02,得{x 0=x ,y 0=2y ,又因为点P (x 0,y 0)在圆x 2+y 2=4上,所以x 02+y 02=4,将{x 0=x ,y 0=2y ,代入上述方程中,得x 24+y 2=1,所以点M 的轨迹为一个椭圆,其方程为x 24+y 2=1.本题中P 、M 均为动点,且点M 随着点P 的运动而变化,需采用相关点法求解,先分别设出P 、M 两点的坐标;然后用M 点的坐标表示P 的坐标;再将其代入点P 的轨迹方程,即可确定点M 的轨迹及其方程.四、交轨法当问题中所求的动点为两条动曲线的交点时,往往需采用交轨法,即将两条动曲线的方程联立,消去其中的参数,得到的关于x 、y 的方程即为所求的动点的轨迹方程.例4.如图3所示,已知双曲线C :y 24-x 23=1与y轴交于点A 1(0,-2)与点A 2(0,2),直线l :y =m 与双曲线交于点P ,Q ,直线A 1P 与直线A 2Q 相交于点M ,试求点M 的轨迹方程.图3解:设P (x 1,m ),Q (-x 1,m ),M (x ,y ),因为点P 在双曲线上,所以m 24-x 123=1.当x 1≠0时,直线PA 1的方程为y +2=m +2x 1x ,直线QA 2的方程为y -2=2-m x 1x,可得y 2-4=4-m 2x 12x 2,所以x 12=3m 2-124,将其代入y 2-4=4-m 2x 12x 2,得y 2-4=-43x 2,化简整理得y 24+x 23=1.当x 1=0时,点M 的坐标满足方程y 24+x 23=1.综上所述,点M 的轨迹方程为y 24+x 23=1.仔细分析题意可知,M 为直线A 1P 与直线A 2Q 的交点,且点A 1、A 2、P 、Q 都满足双曲线的方程,于是采用交轨法,求得两动直线A 1P 与A 2Q 的方程,再将两方程联立,消去参数,即可求出交点M 的轨迹方程.总之,求动点的轨迹方程,关键是要根据题目中的几何条件,寻找动点的横坐标与纵坐标之间的关系,建立关于动点的横坐标与纵坐标的方程.求动点的轨迹方程的方法很多,同学们需熟练掌握一些常用方法的特点、适用情形、解题思路,才能将其灵活地应用于解题中.(作者单位:江苏省南通市海门实验学校)思路探寻50。

高考数学复习考点题型专题讲解20 立体几何中的轨迹问题

高考数学复习考点题型专题讲解20 立体几何中的轨迹问题

高考数学复习考点题型专题讲解 第20讲 立体几何中轨迹问题7类【题型一】由动点保持平行性求轨迹【典例分析】如图,在边长为a 的正方体ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 、N 分别是CC 1、C 1D 1、DD 1、CD 、BC 的中点,M 在四边形EFGH 边上及其内部运动,若MN ∥面A 1BD ,则点M 轨迹的长度是( )A B C D 【答案】D 【分析】连接GH 、HN ,有GH ∥BA 1,HN ∥BD ,证得面A 1BD ∥面GHN ,由已知得点M 须在线段GH 上运动,即满足条件,由此可得选项. 【详解】解:连接GH 、HN 、GN ,∵在边长为a 的正方体ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 分别是CC 1、C 1D 1、DD 1、CD 的中点,N 是BC 的中点,则GH ∥BA 1,HN ∥BD ,又GH ⊄面A 1BD ,BA 1⊂面A 1BD ,所以//GH 面A 1BD ,同理可证得//NH 面A 1BD ,又GH HN H ⋂=,∴面A 1BD ∥面GHN ,又∵点M 在四边形EFGH 上及其内部运动,MN ∥面A 1BD ,则点M 须在线段GH 上运动,即满足条件,GH ,则点M a . 故选:D.【变式演练】1.在三棱台111A B C ABC -中,点D 在11A B 上,且1//AA BD ,点M 是三角形111A B C 内(含边界)的一个动点,且有平面//BDM 平面11A ACC ,则动点M 的轨迹是()A .三角形111ABC 边界的一部分 B .一个点 C .线段的一部分D .圆的一部分【答案】C 【分析】过D 作11//DE AC 交11B C 于E ,连接BE ,证明平面//BDE 平面11AAC C ,得M DE ∈,即得结论. 【详解】如图,过D 作11//DE AC 交11B C 于E ,连接BE ,1//BD AA ,BD ⊄平面11AAC C ,1AA ⊂平面11AAC C ,所以//BD 平面11AAC C ,同理//DE 平面11AAC C ,又BD DE D ⋂=,,BD DE ⊂平面BDE ,所以平面//BDE 平面11AAC C ,所以M DE ∈,(M 不与D 重合,否则没有平面BDM ), 故选:C .2.已知正方体1111ABCD A B C D -的棱长为2,E 、F 分别是棱1AA 、11A D 的中点,点P 为底面ABCD 内(包括边界)的一动点,若直线1D P 与平面BEF 无公共点,则点P 的轨迹长度为()A 1BCD 【答案】B 【分析】以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,设点(),,0P a b ,计算出平面BEF 的一个法向量m 的坐标,由已知条件得出10D P m ⋅=,可得出a 、b 所满足的等式,求出点P 的轨迹与线段AD 、BC 的交点坐标,即可求得结果. 【详解】以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()2,2,0B 、()2,0,1E 、()1,0,2F 、()10,0,2D ,设点(),,0P a b ,()0,2,1BE =-uur,()1,0,1EF =-,设平面BEF 的法向量为(),,m x y z =, 由200m BE y z m EF x z ⎧⋅=-+=⎨⋅=-+=⎩,取2z =,可得()2,1,2m =, ()1,,2D P a b =-,由题意可知,1//D P 平面BEF ,则1240D P m a b ⋅=+-=,令0b =,可得2a =;令2b =,可得1a =.所以,点P 的轨迹交线段AD 于点()2,0,0A ,交线段BC 的中点()1,2,0M ,所以,点P 的轨迹长度为AM =故选:B.3.在棱长为2的正方体1111ABCD A B C D -中,点E ,F 分别是棱11C D ,11B C 的中点,P 是上底面1111D C B A 内一点(含边界),若//AP 平面BDEF ,则Р点的轨迹长为()A .1BC .2D .【答案】B 【分析】由分别取棱11A B 、11A D 的中点M 、N ,连接MN ,由线面平行得面面平行,得动点轨迹,从而可计算其长度. 【详解】如图所示,分别取棱11A B 、11A D 的中点M 、N ,连接MN ,连接11B D , ∵M 、N 、E 、F 为所在棱的中点,∴11//MN B D ,11//EF B D ,∴//MN EF ,又MN ⊄平面BDEF ,EF ⊂平面BDEF ,∴//MN 平面BDEF ,连接NF ,由11//NF A B ,11NF A B =,11//A B AB ,11A B AB =,可得//NF AB ,NF AB =,则四边形ANFB 为平行四边形,则//AN FB ,而AN ⊄平面BDEF ,FB ⊂平面BDEF ,则//AN 平面BDEF . 又ANNM N =,∴平面//AMN 平面BDEF .又P 是上底面1111D C B A 内一点,且//AP 平面BDEF ,∴P 点在线段MN 上.又1112MN B D =,∴P【题型二】动点保持垂直性求轨迹【典例分析】在正方体1111ABCD A B C D -中,Q 是正方形11B BCC 内的动点,11AQ BC ⊥,则Q 点的轨迹是() A .点1B B .线段1B CC .线段11B CD .平面11B BCC【答案】B 【分析】如图,连接1AC ,证明1BC ⊥1B Q ,又1BC ⊥1B C ,即得解. 【详解】如图,连接1AC ,因为111111111111,,,,BC AQ BC A B AQ A B A AQ A B ⊥⊥=⊂平面11A B Q ,所以1BC ⊥平面11A B Q , 又1B Q ⊂平面11A B Q ,所以1BC ⊥1B Q ,又1BC ⊥1B C .所以点Q 在线段1B C 上.故选:B【变式演练】1.在正方体1111ABCD A B C D -中,点P 在侧面11BCC B 及其边界上运动,且保持1AP BD ⊥,则动点P 的轨迹为()A .线段1CBB .线段1BCC .1BB 的中点与1CC 的中点连成的线段D .BC 的中点与11B C 的中点连成的线段【答案】A 【分析】利用直线与平面垂直的判定可得1BD ⊥面1ACB ,又点P 在侧面11BCC B 及其边界上运动,并且总是保持AP 与1BD 垂直,得到点P 的轨迹为面1ACB 与面11BCC B 的交线. 【详解】如图,连接AC ,1AB ,1B C ,在正方体1111ABCD A B C D -中,有1BD ⊥平面1ACB ,又点P 在侧面11BCC B 及其边界上运动,∴故点P 的轨迹为平面1ACB 与平面11BCC B 的交线段1CB .故选:A.2.在棱长为1的正方体1111ABCD A B C D -中,M ,N 分别为1BD ,11B C 的中点,点P 在正方体的表面上运动,且满足MP CN ⊥.给出下列说法: ①点P 可以是棱1BB 的中点; ②线段MP 的最大值为34; ③点P 的轨迹是正方形;④点P 轨迹的长度为2 其中所有正确说法的序号是________.【答案】②④【分析】以D 为坐标原点,分别以DA ,DC ,1DD 为x 轴,y 轴,z 轴建立空间直角坐标系,求出MP 的坐标,从而得到MP 的最大值,即可判断选项②,通过分析判断可得点P 不可能是棱1BB 的中点,从而判断选项①,又1EF GH ==,EH FG ==,可判断选项③和选项④. 【详解】解:在正方体1111ABCD A B C D -中,以D 为坐标原点,1DC 为x 轴,y 轴, ∵该正方体的棱长为1,M ,N 分别为1BD ,11B C 的中点, ∴()0,0,0D ,M (12,12,12),1,1,12N ⎛⎫⎪⎝⎭,()0,1,0C ∴1,0,12CN ⎛⎫= ⎪⎝⎭,设(),,P x y z ,则111,,222MP x y z ⎛⎫=--- ⎪⎝⎭,∵MP CN ⊥,∴1110222x z ⎛⎫-+-= ⎪⎝⎭,即2430x z +-=当1x =时,14z =,当0x =时,34z =,取11,0,4E ⎛⎫ ⎪⎝⎭,11,1,4F ⎛⎫ ⎪⎝⎭,30,1,4G ⎛⎫ ⎪⎝⎭,30,0,4H ⎛⎫ ⎪⎝⎭,连结EF ,FG ,GH ,HE ,则()0,1,0EF GH ==,11,0,2EH FG ⎛⎫==- ⎪⎝⎭,∴四边形EFGH 为矩形,则0EF CN ⋅=,0EH CN ⋅=,即EF CN ⊥,EH CN ⊥,又EF 和EH 为平面EFGH 中的两条相交直线, ∴CN ⊥平面EFGH ,又111,,224EM ⎛⎫=- ⎪⎝⎭,111,,224MG ⎛⎫=- ⎪⎝⎭,∴M 为EG 的中点,则M ∈平面EFGH , 为使MP CN ⊥,必有点P ∈平面EFGH ,又点P 在正方体表面上运动,∴点P 的轨迹为四边形EFGH , 因此点P 不可能是棱1BB 的中点,故选项①错误;又1EF GH ==,EH FG ==,∴EF EH ≠,则点P 的轨迹不是正方形且矩形EFGH 周长为222+= 故选项③错误,选项④正确;∵1,0,12CN ⎛⎫= ⎪⎝⎭,111,,222MP x y z ⎛⎫=--- ⎪⎝⎭,又MP CN ⊥,则1110222x z ⎛⎫-+-= ⎪⎝⎭,即2430x z +-=,∴322x z =-,点P 在正方体表面运动, 则30212z ≤-≤,解1344z ≤≤,∴MP =故当14z =或34z =,0y =或1,MP 取得最大值为34,故②正确.故答案为:②④.3.如图,在正方体1111ABCD A B C D -中,E 是棱1CC 的中点,F 是侧面11BCC B 内的动点,且1A F 与平面1D AE 的垂线垂直,则下列说法不正确的是()A .1A F 与1D E 不可能平行B .1A F 与BE 是异面直线C .点F 的轨迹是一条线段D .三棱锥1F ABD -的体积为定值 【答案】A 【分析】设平面1D AE 与直线BC 交于G ,连接AG ,EG ,则G 为BC 的中点,分别取1B B ,11B C 的中点M ,N ,连接1A M ,MN ,1A N ,证明平面1//A MN 平面1D AE ,即可分析选项ABC 的正误;再由//MN EG ,得点F 到平面1D AE 的距离为定值,可得三棱锥1F ABD -的体积为定值判断D . 【详解】解:设平面1D AE 与直线BC 交于G ,连接AG ,EG , 则G 为BC 的中点,分别取1B B ,11B C 的中点M ,N , 连接1A M ,MN ,1A N ,如图,∵11//A M D E ,1A M Ë平面1D AE ,1D E ⊂平面1D AE , ∴1//A M 平面1D AE ,同理可得//MN 平面1D AE ,又1A M 、MN 是平面1A MN 内的两条相交直线,∴平面1//A MN 平面1D AE ,而1//A F 平面1D AE ,∴1A F ⊂平面1A MN , 得点F 的轨迹为一条线段,故C 正确;并由此可知,当F 与M 重合时,1A F 与1D E 平行,故A 错误;∵平面1//A MN 平面1D AE ,BE 和平面1D AE 相交,∴1A F 与BE 是异面直线,故B 正确; ∵//MN EG ,则点F 到平面1D AE 的距离为定值,∴三棱锥1F ABD -的体积为定值,故D 正确. 故选:A .【题型三】由动点保持等距(或者定距)求轨迹【典例分析】已知正方体ABCD -A 1B 1C 1D 1的棱长为1,P 为底面ABCD 内一点,若P 到棱CD ,A 1D 1距离相等的点,则点P 的轨迹是()A .直线B .椭圆C .抛物线D .双曲线【答案】D【分析】以D 为坐标原点建立空间直角坐标系D xyz -,求出点P 的轨迹方程即可判断.【详解】如图示,过P 作PE ⊥AB 与E ,过P 作PF ⊥AD 于F ,过F 作FG ∥AA 1交A 1D 1于G ,连结PG ,由题意可知PE=PG以D 为坐标原点建立空间直角坐标系D xyz -,设(),,0P x y ,由PE=PG 得:1x -=()2211x y --=即点P 的轨迹是双曲线.故选:D.【变式演练】1.如图,在四棱锥P ABCD -中,侧面PAD 为正三角形,底面ABCD 为正方形,侧面PAD ⊥底面ABCD ,M 为正方形ABCD 内(包括边界)的一个动点,且满足MP MC =.则点M 在正方形ABCD 内的轨迹为()A .B .C .D .【答案】A 【分析】如图,以D 为坐标原点,建立空间直角坐标系,设(),,0M x y ,正方形ABCD 的边长为a ,求出MC ,MP 的坐标,利用MP MC =可得x 与y 的关系,即可求解.【详解】如图,以D 为坐标原点,DA ,DC 所在的直线分别为x ,y 轴建立如图所示的空间直角坐标系,设正方形ABCD 的边长为a ,(),,0M x y ,则0x a ≤≤,0y a ≤≤,2a P ⎛ ⎝⎭,()0,,0C a ,则2MC x =2a MP ⎛= MP MC =,得2x y =,所以点M 在正方形ABCD 内的轨迹为一条线段()102y x x a =≤≤, 故选:A .2.如图,在棱长为4的正方体ABCD A B C D ''''-中,E 、F 分别是AD 、A D ''的中点,长为2的线段MN 的一个端点M 在线段EF 上运动,另一个端点N 在底面A B C D ''''上运动,则线段MN 的中点P 的轨迹(曲面)与正方体(各个面)所围成的几何体的体积为()A .43π B .23π C .6πD .3π 【答案】D 【分析】连接PF 、NF ,分析得出1FP =,可知点P 的轨迹是以点F 为球心,半径长为1的球面,作出图形,结合球体的体积公式可求得结果. 【详解】连接PF 、NF ,因为//AD A D '',AD A D ''=,且E 、F 分别为AD 、A D ''的中点, 故//AE A F '且AE A F '=,所以,四边形AA FE '为平行四边形,故//EF AA '且4EF AA ='=,AA '⊥平面A B C D '''',则EF ⊥平面A B C D '''', 因为FN ⊂平面A B C D '''',所以,EF FN ⊥,P 为MN 的中点,故112FP MN ==, 所以,点P 的轨迹是以点F 为球心,半径长为1的球面,如下图所示:所以,线段MN 的中点P 的轨迹(曲面)与正方体(各个面)所围成的几何体为球F 的14, 故所求几何体的体积为3141433V ππ=⨯⨯=.故选:D.3.四棱锥P ﹣OABC 中,底面OABC 是正方形,OP ⊥OA ,OA =OP =a .D 是棱OP 上的一动点,E 是正方形OABC 内一动点,DE 的中点为Q ,当DE =a 时,Q 的轨迹是球面的一部分,其表面积为3π,则a 的值是()A .B .C .D .6【答案】B 【分析】由题意结合选项可特殊化处理,即取OP 与底面垂直,求得Q 的轨迹,结合球的表面积求解.【详解】解:不妨令OP ⊥OC ,则OP ⊥底面OABC , 如图,∵D 是OP 上的动点,∴OD ⊥底面OABC ,可得OD ⊥OE ,又Q 为DE 的中点,∴OQ 1122DE a ==,即Q 的轨迹是以O 为球心,以12a 为半径的18球面,其表面积为S 214384a ππ=⨯⨯=,得a =故选:B .【题型四】由动点保持等角(或定角)求轨迹【典例分析】正方体1111ABCD A B C D -中,M ,N 分别为AB ,11A B 的中点,P 是边11C D 上的一个点(包括端点),Q 是平面1PMB 上一动点,满足直线MN 与直线AN 夹角与直线MN 与直线NQ 的夹角相等,则点Q 所在轨迹为()A .椭圆B .双曲线C .抛物线D .抛物线或双曲线【答案】D 【分析】根据题设分析可知:Q 点轨迹为以AN 为母线,MN 为轴,AB 为底面直径的圆锥体,及其关于11A B 反向对称的锥体与平面1PMB 的交线,应用数形结合,结合平面与双锥面相交所成曲线的性质判断Q所在轨迹的形状. 【详解】由题设,Q 点轨迹为以AN 为母线,MN 为轴,AB 为底面直径的圆锥体,及其关于11A B 反向对称的锥体与平面1PMB 的交线,如下图示:当P 是边11C D 上移动过程中,只与下方锥体有相交,Q 点轨迹为抛物线; 当P 是边11C D 上移动过程中,与上方锥体也有相交,Q 点轨迹为双曲线;故选:D【变式演练】1.如图,斜线段AB 与平面α所成的角为60︒,B 为斜足,平面α上的动点P 满足30PAB ∠=︒,则点P 的轨迹是()A .直线B .抛物线C .椭圆D .双曲线的一支【答案】C 【分析】由题可知点P 在以AB 为轴的圆锥的侧面上,再结合条件可知P 的轨迹符合圆锥曲线中椭圆定义,即得. 【详解】用垂直于圆锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线.此题中平面α上的动点P 满足30PAB ∠=︒,可理解为P 在以AB 为轴的圆锥的侧面上, 再由斜线段AB 与平面α所成的角为60︒,可知P 的轨迹符合圆锥曲线中椭圆定义. 故可知动点P 的轨迹是椭圆. 故选:C.2.如图所示,1111ABCD A B C D -为长方体,且AB =BC =2,1AA =4,点P 为平面1111A B C D 上一动点,若11PBC BC C ∠=∠,则P 点的轨迹为()A .抛物线B .椭圆C .双曲线D .圆【答案】B【分析】建立空间直角坐标系,利用空间向量的坐标运算和轨迹方程思想求得P 的轨迹方程,进而根据方程判定轨迹类型. 【详解】如图,建立直角坐标系,则()()10,0,4,0,2,0B C,1BC ==设(),,0P x y ,则向量(),,4BP x y =-,向量()10,2,4BC =-,111211cos ||CC BP BC PBC BC BP BC x ∠=====,∴()()2228416y x y +=++,即2243160x y y +-=,228644333x y ⎛⎫+-= ⎪⎝⎭,22831166439y x ⎛⎫- ⎪⎝⎭+=,这方程表示的轨迹是平面1111A B C D 上的椭圆,故选:B.3.在长方体1111ABCD A B C D -中,6AB AD ==,12AA =,M 为棱BC 的中点,动点P 满足APD CPM ∠=∠,则点P 的轨迹与长方体的侧面11DCC D 的交线长等于___________.【答案】23π【分析】由题意画出图形,由角的关系得到边的关系,然后再在平面11DCC D 内建系,求出P 的轨迹方程,确定点P 的轨迹与长方体的面11DCC D 的交线,进而求得交线长. 【详解】如下图所示:当P 在面11DCC D 内时,AD ⊥面11DCC D ,CM ⊥面11DCC D ; 又APD MPC ∠=∠,在Rt PDA 与Rt PCM 中,∵6AD =,则3MC =,∴tan tan AD MCAPD MPC PD PC∠==∠=,则63PD PC=,即2PD PC =. 在平面11DCC D 中,以DC 所在直线为x 轴,以DC 的垂直平分线为y 轴建立平面直角坐标系,则()3,0D -,()3,0C ,设(),P x y ,由2PD PC =整理得:221090x x y -++=,即()22516x y -+=.∴点P 的轨迹是以F (5,0)为圆心,半径为4的圆.设圆F 与面11DCC D 的交点为E 、M ,作EK 垂直x 轴于点K ,如图,则21sin 42EK EFK EF ∠===;∴6EFK π∠=;故点P 的轨迹与长方体的面11DCC D 的交线为劣弧ME ,所以劣弧ME 的长为2463ππ⨯=.故答案为:【题型五】投影求轨迹【典例分析】1822年,比利时数学家Dandelin 利用圆锥曲线的两个内切球,证明了用一个平面去截圆锥,可以得到椭圆(其中两球与截面的切点即为椭圆的焦点),实现了椭圆截线定义与轨迹定义的统一性.在生活中,有一个常见的现象:用手电筒斜照地面上的篮球,留下的影子会形成椭圆.这是由于光线形成的圆锥被地面所截产生了椭圆的截面.如图,在地面的某个占1A 正上方有一个点光源,将小球放置在地面,使得1AA 与小球相切.若15A A =,小球半径为2,则小球在地面的影子形成的椭圆的离心率为()A .23B .45 C .13D .25【答案】A 【分析】设21A F x =,从而可得15AA =,122A A x =+,23AA x =+,利用勾股定理可得10x =,再由离心率的定义即可求解. 【详解】在21Rt AA A 中,设21A F x =,2DA x ∴=15AA =,122A A x =+,23AA x =+,2225(2)(3)x x ∴++=+,10x ∴=, ∴长轴长12212A A a ==,6a =,624c =-=则离心率23c e a ==.故选:A【变式演练】1.如图,已知水平地面上有一半径为3的球,球心为O ',在平行光线的照射下,其投影的边缘轨迹为椭圆C .如图,椭圆中心为O ,球与地面的接触点为E ,4OE =.若光线与地面所成角为θ,椭圆的离心率e =__________.【答案】45【分析】根据平行投影计算出椭圆C 的短半轴长b ,再求出光线与水平面所成锐角的正弦,进而求得椭圆C 的长轴长2a 而得解. 【详解】连接OO ',则O OE θ'∠=,因为34,O E OE '==,如图:所以5OO '=,所以3sin 5O E OO θ'==' 在照射过程中,椭圆的短半轴长b 是球的半径R ,即3b =,过球心与椭圆长轴所在直线确定的平面截球面所得大圆及对应光线,如图:椭圆的长轴长2a 是AC ,过A 向BC 做垂线,垂足是B ,则,AB O O O E AC ''⊥⊥,由题意得:326sin sin 5AB R ACB θ==∠==,,又sin ABACB AC∠=, 则35AB AC =,10AC =,即2105a a ==,,所以椭圆的离心率为45c e a ====.故答案为:45【题型六】翻折与动点求轨迹(难点)【典例分析】如图,将四边形ABCD 中,ADC 沿着AC 翻折到1AD C ,则翻折过程中线段DB 中点M 的轨迹是()A .椭圆的一段B .抛物线的一段C .双曲线的一段D .一段圆弧【答案】D 【分析】过点D 作AC 的垂线,垂足为F ,过点点B 作AC 的垂线,垂足为E ,连接,DE BF ,再分别分析翻折前、后的变化量与不变量,在翻折后的图形中取BE 中点O ,进而可得答案. 【详解】解:在四边形ABCD 中,过点D 作AC 的垂线,垂足为F ,过点点B 作AC 的垂线,垂足为E ,连接,DE BF ,如图1,所以当四边形ABCD 确定时,DEF 和BEF 三边长度均为定值,当ADC 沿着AC 翻折到1AD C ,形成如图2的几何体,并取BE 中点O ,连接OM , 由于在翻折过程中,1DE D E =,所以由中位线定理可得112OM D E =为定值, 所以线段DB 中点M 的轨迹是以BE 中点O 为圆心的圆弧上的部分.故选:D【变式演练】1.已知△ABC 的边长都为2,在边AB 上任取一点D ,沿CD 将△BCD 折起,使平面BCD ⊥平面AC D .在平面BCD 内过点B 作BP ⊥平面ACD ,垂足为P ,那么随着点D 的变化,点P 的轨迹长度为() A .6π B .3π C .23π D .π【答案】C 【分析】根据题意,先确定点P 轨迹的形状,进而求出轨迹的长度即可. 【详解】由题意,在平面BCD 内作BQ ⊥CD ,交CD 于Q ,因为平面BCD ⊥平面ACD ,平面BCD 与平面ACD 交于CD ,所以BQ ⊥平面ACD ,又BP ⊥平面ACD ,所以P ,Q 两点重合,于是随着点D 的变化,BP ⊥CD 始终成立,可得在平面ABC 中,BP ⊥CP 始终成立,即得点P 的轨迹是以BC 为直径的圆的一部分,由题意知随着点D 的变化,∠BCD 的范围为0,3π⎡⎤⎢⎥⎣⎦,可得点P 的轨迹是以BC 为直径(半径为1)的圆的13,即得点P 的轨迹长度为2122133ππ⨯⨯=.故选:C.2.如图,等腰梯形ABCD 中,//AB CD ,2AB =,1AD BC ==,AB CD >,沿着AC 把ACD △折起至1ACD △,使1D 在平面ABC 上的射影恰好落在AB 上.当边长CD 变化时,点1D 的轨迹长度为()A .2πB .3π C .4π D .6π【答案】B 【分析】根据1D 的射影在边AB 上,且1AD 固定长度为1,所以1D 的轨迹在以A 为原点半径为1的圆上,因此考虑CD 的长度缩短到0时和CD 变长到AB 的长度两种情况,从而求出夹角大小,进而求出弧长. 【详解】因为1D 的射影在边AB 上,且1AD 固定长度为1,所以1D 的轨迹在以A 为原点半径为1的圆上.考虑极端情况:当CD 的长度缩短到0时,1,,C D D 都汇聚到线段AB 的中点(D 2);当CD 变长到AB 的长度时(1D 的射影为D 3),如图,设3AD t =,则32BD t =-,在13D D ARt中,22131D D t =-,同理:()22312CD t =+-,()22221313412D D CD CD t ⎡⎤=-=-+-⎣⎦∴()22141212t t t ⎡⎤-+-=-⇒=⎣⎦,即1D 在线段AB 上的投影与点A 的距离为12,从而1AD 与AB 夹角为3π,故点1D 的轨迹为1=33ππ⨯.故选:B.3.已知矩形ABCD 中,1AB =,AE =如图,将ABE △沿着BE 进行翻折,使得点A 与点S 重合,若点S 在平面BCDE 上的射影在四边形BCDE 内部(包含边界),则动点S 的轨迹长度是()A B C D【分析】过点A 作AM BE ⊥于点M ,交BC 于点G ,则点S 在平面BCDE 上的射影N 落在线段MG 上.由翻折过程可知,SM AM =S 的轨迹是以点M角,利用弧长公式求出弧长. 【详解】如图(1),过点A 作AM BE ⊥于点M ,交BC 于点G ,则点S 在平面BCDE 上的射影N 落在线段MG 上.在Rt ABE △中,1AB =,AEBE =AM ==翻折的过程中,动点S满足SM S 的轨迹是以点M.易得BM =,EM =,AME GMB ∽△△,所以12MG MB MA ME ==,则MG SM =<,如图(2),在圆M 中,0S M AG ⊥,1S G AG ⊥,所以点S 的轨迹是01S S ,且111co s 2MG S MG MS ∠==,则1π3SM G ∠=,10π6S MS ∠=,从而点S的轨迹长度为π6=【课后练习】1.(多选题)(海南省海口市北京师范大学海口附属学校12月月考)如图,已知正方体1111ABCD A B C D -的棱长为112,,M DD 的中点,N 为正方形ABCD 所在平面内一动点,则下列结论正确的是( )A .若N 到直线1BB 与直线DC 的距离相等,则N 的轨迹为抛物线 B .若2MN =,则MN 的中点的轨迹所围成图形的面积为π C .若1D N 与AB 所成的角为60,则N 的轨迹为双曲线 D .若MN 与平面ABCD 所成的角为60,则N 的轨迹为椭圆 【答案】ABC 【分析】A :由1BB ⊥平面ABCD ,可得NB 即为N 到直线1BB 的距离,由抛物线的定义即可判断;B :由题意可得MN 中点的轨迹为以MD ABCD 的圆,计算可判断;C :建立空间直角坐标系,设(N x ,y ,0),由1D N 与AB 所成的角为60°,可得点N 的轨迹方程,从而可判断;D :由MN 与平面ABCD 所成的角为MND ∠,计算可得DN 为定值,可判断点N 的轨迹为以D 为圆心,DN 为半径的圆,从而可判断. 【详解】对于A ,1BB ⊥平面ABCD ,NB 即为N 到直线1BB 的距离, 在平面ABCD 内,点N 到定点B 的距离与到定直线DC 的距离相等, ∴点N 的轨迹就是以B 为焦点,DC 为准线的抛物线,故A 正确; 对于B ,1BB ⊥平面ABCD ,NB 即为N 到直线1BB 的距离, 在平面ABCD 内,点N 到定点B 的距离与到定直线DC 的距离相等, ∴点N 的轨迹就是以B 为焦点,DC 为准线的抛物线,故B 正确; 对于C ,如图,建立空间直角坐标系,(0D ,0,0),1(0D ,0,2),(2A ,0,0),(2B ,2,0),设(N x ,y ,0),则1(D N x =,y ,2)-,(0AB =,2,0),111cos602D N AB D N ABx ⋅︒===⨯, 化简得2234y x -=,即2214134y x -=,∴N 的轨迹为双曲线,故C 正确;对于D ,MN 与平面ABCD 所成的角为MND ∠,∴60MND ∠=︒, 则DN =∴点N 的轨迹为以D D 错误. 故选:ABC ﹒2.(广东省六校高三上学期第三次联考数学试题)(多选题)如图的正方体1111ABCD A B C D -中,棱长为2,点E 是棱1DD 的中点,点F 在正方体表面上运动.以下命题正确的有()A .侧面11CDD C 上不存在点F ,使得11B F CD ⊥B .点D 到面1A BE 的距离与点1C 到面1A BE 的距离之比为13C .若点F 满足1//B F 平面1A BE ,则动点F 的轨迹长度为D .若点F 到点A F 的轨迹长度为 【答案】BD 【分析】先找到点F 满足1//B F 平面1A BE 的轨迹,可判断选项AC ,将平面1A BE 补全,利用比例判断选项B ,找到满足点F 到点A D 【详解】取11C D 中点M ,1C C 中点N ,连接1B M ,1B N ,MN ,易证11//B N A E ,又1B N ⊄平面1A BE ,1A E ⊂平面1A BE ,所以1//B N 平面1A BE , 又1//MN A B ,同理得到//MN 平面1A BE , 所以平面1//B MN 平面1A BE ,所以若点F 满足1//B F 平面1A BE ,则点F 在1B MN △的三边上运动,11MN B M B N ==F 的轨迹长度为C 错误;当点F 在侧面11CDD C 上运动时,点F 的运动轨迹为线段MN ,当F 运动到MN 中点时,因为△1B MN 是等腰三角形,所以1B F MN ⊥,又因为1//MN CD ,所以11B F CD ⊥,故A 错误;取CD 中点G ,连接BG ,EG ,易证1//A B EG ,则1,,,A B E G 共面,令1C D EG H ⋂=,则易得113DH C H =, 所以点D 到面1A BE 的距离与点1C 到面1A BE 的距离之比为13,故B 正确;F 到点A 则动点F 的轨迹在正方形11B BCC 和正方形11CC D D 及正方形1111D C B A 上,若在正方形11B BCC 上,则满足2222BF BA BF +=⇒=,所以在正方形11B BCC 上,动点F 的轨迹为以B ,同理点F 在正方形1111D C B A 及正方形11CC D D 面上运动时,轨迹分别为以1,A D的四分之一圆弧,所以动点F 3⨯=,所以D 正确; 故选:BD3.(多选题)(全国著名重点中学领航高考冲刺试卷(六))如图,在正方体1111ABCD A B C D -中,E为1AA 的中点,点F 在线段1AD 上运动,G 为底面ABCD 内一动点,则下列说法正确的是()A .11C F CB ⊥B .若1//FG CD ,则点G 在线段AC 上C .当点F 从A 向1D 运动时,三棱锥1D BFC -的体积由小变大D .若1GD ,GE 与底面ABCD 所成角相等,则动点G 的轨迹为圆的一部分 【答案】ABD 【分析】结合线面垂直的知识来判断A 选项的正确性.结合平面的知识来判断B 选项的正确性.结合锥体体积的求法来确定C 选项的正确性.结合阿波罗尼斯圆的知识来判断D 选项的正确性. 【详解】连接1A D ,∵1C F 在平面11ADD A 内的射影为1D F ,11CB A D ∥,且11A D D F ⊥,则1A D ⊥平面11C D F ,11A D C F ⊥,∴11C F CB ⊥,故A 正确;∵1FG CD ∥,∴FG 与1CD 确定唯一的平面α,而平面1ACD 与α有F ,1D ,C 三个不在一条直线上的公共点,∴平面1ACD 与α重合,又G 为底面ABCD 内一动点,则点G 必在平面1ACD 与平面ABCD 的交线AC 上,故B 正确;∵11AD BC ∥,1AD ⊄平面1DBC ,1BC ⊂平面1DBC ,∴1AD ∥平面1DBC ,故当点F 在1AD 上运动时,点F 到平面1DBC 的距离不变,于是三棱锥1F BDC -的体积不变,即三棱锥1D BFC -的体积不变,故C 错误;连接GD ,GA ,当1GD ,GE 与底面ABCD 所成角相等时,易得2GD GA =,∵AD 为定值,由阿波罗尼斯圆易知点G 的轨迹为圆的一部分,故D 正确. 阿波罗尼斯圆:已知平面上两点A ,B ,则所有满足PAk PB=(0k >且1k ≠)的点P 的轨迹是一个以定比m :n 内分和外分定线段AB 的两个分点的连线为直径的圆,此圆称为阿波罗尼斯圆. 故选:ABD4.(吉林省梅河口市第五中学第一次月考)在棱长为1的正方体1111ABCD A B C D -中,M ,N 分别为1AA ,1CC 的中点,O 为底面ABCD 的中心,点P 在正方体的表面上运动,且满足NP MO ⊥,则下列说法正确的是()A .点P 可以是棱1BB 的中点B .线段NPC .点P 的轨迹是平行四边形D .点P 轨迹的长度为1【答案】B 【分析】在正方体1111ABCD A B C D -中,以点D 为坐标原点,分别以DA 、DC 、1DD 方向为x 轴、y 轴、z 轴正方向,建立空间直角坐标系,根据NP MO ⊥,确定点P 的轨迹,在逐项判断,即可得出结果. 【详解】在正方体1111ABCD A B C D -中,以点D 为坐标原点,分别以DA 、DC 、1DD 方向为x 轴、y 轴、z 轴正方向,建立空间直角坐标系,因为该正方体的棱长为1,,M N 分别为1AA ,1CC 的中点,则()0,0,0D ,11,0,2M ⎛⎫ ⎪⎝⎭,10,1,2N ⎛⎫ ⎪⎝⎭,11,,022O ⎛⎫ ⎪⎝⎭,所以111,,222OM ⎛⎫=- ⎪⎝⎭,设(),,P x y z ,则1,1,2NP x y z ⎛⎫=-- ⎪⎝⎭,因为NP MO ⊥,所以0NP OM ⋅=所以()1111102222x y z ⎛⎫--+-= ⎪⎝⎭,即2221x y z -+=-,令0z =,当12x =时,1y =;当0x =时,12y =; 取1,1,02E ⎛⎫ ⎪⎝⎭,10,,02F ⎛⎫⎪⎝⎭,连接EF ,FN ,NE ,则11,,022EF ⎛⎫=-- ⎪⎝⎭,11,0,22EN ⎛⎫=- ⎪⎝⎭,则111110022222EF OM ⎛⎫⎛⎫⋅=-⨯+-⨯-+⨯= ⎪ ⎪⎝⎭⎝⎭,111110022222EN OM ⎛⎫⋅=-⨯+⨯-+⨯= ⎪⎝⎭,所以EF OM ⊥,EN OM ⊥,又EF EN E ⋂=,且EF ⊂平面EFN ,EN ⊂平面EFN , 所以OM ⊥平面EFN ,所以,为使NP OM ⊥,必有点P ∈平面EFN ,又点P 在正方体的表面上运动, 所以点P 的轨迹为正三角形EFN ,故C 错误;因此点P 不可能是棱1BB 的中点,故A 错误;线段NP 的最大值为NF =B 正确;点P =D 错误; 故选:B5.(广东省深圳市平冈高级中学高三上学期9月第一次月考)如图所示,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,E 是棱DD 1的中点,F 是侧面CDD 1C 1上的动点,且B 1F ∥平面A 1BE ,则F 在侧面CDD 1C 1上的轨迹的长度是()A .aB .2aC D【答案】D 【分析】过1B 做与平面1A BE 平行的平面,该平面与侧面11CDD C 的交线,即为满足条件的轨迹,求解即可. 【详解】设G ,H ,I 分别为CD ,CC 1,C 1D 1边上的中点, 连接B 1I ,B 1H ,IH ,CD 1,EG ,BG ,则1A B ∥1CD ∥GE , 所以A 1,B ,E ,G 四点共面,由1B H ∥11,A E A E ⊄平面B 1HI ,1B H ⊂平面B 1HI , 所以A 1E ∥平面B 1HI ,同理A 1B ∥平面B 1HI , 111A BA E A =,所以平面A 1BGE ∥平面B 1HI ,又因为B 1F ∥平面A 1BE ,所以F 落在线段HI 上,因为正方体ABCD -A 1B 1C 1D 1的棱长为a ,所以112HI CD ==,即F 在侧面CDD 1C 1.故选:D. 6.(湖南省永州市高三上学期第一次适应性考试)已知在三棱锥S ABC -中,D 为线段AB 的中点,点E 在SBC △(含边界位置)内,则满足//DE 平面SAC 的点E 的轨迹为() A .线段SB ,BC 的中点连接而成的线段B .线段SB 的中点与线段BC 靠近点B 的三等分点连接而成的线段 C .线段BC 的中点与线段SB 靠近点B 的三等分点连接而成的线段D .线段BC 靠近点B 的三等分点与线段SB 靠近点B 的三等分点连接而成的线段 【答案】A【分析】利用面面平行得到线面平行,即可. 【详解】解:如图所示,P 、Q 分别为线段SB ,BC 的中点, 所以//PQ SC ,//,DQ AC PQ ⊄平面SAC ,AC ⊂平面SAC ,所以//PQ 平面SAC ,同理//DQ 平面SAC ,PQ DQ Q =,所以平面//PDQ 平面SAC ,若DE ⊆平面PDQ ,则会有//DE 平面SAC , 故点E 的轨迹为线段SB ,BC 的中点连接而成的线段, 故选A.7.(辽宁省实验中学上学期联考)已知正六棱柱111111ABCDEF A B C D E F -点P 在棱1AA上运动,点Q 在底面ABCDEF 内运动,PQ =R 为PQ 的中点,则动点R 的轨迹与正六棱柱的侧面和底面围成的较小部分的体积为()A B C D 【答案】B【分析】根据题意,可判断出动点R 的轨迹为球,结合球的体积公式,即可求解. 【详解】由直角三角形的性质得AR ,所以点R 在以A 因为23BAF π∠=,所以动点R 的轨迹与正六棱柱的侧面和底面围成的较小部分16球,其体积为31463π⨯=⎝⎭.故选:B.8.四棱锥P OABC -中,底面OABC 是正方形,OP OA ⊥,OA OP a ==.D 是棱OP 上的一动点,E是正方形OABC 内一动点,DE 的中点为Q ,当DE a =时,Q 的轨迹是球面的一部分,其表面积为3π,则a 的值是()A .B .C .D .6【答案】B【分析】 首先假设OP OC ⊥,将四棱锥P OABC -放在正方体中,然后根据直角三角形斜边中线等于斜边的一半求得12OQ a =,得到点Q 的轨迹,最后根据题意列出方程求出a 的值 . 【详解】由题意不妨设OP OC ⊥,又OP OA ⊥,底面OABC 是正方形,所以可将四棱锥P OABC -放在一个正方体内,所以DO ⊥面OABC ,又OE ⊂面OABC ,则DO OE ⊥,又DE 的中点为Q , 所以1122OQ DE a ==,即Q 的轨迹是以O 为球心,12OQ a =为半径的球,且点Q 恒在正方体内部, 又因为8个一样的正方体放在一起,点Q 的轨迹就可以围成一个完整的球,所以Q 的轨迹是以O 为球心,12OQ a =为半径的球的18球面,所以2114382a ππ⎛⎫⨯= ⎪⎝⎭,解得a = 故选:B9.棱长为a 的正方体1111ABCD A B C D -中,点P 在平面..1111D C B A 内运动,点1B 到直线DP 的距离为定值,若动点P 的轨迹为椭圆,则此定值可能..为()A B C D 【答案】A【分析】设1B DP α∠=,分析出点P 在以1DB 为轴的圆锥的侧面上,计算出d <,并分析出45a ¹o ,可得出d ≠,由此可得出合适的选项. 【详解】如下图所示:因为点1B 到直线DP 的距离为定值,所以,点P 在以1DB 为轴的圆锥的侧面上,因为点P 的轨迹为椭圆,即圆锥被平面1111D C B A 所截的截面为椭圆,设圆锥轴截面的半顶角为α,则点1B 到直线DP 的距离为1sin sin d B D αα==<, 当截面与圆锥的母线平行时,即45α=时,截面为抛物线,不合乎题意,所以,6sin 452d ≠=. 综合选择,可知A 选项合乎题意.故选:A.10.(上海市建平中学期中)已知菱形ABCD 边长为2,60ABC ∠=︒,沿对角线AC 折叠成三棱锥B ACD '-,使得二面角B AC D '--为60°,设E 为B C '的中点,F 为三棱锥B ACD '-表面上动点,且总满足AC EF ⊥,则点F 轨迹的长度为()A .B .CD 【答案】D【分析】。

高三数学(专题三 动点的轨迹问题)

高三数学(专题三 动点的轨迹问题)

点,求Q 点的轨迹方程,并指出该轨迹的名称.解:设直线OP 的斜率为)(R k k ∈,则点P 的坐标为OP l k ⊥,2,2)(.得l 的方程:0=+ky x ,因为直线m 过A 、P 两点,所以方程)1(2-=x k y 即022=--k y kx .),(y x Q 是l 、m 的交点,所以),(y x Q 满足方程组⎩⎨⎧=--=+0220k y kx ky x ,消去k 得:)1(02222≠=-+x x y x ,即)1(12)21(422≠=+-x y x 可化方程)()(1121)21()22(2222≠=-+x x y ,故轨迹是中心在)0,21(,长半轴长为22,短半轴长为21,焦点在21=x 直线上的椭圆且去掉)0,1(.例4、如图,已知直角坐标平面上点)0,2(Q 和圆122=+y x ,动点M 到圆O 的切线长与MQ 的比等于常数)0(>λλ,求动点M 的轨迹方程,并说明它表示什么曲线.解: 设动点),(y x M ,则M点到圆的切线长2222)2(.1y x MQ y x MN +-=-+=于是由题意得:2222)1(1y x y x +-=-+λ,整理得014)1(4)1(22222=++-+--λλλλy x x . 当1=λ时,方程为45=x ,表示一条直线; 当)(01>≠λλ时,方程为2222222)1(31)12(-+=+--λλλλy x ,表示一个圆例5、设椭圆方程为1422=+y x ,过点)1,0(M 的直线l 交椭圆A 、B 两点,O 是坐标原点,点P 满足【课堂小练】1、已知定点)0,6(A ,B 是曲线1)1(22=-+y x 上的动点,延长BA 到P ,使AB PA =,求动点P 的轨迹方程. 解:设),(y x P ,有条件知点A 为PB 的中点,所以点),12(y x B --,将点B 坐标代人已知曲线方程,得:1)1()12(22=--+-y x .即1)1()12(22=++-y x2、已知△ABC 中,三边a 、b 、c 满足2,=>>b a b c ,且a 、b 、c 成等差数列,求顶点B 的轨迹方程. 解:以边AC 的中点为原点,AC 所在直线为x 轴建立平面直角坐标系,得)0,1(),0,1(C A -.由42==+b c a .知AC BC BA >=+4.则由椭圆定义知点B 的轨迹方程为)20(13422<<=+x y x 3、如图,给出定点)0)(0,(>a a A 和直线l :1-=x ,B 是直线l 上动点,BOA ∠的角平分线交AB 于点C ,求点C 的轨迹方程,并讨论方程表示的曲线类型与a 值的关系.解:依题意,记))(,1(R b b B ∈-,则直线OA 和OB 的方程为0=y 和bx y -= 设点),(y x C ,则有a x <≤0,由OC 平分AOB ∠,则点C 到OA 、OB 的距离相等,根据点到线的距离公式得21bbx y y ++=(1) 依题设点C 在直线AB 上,故有)(1a x a b y -+-=,由于0≠-a x 得ax ya b -+-=)1( (2) 将(2)代人(1)得:0,)()1()()1(122222≠⎥⎦⎤⎢⎣⎡-+-=⎥⎦⎤⎢⎣⎡-++y a x xy a y a x y a y 则222222)1()1)((2)()1()(x a x a a x a x y a a x +++---=++-,又因01≠+a ,整理得:0),0(0)1(2)1(22=<<=++--y a x y a ax x a ,则0=b .)0,0(C 满足上式.① 当1≠a ,轨迹方程化为)0(11)1()1(22222a x a a y a a a a x ≤≤=-+---(3) 当10<<a ,方程(3)表示椭圆弧段;当1>a ,方程(3)表示双曲线一支弧度.② 当1=a ,轨迹方程化为)10(2<≤=x x y (4),此时方程(4)表示抛物线弧段.【课后练习】1、设抛物线经过定点)2,0(A 且以x 轴为准线,求抛物线顶点M 的轨迹方程.解:设),(y x M ,则焦点)2,(y x F由AO AF = 得2)22()(22=-+-y o x ,整理得:1)1(422=-+y x . (除)0,0( 点外) 2、如图,设1A 、2A 为双曲线12222=-by a x 的两顶点,21P P 是垂直于实轴的弦,求11P A 与22P A 的交点P 的轨迹方程.解:设垂直于实轴的弦的端点分别为),(),,(002001y x P y x P -, 其中)(220222a x ab y -= ① 则直线11P A :)(00a x ax y y ++=; ② ②直线22P A :)(0a x x a y y --=; ③ ③设11P A 与22P A 的交点),(y x P ,②×③得:)(2222202a x ax y y ---=,将①代人并化简得:12222=+b y a x . 3、已知,动椭圆的一个焦点为)0,3(1F ,长轴长为6,且恒过原点,求动椭圆中心的轨迹方程. 解:设椭圆中心),(y x P ,另一焦点),(002y x F由中点公式x x =+230,则y y x x =+-=2,3200,则y y 20=,得)2,32(2y x F - 因621=+OF OF ,则6)2()32(322=+-+y x .整理得:0()23()23(222≠=+-x y x ,且)3≠x .4、已知定点)0,2(A ,P 点在圆122=+y x 上运动,AOP ∠的角平分线交PA 于Q 点,其中O 为坐标原点,求Q 点的轨迹方程,并说明轨迹的形状.解:设),(y x Q ,再设),(11y x P ,则12121=+y x①Q 分PA 的比为21==OA PO QA PQ ,则211021,21122111+⨯+=+⨯+=y y x x , 得:y y x x 23,12311=-=,代人①得点Q 的轨迹为圆,方程为94)32(22=+-y x .5、已知椭圆C 的方程为1222=+y x ,点),(b a P 的坐标满足1222≤+b a ,过点P 的直线交椭圆于A 、B 两点,点。

(完整版)高中数学动点轨迹问题专题讲解

(完整版)高中数学动点轨迹问题专题讲解

动点轨迹问题专题讲解一.专题内容:求动点(, )P x y 的轨迹方程实质上是建立动点的坐标, x y 之间的关系式,首先要分析形成轨迹的点和已知条件的内在联系,选择最便于反映这种联系的坐标形式,寻求适当关系建立等式,常用方法有: (1)等量关系法.....:根据题意,列出限制动点的条件等式,这种求轨迹的方法叫做等量关系法,利用这种方法时,要求对平面几何中常用的定理和解析几何中的有关基本公式很熟悉. (2)定义法...:如果动点满足的条件符合某种已知曲线(如圆锥曲线)的定义,可根据其定义用待定系数法求出轨迹方程.(3)转移代入法.....:如果所求轨迹上的点(, )P x y 是随另一个在已知曲线C :(, )0F x y =上的动点00(, )M x y 的变化而变化,且00, x y 能用, x y 表示,即0(, )x f x y =,0(, )y g x y =,则将00, x y 代入已知曲线(, )0F x y =,化简后即为所求的轨迹方程.(4)参数法...:选取适当的参数(如直线斜率k 等),分别求出动点坐标, x y 与参数的关系式,得出所求轨迹的参数方程,消去参数即可. (5)交轨法...:即求两动直线交点的轨迹,可选取同一个参数,建立两动直线的方程,然后消去参数,即可(有时还可以由三点共线,斜率相等寻找关系). 注意:轨迹的完备性和纯粹性!一定要检验特殊点和线! 二.相关试题训练(一)选择、填空题1.( )已知1F 、2F 是定点,12||8F F =,动点M 满足12||||8MF MF +=,则动点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D )线段2.( )设(0,5)M ,(0,5)N -,MNP ∆的周长为36,则MNP ∆的顶点P 的轨迹方程是(A )22125169x y +=(0x ≠) (B )221144169x y +=(0x ≠) (C )22116925x y +=(0y ≠) (D )221169144x y +=(0y ≠) 3.与圆2240x y x +-=外切,又与y 轴相切的圆的圆心轨迹方程是 ;4.P 在以1F 、2F 为焦点的双曲线221169x y -=上运动,则12F F P ∆的重心G 的轨迹方程是 ;5.已知圆C :22(16x y +=内一点)A ,圆C 上一动点Q , AQ 的垂直平分线交CQ 于P 点,则P 点的轨迹方程为 .2214x y += 6.△ABC 的顶点为(5, 0)A -、(5, 0)B ,△ABC 的内切圆圆心在直线3x =上,则顶点C 的轨迹方程是 ;221916x y -=(3x >) 变式:若点P 为双曲线221916x y -=的右支上一点,1F 、2F 分别是左、右焦点,则△12PF F 的内切圆圆心的轨迹方程是 ;推广:若点P 为椭圆221259x y +=上任一点,1F 、2F 分别是左、右焦点,圆M 与线段1F P 的延长线、线段2PF 及x 轴分别相切,则圆心M 的轨迹是 ;7.已知动点M 到定点(3,0)A 的距离比到直线40x +=的距离少1,则点M 的轨迹方程是 .(212y x =)8.抛物线22y x =的一组斜率为k 的平行弦的中点的轨迹方程是 .(4kx =(28k y >))9.过抛物线24y x =的焦点F 作直线与抛物线交于P 、Q 两点,当此直线绕焦点F 旋转时, 弦PQ 中点的轨迹方程为 . 解法分析:解法1 当直线PQ 的斜率存在时,设PQ 所在直线方程为 (1)y k x =-与抛物线方程联立,2(1),4y k x y x=-⎧⎨=⎩ 消去y 得 2222(24)0k x k x k -++=. 设11(,)P x y ,22(,)Q x y ,PQ 中点为(,)M x y ,则有21222,22(1).x x k x k y k x k ⎧++==⎪⎪⎨⎪=-=⎪⎩消k 得22(1)y x =-.当直线PQ 的斜率不存在时,易得弦PQ 的中点为(1,0)F ,也满足所求方程. 故所求轨迹方程为22(1)y x =-. 解法2 设11(,)P x y ,22(,)Q x y ,由2112224,4.y x y x ⎧=⎪⎨=⎪⎩ 得121212()()4()y y y y x x -+=-,设PQ 中点为(,)M x y ,当12x x ≠时,有121224y y y x x -⋅=-,又1PQ MF yk k x ==-,所以,21yy x ⋅=-,即22(1)y x =-. 当12x x =时,易得弦PQ 的中点为(1,0)F ,也满足所求方程. 故所求轨迹方程为22(1)y x =-.10.过定点(1, 4)P 作直线交抛物线:C 22y x =于A 、B 两点, 过A 、B 分别作抛物线C 的切线交于点M, 则点M 的轨迹方程为_________.44y x =-(二)解答题1.一动圆过点(0, 3)P ,且与圆22(3)100x y ++=相内切,求该动圆圆心C 的轨迹方程. (定义法)2.过椭圆221369x y +=的左顶点1A 作任意弦1A E 并延长到F ,使1||||EF A E =,2A 为椭圆另一顶点,连结OF 交2A E 于点P , 求动点P 的轨迹方程.(直接法、定义法;突出转化思想)3.已知1A 、2A 是椭圆22221x y a b+=的长轴端点,P 、Q 是椭圆上关于长轴12A A 对称的两点,求直线1PA 和2QA 的交点M 的轨迹.(交轨法)4.已知点G 是△ABC 的重心,(0,1), (0,1)A B -,在x 轴上有一点M ,满足||||MA MC =, GM AB R λλ=(∈).(1)求点C 的轨迹方程;(2)若斜率为k 的直线l 与点C 的轨迹交于不同两点P 、Q ,且满足||||AP AQ =,试求k 的取值范围.解:(1)设(,)C x y ,则由重心坐标公式可得(,)33x yG . ∵ GM AB λ=,点M 在x 轴上,∴ (,0)3x M .∵ ||||MA MC =,(0,1)A -,∴=,即 2213x y +=. 故点C 的轨迹方程为2213x y +=(1y ≠±).(直接法) (2)设直线l 的方程为y kx b =+(1b ≠±),11(,)P x y 、22(,)Q x y ,PQ 的中点为N . 由22,3 3.y kx b x y =+⎧⎨+=⎩消y ,得222(13)63(1)0k x kbx b +++-=.∴ 22223612(13)(1)0k b k b ∆=-+->,即22130k b +->. ①又122613kbx x k+=-+,∴212122262()221313k b b y y k x x b b k k -+=++=+=++, ∴ 223(,)1313kb bN k k-++. ∵ ||||AP AQ =,∴ AN PQ ⊥,∴ 1ANk k =-,即 221113313bk kb k k ++=--+,∴ 2132k b +=,又由①式可得 220b b ->,∴ 02b <<且1b ≠.∴ 20134k <+<且2132k +≠,解得11k -<<且3k ≠±. 故k 的取值范围是11k -<<且k ≠. 5.已知平面上两定点(0,2)M -、(0,2)N ,P 为一动点,满足MP MN PN MN ⋅=⋅. (Ⅰ)求动点P 的轨迹C 的方程;(直接法)(Ⅱ)若A 、B 是轨迹C 上的两动点,且AN NB λ=.过A 、B 两点分别作轨迹C 的切线,设其交点为Q ,证明NQ AB ⋅为定值.解:(Ⅰ)设(,)P x y .由已知(,2)MP x y =+,(0,4)MN =,(,2)PN x y =--,48MP MN y ⋅=+.4PN MN x ⋅=……………………………………………3分∵MP MN PN MN ⋅=⋅,∴48y += 整理,得 28x y =.即动点P 的轨迹C 为抛物线,其方程为28x y =.6.已知O 为坐标原点,点(1,0)E -、(1,0)F ,动点A 、M 、N 满足||||AE m EF =(1m >),0MN AF =⋅,1()2ON OA OF =+,//AM ME .求点M 的轨迹W 的方程.解:∵0MN AF ⋅=,1()2ON OA OF =+,∴ MN 垂直平分AF .又//AM ME ,∴ 点M 在AE 上,∴ ||||||||2AM ME AE m EF m +===,||||MA MF =, ∴ ||||2||ME MF m EF +=>,∴ 点M 的轨迹W 是以E 、F 为焦点的椭圆,且半长轴a m =,半焦距1c =, ∴ 22221b a c m =-=-.∴ 点M 的轨迹W 的方程为222211x y m m +=-(1m >).7.设,x y R ∈,,i j 为直角坐标系内,x y 轴正方向上的单位向量,若向量(2)a xi y j =++,(2)b xi y j =+-, 且||||8a b +=.(1)求点(,)M x y 的轨迹C 的方程;(定义法)(2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程,若不存在,试说明理由.解:(1)2211216x y +=; (2)因为l 过y 轴上的点(0,3).若直线l 是y 轴,则,A B 两点是椭圆的顶点.0OP OA OB =+=,所以P 与O 重合,与四边形OAPB 是矩形矛盾. 故直线l 的斜率存在,设l 方程为3y kx =+,1122(,),(,)A x y B x y .由223,1,1216y kx x y =+⎧⎪⎨+=⎪⎩ 消y 得22(43)18210,k x kx ++-=此时22(18)4(43)(21)k k ∆=-+->0恒成立,且1221843k x x k +=-+,1222143x x k =-+, OP OA OB =+,所以四边形OAPB 是平行四边形.若存在直线l ,使得四边形OAPB 是矩形,则OA OB ⊥,即0OA OB ⋅=.1122(,),(,)OA x y OB x y ==,∴ 12120OA OB x x y y ⋅=+=.即21212(1)3()90k x x k x x ++++=.2222118(1)()3()4343k k k k k +⋅-+⋅-++ 90+=.2516k =,得54k =±. 故存在直线l :534y x =±+,使得四边形OAPB 是矩形. 8.如图,平面内的定点F 到定直线l 的距离为2,定点E 满足:||EF =2,且EF l ⊥于G ,点Q 是直线l 上一动点,点M 满足:FM MQ =,点P 满足://PQ EF ,0PM FQ ⋅=. (I )建立适当的直角坐标系,求动点P 的轨迹方程;(II )若经过点E 的直线1l 与点P 的轨迹交于相异两点A 、B ,令AFB θ∠=,当34πθπ≤<时,求直线1l 的斜率k 的取值范围.解:(1)以FG 的中点O 为原点,以EF 所在直线为y 轴,建立平面直角坐标系xoy ,设点(,)P x y ,则(0, 1)F ,(0, 3)E ,:1l y =-.∵ FM MQ =,//PQ EF ,∴(,1)Q x -,(, 0)2x M .∵0PM FQ ⋅=,∴ ()()(2)02xx y -⨯+-⨯-=,即所求点P 的轨迹方程为24x y =. (2)设点))(,(),,(212211x x y x B y x A ≠设AF 的斜率为1k ,BF 的斜率为2k ,直线1l 的方程为3+=kx y由⎩⎨⎧=+=yx kx y 432…………6分 01242=--kx x 得 1242121-==+∴x x k x x …………7分 9)4(44221222121==⋅=∴xx x x y y646)(22121+=++=+k x x k y y …………8分)1)(1()1,(),1,,(21212211--+=⋅∴-=-=y y x x FB FA y x FB y x FA841649121)(22212121--=+--+-=++-+=k k y y y y x x)1)(1(||||21++=⋅y y FB FA 又16416491)(222121+=+++=+++=k k y y y y4216484||||cos 2222++-=+--=⋅=∴k k k k FB FA θ…………10分 由于πθπ<≤43 2242122cos 122-≤++-<--≤<-∴k k 即θ…………11分 222242222≥∴≥++∴k k k解得4488-≤≥k k 或…………13分∴直线1l 斜率k 的取值范围是}8,8|{44-≥≥k k k 或9.如图所示,已知定点(1, 0)F ,动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且0PM PF ⋅=,||||PM PN =. (1)求动点N 的轨迹方程;(2)直线l 与动点N 的轨迹交于A 、B 两点,若4OA OB ⋅=-,且||AB ≤求直线l 的斜率k 的取值范围.解:(1)设(,)N x y ,由||||PM PN =得(,0)M x -,(0, )2y P ,(,)2y PM x =--,(1,)2y PF =-,又0PM PF ⋅=,∴204y x -+=,即动点N 的轨迹方程为24y x =. (2)10.已知点(0, 1)F ,点M 在x 轴上,点N 在y 轴上,P 为动点,满足0MN MF ⋅=,0MN MP +=.(1)求P 点轨迹E 的方程;(2)将(1)中轨迹E 按向量(0, 1)a =平移后得曲线E ',设Q 是E '上任一点,过Q 作圆22(1)1x y ++=的两条切线,分别交x 轴与A 、B 两点,求||AB 的取值范围.解:(1)设(, 0)M a 、(0, )N b 、(,)P x y ,则(,)MN a b =-、(, 1)MF a =-、(, )MP x a y =-.由题意得(, )(, 1)0,(, )(,)(0, 0).a b a a b x a y -⋅-=⎧⎨-+-=⎩ ∴ 20,, ,2a b xa b y ⎧+=⎪⎨==-⎪⎩ ∴ 214y x =, 故动点P 的轨迹方程为214y x =. (2)11.如图()A m和(,)B n 两点分别在射线OS 、OT 上移动,且12OA OB ⋅=-, O 为坐标原点,动点P 满足OP OA OB =+.(1)求m n ⋅的值; (2)求P 点的轨迹C 的方程,并说明它表示怎样的曲线?(3)若直线l 过点(2, 0)E 交(2)中曲线C 于M 、N 两点,且3ME EN =,求l 的方程. 解:(1)由已知得1()(,)22OA OB m n mn ⋅=⋅=-=-,∴ 14mn =. (2)设P 点坐标为(,)x y (0x >),由OP OA OB =+得(,)()(,)x y m n =+())m n m n =+-,∴,)x m n y m n =+⎧⎪⎨=-⎪⎩ 消去m ,n 可得2243y x mn -=,又因14mn =,∴ P 点的轨迹方程为221(0)3y x x -=>.它表示以坐标原点为中心,焦点在x 轴上,且实轴长为2,焦距为4的双曲线2213y x -=的右支.(3)设直线l 的方程为2x ty =+,将其代入C 的方程得223(2)3ty y +-= 即 22(31)1290t y ty -++=,易知2(31)0t -≠(否则,直线l的斜率为又22214436(31)36(1)0t t t ∆=--=+>,设1122(,),(,)M x y N x y ,则121222129,3131t y y y y t t -+==-- ∵ l 与C 的两个交点,M N 在y 轴的右侧212121212(2)(2)2()4x x ty ty t y y t y y =++=+++2222291234240313131t t t t t t t -+=⋅+⋅+=->---, ∴ 2310t -<,即2103t <<,又由120x x +>同理可得 2103t <<,由3ME EN =得 1122(2,)3(2,)x y x y --=-, ∴ 121223(2)3x x y y -=-⎧⎨-=⎩由122222123231t y y y y y t +=-+=-=--得22631t y t =-,由21222229(3)331y y y y y t =-=-=-得222331y t =--,消去2y 得 2222363(31)31t t t =---考虑几何求法!! 解之得:2115t = ,满足2103t <<.故所求直线l0y --=0y +-=.12.设A ,B分别是直线y x =和y x =上的两个动点,并且||20AB =点P 满足OP OA OB =+.记动点P 的轨迹为C . (I ) 求轨迹C 的方程;(II )若点D 的坐标为(0,16),M 、N 是曲线C 上的两个动点,且DM DN λ=,求实数λ的取值范围.解:(I )设(,)P x y ,因为A 、B分别为直线5y x =和5y x =-上的点,故可设11()A x x,22(,)B x x . ∵OP OA OB =+,∴1212,()5x x x y x x =+⎧⎪⎨=-⎪⎩.∴1212,2x x x x x y +=⎧⎪⎨-=⎪⎩.又20AB =, ∴2212124()()205x x x x -++=.∴22542045y x +=. 即曲线C 的方程为2212516x y +=. (II ) 设N (s ,t ),M (x ,y ),则由DN DM λ=,可得(x ,y-16)=λ (s ,t-16). 故x s λ=,16(16)y t λ=+-.∵ M 、N 在曲线C 上, ∴⎪⎪⎩⎪⎪⎨⎧=+-+=+ 1.16)1616t (25s 1,16t 25s 22222λλλ消去s 得116)1616t (16)t 16(222=+-+-λλλ.由题意知0≠λ,且1≠λ,解得 17152t λλ-=. 又 4t ≤, ∴421517≤-λλ. 解得 3553≤≤λ(1≠λ).故实数λ的取值范围是3553≤≤λ(1≠λ). 13.设双曲线22213y x a -=的两个焦点分别为1F 、2F ,离心率为2. (1)求此双曲线的渐近线1l 、2l 的方程;(3y x =±) (2)若A 、B 分别为1l 、2l 上的动点,且122||5||AB F F =,求线段AB 的中点M 的轨迹方程,并说明是什么曲线.(22317525x y +=) 提示:()221212||10()10AB x x y y =⇒-+-=,又1133y x =-,2233y x =, 则12213()3y y x x +=-,21123()3y y x x -=+. 又 122x x x =+,122y y y =+代入距离公式即可.(3)过点(1, 0)N 是否存在直线l ,使l 与双曲线交于P 、Q 两点,且0OP OQ ⋅=,若存在,求出直线l 的方程;若不存在,说明理由.(不存在) 14.已知点(1, 0)F ,直线:2l x =,设动点P 到直线l 的距离为d ,已知2||2PF d =,且2332d ≤≤. (1)求动点P 的轨迹方程; (2)若13PF OF ⋅=,求向量OP 与OF 的夹角;(3)如图所示,若点G 满足2GF FC =,点M 满足3MP PF =,且线段MG 的垂直平分线经过点P ,求△PGF 的面积.15.如图,直线:1l y kx =+与椭圆22:2C ax y +=(1a >)交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB (O 为坐标原点). (1)若1k =,且四边形OAPB 为矩形,求a 的值;(3a =)(2)若2a =,当k 变化时(k R ∈),求点P 的轨迹方程.(22220x y y +-=(0y ≠))16.双曲线C :22221x y a b -=(0a >,0b >)的离心率为2,其中(0,)A b -,(, 0)B a ,且22224||||||||3OA OB OA OB +=⋅.(1)求双曲线C 的方程; (2)若双曲线C 上存在关于直线l :4y kx =+对称的点,求实数k 的取值范围. 解:(I )依题意有:lxyCGFOPM2222222c 2,a 4a b a b ,3a b c .⎧=⎪⎪⎪+=⎨⎪⎪+=⎪⎩解得:.2,3,1===c b a所求双曲线的方程为.1322=-y x ………………………………………6分 (Ⅱ)当k=0时,显然不存在.………………………………………7分当k≠0时,设双曲线上两点M 、N 关于直线l 对称.由l ⊥MN ,直线MN 的方程为1y x b k=-+.则M 、N 两点的坐标满足方程组由221y x b,k3x y 3.⎧=-+⎪⎨⎪-=⎩消去y 得 2222(3k 1)x 2kbx (b 3)k 0-+-+=.…………………………………9分显然23k 10-≠,∴2222(2kb)4(3k 1)(b 3)k 0∆⎡⎤=---+>⎣⎦.即222k b 3k 10+->. ①设线段MN 中点D (00x ,y )则02202kb x ,3k 13k b y .3k 1-⎧=⎪⎪-⎨⎪=⎪-⎩∵D (00x ,y )在直线l 上,∴22223k b k b43k 13k 1-=+--.即22k b=3k 1- ② 把②带入①中得 222k b +bk 0>, 解得b 0>或b 1<-.∴223k 10k ->或223k 1<-1k-.即k >或1k 2<,且k≠0.∴k 的取值范围是113(,)(,0)(0,)(,)3223-∞--+∞.…………………14分 17.已知向量OA =(2,0),OC =AB =(0,1),动点M 到定直线y =1的距离等于d ,并且满足OM ·AM =K(CM ·BM -d 2),其中O 为坐标原点,K 为参数. (Ⅰ)求动点M 的轨迹方程,并判断曲线类型;(Ⅱ)如果动点M 的轨迹是一条圆锥曲线,其离心率e 满足33≤e ≤22,求实数K 的取值范围.18.过抛物线24y x =的焦点作两条弦AB 、CD ,若0AB CD ⋅=,1()2OM OA OB =+,1()2ON OC OD =+.(1)求证:直线MN 过定点;(2)记(1)中的定点为Q ,求证AQB ∠为钝角; (3)分别以AB 、CD 为直径作圆,两圆公共弦的中点为H ,求H 的轨迹方程,并指出轨迹是什么曲线.19.(05年江西)如图,M 是抛物线上2y x =上的一点,动弦ME 、MF 分别交x 轴于A 、B 两点,且MA MB =.(1)若M 为定点,证明:直线EF 的斜率为定值; (2)若M 为动点,且90EMF ∠=,求△EMF 的重心G 的轨迹.思路分析:(1)由直线MF (或ME )方程与抛物线方程组成的方程组解出点F 和点E 的坐标,利用斜率公式来证明;(2)用M 点的坐标将E 、F 点的坐标表示出来,进而表示出G 点坐标,消去0y 即得到G 的轨迹方程(参数法).解:(1)法一:设200(,)M y y ,直线ME 的斜率为k (0k >),则直线MF 的斜率为k -,方程为200()y y k x y -=-.∴由2002()y y k x y y x⎧-=-⎪⎨=⎪⎩,消x 得200(1)0ky y y ky -+-=,解得01F ky y k-=,∴ 202(1)F ky x k -=, ∴0022000022211214(1)(1)2E F EFE F ky ky y y k k k k ky ky ky x x y k k k -+---====---+--(定值).所以直线EF 的斜率为定值.法二:设定点00(,)M x y ,11(,)E x y 、22(,)F x y ,由200211,y x y x ⎧=⎪⎨=⎪⎩ 得 010101()()y y y y x x -+=-,即011ME k y y =+;同理 021MF k y y =+.∵ MA MB =,∴ ME MF k k =-,即010211y y y y =-++,∴ 1202y y y +=-.所以,1212221212120112EF y y y y k x x y y y y y --====---+(定值). 第一问的变式:过点M 作倾斜角互补的直线ME 、MF ,则直线EF 的斜率为定值;根据不同的倾斜角,可得出一组平行弦.(2)90,45,1,EMF MAB k ∠=∠==当时所以直线ME 的方程为200()y y k x y -=-由2002y y x y y x ⎧-=-⎪⎨=⎪⎩得200((1),1)E y y --同理可得200((1),(1)).F y y +-+设重心G (x , y ),则有222200000000(1)(1)23333(1)(1)333M E F M E F y y y y x x x x y y y y x x x y ⎧+-+++++===⎪⎪⎨+--+++⎪===-⎪⎩消去参数0y 得2122()9273y x x =->. 20.如图,ABCD 是边长为2的正方形纸片,沿某动直线l 为折痕将正方形在其下方的部分向上翻折,使得每次翻折后点B 都落在边AD 上,记为B ',折痕l 与AB 交于点E ,点M 满足关系式EM EB EB '=+.(1)建立适当的直角坐标系,求点M 的轨迹方程;(2)若曲线C 是由点M 的轨迹及其关于边AB 对称的曲线组成的,F 是AB 边上的一点,4BA BF =,过点F 的直线交曲线C 于P 、Q 两点,且PF FQ λ=,求实数λ的取值范围.。

求动点轨迹的基本方法

求动点轨迹的基本方法

求动点轨迹的基本方法动点轨迹是描述物体在一定时间内或在一定空间内的运动情况的几何形状。

求解动点轨迹的基本方法主要包括几何法和解析法。

一、几何法:几何法主要基于对物体运动的直观观察和几何图形的性质,通过描绘和分析物体运动的几何图形来求解动点轨迹。

1.寻找特殊运动点:观察物体运动中是否存在固定点、对称点或者不动点,因为这些点通常构成运动的基本要素。

例如,当一个物体做圆周运动时,圆心就是不动点,固定于圆心运动的点就是在圆上等距离地运动。

2.描绘位置图形:根据物体运动过程中的关键时刻或关键时刻的位置,用直线、曲线、抛物线等几何图形来描绘出物体的位置。

例如,当一个物体做匀速直线运动时,可以用一条直线来表示其轨迹。

3.利用几何性质进行分析:利用几何图形的性质,如直线上的点的等距离关系、圆心到圆上任意一点的距离相等等,来分析运动的特点和运动过程中的关系。

二、解析法:解析法是通过建立数学模型来描述物体运动的轨迹,并借助数学计算和推理方法求解动点轨迹。

1.建立运动方程:根据物体的运动特点和问题的条件,建立相应的运动方程。

例如,当一个物体做匀速直线运动时,可以用位置函数x=f(t)来描述其运动,其中x为位置,t为时间,f(t)为一个关于时间t的函数。

2.求解方程:利用运动方程进行数学计算,将问题中所给的条件代入方程,通过计算和推导求解出物体的位置和时间的关系。

例如,当已知物体的速度函数v=f(t)时,可以通过积分计算来求得物体的位移函数x=f(t)。

3. 绘制轨迹图形:根据所得到的数学关系,可以绘制出物体的轨迹图形,描绘出物体在空间中的运动情况。

例如,当已知物体在xy平面上任意时刻的位置(x,y)与时间t的关系时,可以将这些位置点连成曲线,得到物体的轨迹。

几何法和解析法是求解动点轨迹的两种基本方法,它们在不同的问题中有不同的应用。

在实际问题中,通常需要结合几何法和解析法来分析和求解动点轨迹问题,以得到更全面和准确的结果。

关于轨迹类问题的分类讲解

关于轨迹类问题的分类讲解

一、动点是直线型①当一个点的坐标以,某个字母的代数式表示,若可以化为一次函数,则点的轨迹是直线.②当某一动点到某直线的距离保持不变,则点的轨迹是直线③当某一动点与定线段一个端点后交角度不变,则动点的轨迹是直线.二、动点轨迹是圆弧形或圆形①定点+定长:通俗讲究是一个动点到一个固定的点的距离不变②定长+定角:同弦所对的圆周角相等常见模型:直角所对的是直径三、动点轨迹是双曲线:主动点是双曲线,从动点是双曲线―分类例题讲解:一、动点是直线型①当一个点的坐标以,某个字母的代数式表示,若可以化为一次函数,则点的轨迹是直线.例.在平面直角坐标系中,点P的坐标为(0,2),点M的坐标为(m―1,3m―49)(其中4m 为实数),当PM 的长最小时,m 的值为.注:点m 在直线运动②当某一动点到某直线的距离保持不变,则点的轨迹是直线例.如图,矩形ABCD 中,AB=6,AD=8,点E 在边AD 上,且AE:ED=1:3.动点P 从点A 出发,沿AB 运动到点B 停止。

过点E 作EF⊥PE 交射线BC 于点F,设M 是线段EF 的中点,则在点P 运动的整个过程中,点M 运动路线的长为.注:P 的轨迹为直线③当某一动点与定线段一个端点后交角度不变,则动点的轨迹是直线.例.如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC=∠DAE=90∘,AB=AC=2,O 为AC 中点,若点D 在直线BC 上运动,连接OE,则在点D 运动过程中,线段OE 的最小值是为.注:点E 的轨迹为直线二、动点轨迹是圆弧形或圆形①定点+定长:通俗讲究是一个动点到一个固定的点的距离不变例:在矩形ABCD 中,已知AB=2,BC=3,现有一根长为2 的木棒EF 紧贴着矩形的边(即两个端点始终落在矩形的边上),按逆时针方向滑动一周,则木棒EF的中点P在运动过程中所围成的围形的面积为?注:点P 的轨迹为圆弧②定长+定角:同弦所对的圆周角相等例:如图,⊙O 的半径为2,弦AB=2,点P 为优弧AB 上一动点,∠PAC=90°,交直线PB 于点C,则△ABC 的最大面积是.注:点C 的轨迹为圆弧常见模型:直角所对的是直径例:如图,点E,F 是正方形ABCD 的边AD 上两个动点,满足AE=DF。

高中数学 轨迹问题专题

高中数学 轨迹问题专题

轨迹问题专题一.综述(一)求动点的轨迹方程的基本步骤:⒈依据题目建立适当的坐标系,设出动点M (x ,y )的坐标.⒉写出点M 的集合(几何关系).⒊将几何关系转化为代数关系,列出方程f (x ,y )=0,化简方程为最简形式.4.检验特殊点,进行必要的文字说明.(二)高考中常见的求轨迹方程的方法有:1.直译法与定义法,2.相关点法;3.参数法;4.交轨法(三)求轨迹方程一般以解答题第一问的形式出现,偶尔也会在小题中考查.二.例题精讲 破解规律例1. 设圆的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .证明为定值,并写出点E 的轨迹方程.分析: 题目中要求证明为定值,容易知道, E 的轨迹是椭圆,根据条件求出相关的参数即可.222150x y x ++-=EA EB +EA EB+点评:平面几何相关知识是解决本题的关键,平时学习中要加以重视.规律总结: (1)直译法求轨迹方程:题目给出的条件可以直接得到一个关于动点坐标的关系式,化简即可.(2)定义法求轨迹方程:轨迹方程问题中,若能得到与我们所学过的圆锥曲线定义相符的结论,可以根据相应圆锥曲线的定义求出相关的参数,从而得到方程.(3)定义法求轨迹方程本质上还是直译法,只是我们利用了直译法得到的结论. 现学现用1:如图,矩形中, 且, 交于点.若点的轨迹是曲线的一部分,曲线关于轴、轴、原点都对称,求曲线的轨迹方程.例2. 已知线段的端点的坐标是,端点在圆上运动.求线段的中点的轨迹的方程;规律总结:相关点法求轨迹方程: 题中涉及了两个动点N 、M ,且点N 的运动是有规律的(轨迹方程已知),而M 的运动是由N 的运动而引发的,这样的题目可采用相关点法求动点M 的轨迹方程.基本方法是设M 的坐标,再反解出N 的坐标,然后带入N 所在曲线的轨迹方程,整理即可.现学现用2: 设O 为坐标原点,动点M 在椭圆C :上,过M 做x 轴ABCD ()()()()2,0,2,0,2,2,2,2A B C D --,AM AD DN DC λλ==[]0,1,AN λ∈BM Q Q P P x y P AB B ()6,5A ()()221:434C x y -+-=AB P 2C 2212x y +=的垂线,垂足为N ,点P 满足.求点P 的轨迹方程;例3: 已知抛物线:的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点.(Ⅰ)若在线段上,是的中点,证明;(Ⅱ)若的面积是的面积的两倍,求中点的轨迹方程.点评:本题考查抛物线定义与几何性质、直线与抛物线位置关系、轨迹求法规律总结: 当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一变量(或多个)的关系,再消去参变量,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法现学现用3: 已知为椭圆的左、右焦点,点在椭圆上移动时, 的内心的轨迹方程为__________.三.课堂练习 强化技巧 2NP NM =C 22y x =F x 12,l l C A B ,C P Q ,F AB R PQ AR FQ ∥PQF △ABF △AB 12,F F 22:143x y C +=P C 12PF F ∆I1. 已知|| =3,A ,B 分别在x 轴和y 轴上运动,O 为原点, ,则点P 的轨迹方程为( ).A .B .C .D .2. 若动圆与圆和圆都外切,则动圆的圆心的轨迹( ) A . 是椭圆 B . 是一条直线 C . 是双曲线的一支 D . 与的值有关3. 已知直线过抛物线: 的焦点, 与交于, 两点,过点, 分别作的切线,且交于点,则点的轨迹方程为________.四.课后作业 巩固内化1. 设过点的直线分别与轴的正半轴和轴的正半轴交于、两点,点与点关于轴对称, 为原点,若为的中点,且,则点的轨迹方程为__________.2. 已知A(1,14),B(−1,14),直线AM ,BM 相交于点M ,且直线AM 的斜率与直线BM 的斜率的差是12,则点M 的轨迹C 的方程是___________.3. .点P 是圆C:(x +2)2+y 2=4上的动点,定点F (2,0),线段PF 的垂直平分线与直线CP 的交点为Q ,则点Q 的轨迹方程是___. AB 12OP OA OB 33=+22y x 14+=22x y 14+=22x y 19+=22y x 19+=P ()22:21M x y ++=()()22:314N x y λλ++=≤≤P λl C 24y x =l C A B A B C P P (),P x y x y A B Q P y O P AB 1OQ AB ⋅=P4. 如下图,在平面直角坐标系中,直线与直线之间的阴影部分即为,区域中动点到的距离之积为1.求点的轨迹的方程;5. 已知动圆过定点,且在轴上截得的弦长为.求动圆的圆心点的轨迹方程;6. 在平面直角坐标系中,设动点到两定点, 的距离的比值为的轨迹为曲线.求曲线的方程;7. 已知动点E 到点A 与点B 的直线斜率之积为,点E 的轨迹为曲线C .求C 的方程;8. 平面直角坐标系中,圆的圆心为.已知点,且为圆上的动点,线段的中垂线交于点.求点的轨迹方程;9. 设M,N,T 是椭圆x 216+y 212=1上三个点,M,N 在直线x =8上的射影分别为xOy 1:l y x =2:l y x =-W W (),P x y 12,l l PC G ()4,0F y 8G G xOy P ()2,0M -()1,0N 2C C ()2,0()2,0-14-xOy 222150x y x ++-=M ()1,0N T M TN TM P PM1,N1.(1)若直线MN过原点O,直线MT,NT斜率分别为k1,k2,求证:k1k2为定值;(2)若M,N不是椭圆长轴的端点,点L坐标为(3,0),ΔM1N1L与ΔMNL面积之比为5,求MN中点K的轨迹方程.10. 已知椭圆Γ:x2a2+y2b2=1(a>b>0)的右焦点与短轴两端点构成一个面积为2的等腰直角三角形,O为坐标原点.(1)求椭圆Γ的方程;(2)设点A在椭圆Γ上,点B在直线y=2上,且OA⊥OB,求证:1OA2+1OB2为定值;(3)设点C在椭圆Γ上运动,OC⊥OD,且点O到直线CD的距离为常数√3,求动点D 的轨迹方程.轨迹问题专题答案一.综述(一)求动点的轨迹方程的基本步骤:⒈依据题目建立适当的坐标系,设出动点M (x ,y )的坐标.⒉写出点M 的集合(几何关系).⒊将几何关系转化为代数关系,列出方程f (x ,y )=0,化简方程为最简形式.4.检验特殊点,进行必要的文字说明.(二)高考中常见的求轨迹方程的方法有:1.直译法与定义法,2.相关点法;3.参数法;4.交轨法(三)求轨迹方程一般以解答题第一问的形式出现,偶尔也会在小题中考查.二.例题精讲 破解规律例1. 设圆的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .证明为定值,并写出点E 的轨迹方程.分析: 题目中要求证明为定值,容易知道, E 的轨迹是椭圆,根据条件求出相关的参数即可.222150x y x ++-=EA EB +EA EB +答案:() 解析:因为,,故,所以,故.又圆的标准方程为,从而,所以. 由题设得,,,由椭圆定义可得点的轨迹方程为: (). 点评:平面几何相关知识是解决本题的关键,平时学习中要加以重视.规律总结: (1)直译法求轨迹方程:题目给出的条件可以直接得到一个关于动点坐标的关系式,化简即可.(2)定义法求轨迹方程:轨迹方程问题中,若能得到与我们所学过的圆锥曲线定义相符的结论,可以根据相应圆锥曲线的定义求出相关的参数,从而得到方程.(3)定义法求轨迹方程本质上还是直译法,只是我们利用了直译法得到的结论. 现学现用1:如图,矩形中, 且, 交于点.若点的轨迹是曲线的一部分,曲线关于轴、轴、原点都对称,求曲线的轨迹方程.13422=+y x 0≠y ||||AC AD =AC EB //ADC ACD EBD ∠=∠=∠||||ED EB =||||||||||AD ED EA EB EA =+=+A 16)1(22=++y x 4||=AD 4||||=+EB EA )0,1(-A )0,1(B 2||=AB E 13422=+y x 0≠y ABCD ()()()()2,0,2,0,2,2,2,2A B C D --,AM AD DN DC λλ==[]0,1,AN λ∈BM Q Q P P x y P解析:设,由,求得, ∵,∴, ∴,整理得. 可知点的轨迹为第二象限的椭圆,由对称性可知曲线的轨迹方程为. 例2. 已知线段的端点的坐标是,端点在圆上运动.求线段的中点的轨迹的方程;分析:设点的坐标为,点的坐标为,根据点坐标,和点是线段的中点,得, ,再由点在圆上运动,求得点的轨迹方程,进而可求得点的轨迹的方程;答案:解析:设点的坐标为,点的坐标为,由于点的坐标为, 且点是线段的中点,所以, 于是有, ①因为点在圆上运动,所以点的坐标满足的方程 即: ②把①代入②,得整理,得所以点的轨迹的方程为.(),Q x y ,AM AD DN DC λλ==()()2,2,42,2M N λλ--1,22QA AN QB BM k k k k λλ====-11224QA QB k k λλ⎛⎫⋅=⋅-=- ⎪⎝⎭1224y y x x ⋅=-+-()22120,014x y x y +=-≤≤≤≤Q 14P 2214x y +=AB B ()6,5A ()()221:434C x y -+-=AB P 2C P (),x y A ()00,x y B P AB 026x x =-025y y =-A 1C A P 2C ()()22541x y -+-=P (),x y A ()00,x y B ()6,5P AB 062x x +=052y y +=026x x =-025y y =-A 1C A 1C ()()22434x y -+-=()()2200434x y -+-=()()222642534x y --+--=()()22541x y -+-=P 2C ()()22541x y -+-=规律总结:相关点法求轨迹方程: 题中涉及了两个动点N 、M ,且点N 的运动是有规律的(轨迹方程已知),而M 的运动是由N 的运动而引发的,这样的题目可采用相关点法求动点M 的轨迹方程.基本方法是设M 的坐标,再反解出N 的坐标,然后带入N 所在曲线的轨迹方程,整理即可.现学现用2: 设O 为坐标原点,动点M 在椭圆C :上,过M 做x 轴的垂线,垂足为N ,点P 满足.求点P 的轨迹方程;解析:设,,即 代入椭圆方程,得到 ∴点的轨迹方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动点轨迹问题专题讲解一.专题内容:求动点(, )P x y 的轨迹方程实质上是建立动点的坐标, x y 之间的关系式,首先要分析形成轨迹的点和已知条件的内在联系,选择最便于反映这种联系的坐标形式,寻求适当关系建立等式,常用方法有: (1)等量关系法.....:根据题意,列出限制动点的条件等式,这种求轨迹的方法叫做等量关系法,利用这种方法时,要求对平面几何中常用的定理和解析几何中的有关基本公式很熟悉.(2)定义法...:如果动点满足的条件符合某种已知曲线(如圆锥曲线)的定义,可根据其定义用待定系数法求出轨迹方程.(3)转移代入法.....:如果所求轨迹上的点(, )P x y 是随另一个在已知曲线C :(, )0F x y =上的动点00(, )M x y 的变化而变化,且00, x y 能用, x y 表示,即0(, )x f x y =,0(, )y g x y =,则将00, x y 代入已知曲线(, )0F x y =,化简后即为所求的轨迹方程.(4)参数法...:选取适当的参数(如直线斜率k 等),分别求出动点坐标, x y 与参数的关系式,得出所求轨迹的参数方程,消去参数即可. (5)交轨法...:即求两动直线交点的轨迹,可选取同一个参数,建立两动直线的方程,然后消去参数,即可(有时还可以由三点共线,斜率相等寻找关系).注意:轨迹的完备性和纯粹性!一定要检验特殊点和线! 二.相关试题训练 (一)选择、填空题1.( )已知1F 、2F 是定点,12||8F F =,动点M 满足12||||8MF MF +=,则动点M 的轨迹是 (A )椭圆 (B )直线 (C )圆 (D )线段2.( )设(0,5)M ,(0,5)N -,MNP ∆的周长为36,则MNP ∆的顶点P 的轨迹方程是(A )22125169x y +=(0x ≠) (B )221144169x y +=(0x ≠) (C )22116925x y +=(0y ≠) (D )221169144x y +=(0y ≠) 3.与圆2240x y x +-=外切,又与y 轴相切的圆的圆心轨迹方程是 ;4.P 在以1F 、2F 为焦点的双曲线221169x y -=上运动,则12F F P ∆的重心G的轨迹方程是 ;5.已知圆C :22(16x y +=内一点)A ,圆C 上一动点Q , AQ 的垂直平分线交CQ 于P 点,则P 点的轨迹方程为 .2214x y +=6.△ABC 的顶点为(5, 0)A -、(5, 0)B ,△ABC 的内切圆圆心在直线3x =上,则顶点C 的轨迹方程是 ;221916x y -=(3x >)变式:若点P 为双曲线221916x y -=的右支上一点,1F 、2F 分别是左、右焦点,则△12PF F 的内切圆圆心的轨迹方程是 ;推广:若点P 为椭圆221259x y +=上任一点,1F 、2F 分别是左、右焦点,圆M 与线段1F P 的延长线、线段2PF 及x 轴分别相切,则圆心M 的轨迹是 ;7.已知动点M 到定点(3,0)A 的距离比到直线40x +=的距离少1,则点M 的轨迹方程是.(212y x =)8.抛物线22y x =的一组斜率为k 的平行弦的中点的轨迹方程是 .(4kx =(28k y >))9.过抛物线24y x =的焦点F 作直线与抛物线交于P 、Q 两点,当此直线绕焦点F 旋转时, 弦PQ中点的轨迹方程为 .解法分析:解法1 当直线PQ 的斜率存在时, 设PQ 所在直线方程为 (1)y k x =-与抛物线方程联立,2(1),4y k x y x=-⎧⎨=⎩ 消去y 得 2222(24)0k x k x k -++=. 设11(,)P x y ,22(,)Q x y ,PQ 中点为(,)M x y ,则有21222,22(1).x x k x k y k x k ⎧++==⎪⎪⎨⎪=-=⎪⎩消k 得22(1)y x =-. 当直线PQ 的斜率不存在时,易得弦PQ 的中点为(1,0)F ,也满足所求方程.故所求轨迹方程为22(1)y x =-. 解法2 设11(,)P x y ,22(,)Q x y ,由2112224,4.y x y x ⎧=⎪⎨=⎪⎩ 得121212()()4()y y y y x x -+=-,设PQ 中点为(,)M x y ,当12x x ≠时,有121224y y y x x -⋅=-,又1PQ MF yk k x ==-,所以,21yy x ⋅=-,即22(1)y x =-. 当12x x =时,易得弦PQ 的中点为(1,0)F ,也满足所求方程. 故所求轨迹方程为22(1)y x =-.10.过定点(1, 4)P 作直线交抛物线:C 22y x =于A 、B 两点, 过A 、B 分别作抛物线C 的切线交于点M, 则点M 的轨迹方程为_________.44y x =- (二)解答题1.一动圆过点(0, 3)P ,且与圆22(3)100x y ++=相内切,求该动圆圆心C 的轨迹方程.(定义法)2.过椭圆221369x y +=的左顶点1A 作任意弦1A E 并延长到F ,使1||||EF A E =,2A 为椭圆另一顶点,连结求动点P 的轨迹方程.(直接法、定义法;突出转化思想)3.已知1A 、2A 是椭圆22221x y a b+=的长轴端点,P 、Q 是椭圆上关于长轴12A A 对称的两点,求直线1PA 和2QA 的交点M 的轨迹.(交轨法) 4.已知点G 是△ABC 的重心,(0,1), (0,1)A B -,在x 轴上有一点M ,满足||||MA MC =, GM AB R λλ=(∈).(1)求点C 的轨迹方程;(2)若斜率为k 的直线l 与点C 的轨迹交于不同两点P 、Q ,且满足||||AP AQ =,试求k 的取值范围. 解:(1)设(,)C x y ,则由重心坐标公式可得(,)33x yG . ∵ GM AB λ=,点M 在x 轴上,∴ (,0)3x M .∵ ||||MA MC =,(0,1)A -,∴=,即 2213x y +=. 故点C 的轨迹方程为2213x y +=(1y ≠±).(直接法)(2)设直线l 的方程为y kx b =+(1b ≠±),11(,)P x y 、22(,)Q x y ,PQ 的中点为N .由22,3 3.y kx b x y =+⎧⎨+=⎩消y ,得222(13)63(1)0k x kbx b +++-=.∴ 22223612(13)(1)0k b k b ∆=-+->,即22130k b +->. ①又122613kbx x k+=-+,∴212122262()221313k b b y y k x x b b k k -+=++=+=++, ∴ 223(,)1313kb bN k k -++.∵ ||||AP AQ =,∴ AN PQ ⊥,∴ 1ANk k =-,即 221113313bk kb k k++=--+, ∴ 2132k b +=,又由①式可得 220b b ->,∴ 02b <<且1b ≠.∴ 20134k <+<且2132k +≠,解得11k -<<且3k ≠±. 故k 的取值范围是11k -<<且k ≠ 5.已知平面上两定点(0,2)M -、(0,2)N ,P 为一动点,满足MP MN PN MN ⋅=⋅.(Ⅰ)求动点P 的轨迹C 的方程;(直接法)(Ⅱ)若A 、B 是轨迹C 上的两动点,且AN NB λ=.过A 、B 两点分别作轨迹C 的切线,设其交点为Q ,证明NQ AB ⋅为定值.解:(Ⅰ)设(,)P x y .由已知(,2)MP x y =+,(0,4)MN =,(,2)PN x y =--,48MP MN y ⋅=+.4PN MN x ⋅= (3)分∵MP MN PN MN ⋅=⋅,∴48y +=. 整理,得 28x y =.即动点P 的轨迹C 为抛物线,其方程为28x y =.6.已知O 为坐标原点,点(1,0)E -、(1,0)F ,动点A 、M 、N 满足||||AE m EF =(1m >),0MN AF =⋅,1()2ON OA OF =+,//AM ME .求点M 的轨迹W 的方程.解:∵0MN AF ⋅=,1()2ON OA OF =+, ∴ MN 垂直平分AF .又//AM ME ,∴ 点M 在AE 上,∴ ||||||||2AM ME AE m EF m +===,||||MA MF =, ∴ ||||2||ME MF m EF +=>,∴ 点M 的轨迹W 是以E 、F 为焦点的椭圆,且半长轴a m =,半焦距1c =, ∴ 22221b a c m =-=-.∴ 点M 的轨迹W 的方程为222211x y m m +=-(1m >).7.设,x y R ∈,,i j 为直角坐标系内,x y 轴正方向上的单位向量,若向量(2)a xi y j =++,(2)b xi y j =+-, 且||||8a b +=. (1)求点(,)M x y 的轨迹C 的方程;(定义法)(2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB =+,是否存在这样的直线l ,使得四边形OAPB 是矩形若存在,求出直线l 的方程,若不存在,试说明理由.解:(1)2211216x y +=;(2)因为l 过y 轴上的点(0,3).若直线l 是y 轴,则,A B 两点是椭圆的顶点.0OP OA OB =+=,所以P 与O 重合,与四边形OAPB 是矩形矛盾. 故直线l 的斜率存在,设l 方程为3y kx =+,1122(,),(,)A x y B x y .由223,1,1216y kx x y =+⎧⎪⎨+=⎪⎩ 消y得22(43)18210,k x kx ++-=此时22(18)4(43)(21)k k ∆=-+->0恒成立,且1221843kx x k+=-+,1222143x x k=-+, OP OA OB =+,所以四边形OAPB 是平行四边形.若存在直线l ,使得四边形OAPB 是矩形,则OA OB ⊥,即0OA OB ⋅=.1122(,),(,)OA x y OB x y ==,∴ 12120OA OB x x y y ⋅=+=. 即21212(1)3()90k x x k x x ++++=.2222118(1)()3()4343k k k k k +⋅-+⋅-++ 90+=.2516k =,得54k =±. 故存在直线l :53y x =±+,使得四边形OAPB 是矩形. 8.如图,平面内的定点F 到定直线l 的距离为2,定点E 满足:||EF =2,且EF l ⊥于G ,点Q 是直线l 上一动点,点M 满足:FM MQ =,点P 满足://PQ EF ,0PM FQ ⋅=.(I )建立适当的直角坐标系,求动点P 的轨迹方程;(II )若经过点E 的直线1l 与点P 的轨迹交于相异两点A 、B ,令AFB θ∠=,当34πθπ≤<时,求直线1l 的斜率k 的取值范围.解:(1)以FG 的中点O 为原点,以EF 所在直线为y 轴,建立平面直角坐标系xoy ,设点(,)P x y , 则(0, 1)F ,(0, 3)E ,:1l y =-.∵ FM MQ =,//PQ EF ,∴(,1)Q x -,(, 0)2xM .∵0PM FQ ⋅=,∴ ()()(2)02x x y -⨯+-⨯-=, 即所求点P 的轨迹方程为24x y =. (2)设点))(,(),,(212211x x y x B y x A ≠设AF 的斜率为1k ,BF 的斜率为2k ,直线1l 的方程为3+=kx y 由⎩⎨⎧=+=yx kx y 432…………6分 01242=--kx x 得1242121-==+∴x x kx x (7)分 9)4(44221222121==⋅=∴xx x x y y646)(22121+=++=+k x x k y y (8)分)1)(1()1,(),1,,(21212211--+=⋅∴-=-=y y x x y x y x841649121)(22212121--=+--+-=++-+=k k y y y y x x)1)(1(||||21++=⋅y y FB FA 又16416491)(222121+=+++=+++=k k y y y y4216484cos 2222++-=+--==∴k k k k θ…………10分由于πθπ<≤43 2242122cos 122-≤++-<--≤<-∴k k 即θ…………11分222242222≥∴≥++∴k k k 解得4488-≤≥k k 或…………13分∴直线1l 斜率k 的取值范围是}8,8|{44-≥≥k k k 或9.如图所示,已知定点(1, 0)F ,动点P 在y 轴上运动,过点P 作PM 交x 轴于点M ,并延长MP 到点N ,且0PM PF ⋅=,||||PM PN =.(1)求动点N 的轨迹方程;(2)直线l 与动点N 的轨迹交于A 、B 两点,若4OA OB ⋅=-,且||AB ≤求直线l 的斜率k解:(1)设(,)N x y ,由||||PM PN =得(,0)M x -(0, )2y P ,(,)2y PM x =--,(1,)2y PF =-,又0PM PF ⋅=,∴204y x -+=,即动点N 的轨迹方程为24y x =.(2)10.已知点(0, 1)F ,点M 在x 轴上,点N 在y 轴上,P 为动点,满足0MN MF ⋅=,0MN MP +=.(1)求P 点轨迹E 的方程;(2)将(1)中轨迹E 按向量(0, 1)a =平移后得曲线E ',设Q 是E '上任一点,过Q 作圆22(1)1x y ++=的两条切线,分别交x 轴与A 、B 两点,求||AB 的取值范围.解:(1)设(, 0)M a 、(0, )N b 、(,)P x y ,则(,)MN a b =-、(, 1)MF a =-、(, )MP x a y =-.由题意得(, )(, 1)0,(, )(,)(0, 0).a b a a b x a y -⋅-=⎧⎨-+-=⎩ ∴ 20,, ,2a b xa b y ⎧+=⎪⎨==-⎪⎩ ∴ 214y x =, 故动点P 的轨迹方程为214y x =. (2)11.如图()A m和(,)B n 两点分别在射线OS 、OT 上移动,且12OA OB ⋅=-,O 为坐标原点,动点P 满足OP OA OB =+.(1)求m n ⋅的值; (2)求P 点的轨迹C 的方程,并说明它表示怎样的曲线(3)若直线l 过点(2, 0)E 交(2)中曲线C 于M 、N 两点,且3ME EN =,求l 的方程.解:(1)由已知得1()(,)22OA OB m n mn ⋅=⋅=-=-,∴ 14mn =.(2)设P 点坐标为(,)x y (0x >),由OP OA OB=+得(,)()(,)x y m n =+())m n m n =+-,∴,)x m n y m n =+⎧⎪⎨=-⎪⎩ 消去m ,n 可得2243y x mn -=,又因14mn =,∴ P 点的轨迹方程为221(0)3y x x -=>.它表示以坐标原点为中心,焦点在x 轴上,且实轴长为2,焦距为4的双曲线2213y x -=的右支.(3)设直线l 的方程为2x ty =+,将其代入C 的方程得 223(2)3ty y +-= 即 22(31)1290t y ty -++=,易知2(31)0t -≠(否则,直线l的斜率为合题意)又22214436(31)36(1)0t t t ∆=--=+>,设1122(,),(,)M x y N x y ,则121222129,3131t y y y y t t -+==--∵ l 与C 的两个交点,M N 在y 轴的右侧212121212(2)(2)2()4x x ty ty t y y t y y =++=+++2222291234240313131t t t t t t t -+=⋅+⋅+=->---, ∴ 2310t -<,即2103t <<,又由120x x +>同理可得 2103t <<,由3ME EN =得 1122(2,)3(2,)x y x y --=-, ∴ 121223(2)3x x y y -=-⎧⎨-=⎩由122222123231t y y y y y t +=-+=-=--得22631t y t =-, 由21222229(3)331y y y y y t =-=-=-得222331y t =--,消去2y 得 2222363(31)31t t t =---考虑几何求法!! 解之得:2115t = ,满足2103t <<.故所求直线l0y --=0y +-=.12.设A ,B分别是直线5y x =和5y x =-上的两个动点,并且||20AB =P 满足OP OA OB =+.记动点P 的轨迹为C .(I ) 求轨迹C 的方程;(II )若点D 的坐标为(0,16),M 、N 是曲线C 上的两个动点,且DM DN λ=,求实数λ的取值范围.解:(I )设(,)P x y ,因为A 、B分别为直线y x =和y x =上的点,故可设11()A x x,22(,)B x x . ∵OP OA OB =+,∴1212,)x x x y x x =+⎧⎪⎨=-⎪⎩.∴1212,x x x x x y +=⎧⎪⎨-=⎪⎩.又20AB =, ∴2212124()()205x x x x -++=.∴22542045y x +=. 即曲线C 的方程为2212516x y +=.(II ) 设N (s ,t ),M (x ,y ),则由DN DM λ=,可得(x ,y-16)=λ (s ,t-16).故x s λ=,16(16)y t λ=+-.∵ M、N 在曲线C 上, ∴⎪⎪⎩⎪⎪⎨⎧=+-+=+ 1.16)1616t (25s 1,16t 25s 22222λλλ消去s 得116)1616t (16)t 16(222=+-+-λλλ.由题意知0≠λ,且1≠λ,解得 17152t λλ-=. 又 4t ≤, ∴421517≤-λλ. 解得 3553≤≤λ(1≠λ).故实数λ的取值范围是3553≤≤λ(1≠λ).13.设双曲线22213y x a -=的两个焦点分别为1F 、2F ,离心率为2.(1)求此双曲线的渐近线1l 、2l 的方程;(y x =) (2)若A 、B 分别为1l 、2l 上的动点,且122||5||AB F F =,求线段AB 的中点M 的轨迹方程,并说明是什么曲线.(22317525x y +=) 提示:()221212||10()10AB x x y y =⇒-+-=,又1133y x =-,2233y x =, 则12213()3y y x x +=-,21123()3y y x x -=+. 又 122x x x =+,122y y y =+代入距离公式即可.(3)过点(1, 0)N 是否存在直线l ,使l 与双曲线交于P 、Q 两点,且0OP OQ ⋅=,若存在,求出直线l 的方程;若不存在,说明理由.(不存在)14.已知点(1, 0)F ,直线:2l x =,设动点P 到直线l 的距离为d ,已知2||2PF d =,且2332d ≤≤. (1)求动点P 的轨迹方程;(2)若13PF OF ⋅=,求向量OP 与OF 的夹角;(3)如图所示,若点G 满足2GF FC =,点M 满足3MP PF =,且线段MG 的垂直平分线经过点P ,求△PGF 的面积.15.如图,直线:1l y kx =+与椭圆22:2C ax y +=(1a >)交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB (O 为坐标原点).lxyCGFO PM(1)若1k =,且四边形OAPB 为矩形,求a 的值;(3a =)(2)若2a =,当k 变化时(k R ∈),求点P 的轨迹方程.(22220x y y +-=(0y ≠))16.双曲线C :22221x y a b-=(0a >,0b >)的离心率为2,其中(0,)A b -,(, 0)B a ,且22224||||||||3OA OB OA OB +=⋅.(1)求双曲线C 的方程; (2)若双曲线C 上存在关于直线l :4y kx =+对称的点,求实数k 的取值范围.解:(I )依题意有:2222222c 2,a 4a b a b ,3a b c .⎧=⎪⎪⎪+=⎨⎪⎪+=⎪⎩解得:.2,3,1===c b a所求双曲线的方程为.1322=-y x ………………………………………6分(Ⅱ)当k=0时,显然不存在.………………………………………7分当k≠0时,设双曲线上两点M 、N 关于直线l 对称.由l ⊥MN,直线MN 的方程为1y x b k=-+.则M 、N 两点的坐标满足方程组由221y x b,k 3x y 3.⎧=-+⎪⎨⎪-=⎩消去y 得 2222(3k 1)x 2kbx (b 3)k 0-+-+=.…………………………………9分显然23k 10-≠,∴2222(2kb)4(3k 1)(b 3)k 0∆⎡⎤=---+>⎣⎦.即222k b 3k 10+->. ①设线段MN 中点D (00x ,y )则02202kb x ,3k 13k b y .3k 1-⎧=⎪⎪-⎨⎪=⎪-⎩∵D(00x ,y )在直线l 上,∴22223k b k b43k 13k 1-=+--.即22k b=3k 1- ②把②带入①中得 222k b +bk 0>, 解得b 0>或b 1<-.∴223k 10k ->或223k 1<-1k-.即k >或1k 2<,且k≠0. ∴k 的取值范围是113(,(,0)(0,)(,)3223-∞--+∞.…………………14分 17.已知向量OA =(2,0),OC =AB =(0,1),动点M 到定直线y =1的距离等于d ,并且满足OM ·AM =K(CM ·BM -d 2),其中O 为坐标原点,K 为参数.(Ⅰ)求动点M 的轨迹方程,并判断曲线类型;(Ⅱ)如果动点M 的轨迹是一条圆锥曲线,其离心率e 满足33≤e ≤22,求实数K 的取值范围. 18.过抛物线24y x =的焦点作两条弦AB 、CD ,若0AB CD ⋅=,1()2OM OA OB =+,1()2ON OC OD =+.(1)求证:直线MN 过定点;(2)记(1)中的定点为Q ,求证AQB ∠为钝角;(3)分别以AB 、CD 为直径作圆,两圆公共弦的中点为H ,求H 的轨迹方程,并指出轨迹是什么曲线.19.(05年江西)如图,M 是抛物线上2y x =上的一点,动弦ME 、MF 分别交x 轴于A 、B 两点,且MA MB =.(1)若M 为定点,证明:直线EF 的斜率为定值;(2)若M 为动点,且90EMF ∠=,求△EMF 的重心G 的轨迹.思路分析:(1)由直线MF (或ME )方程与抛物线方程组成的方程组解出点F 和点E 的坐标,利用斜率公式来证明;(2)用M 点的坐标将E 、F 点的坐标表示出来,进而表示出G 点坐标,消去0y 即得到G 的轨迹方程(参数法).解:(1)法一:设200(,)M y y ,直线ME 的斜率为k (0k >),则直线MF 的斜率为k -,方程为200()y y k x y -=-.∴由2002()y y k x y y x⎧-=-⎪⎨=⎪⎩,消x 得200(1)0ky y y ky -+-=,解得01F ky y k-=,∴ 202(1)F ky x k -=,∴0022000022211214(1)(1)2E F EFE F ky ky y y k k k k ky ky ky x x y k k k -+---====---+--(定值). 所以直线EF 的斜率为定值.法二:设定点00(,)M x y ,11(,)E x y 、22(,)F x y ,由200211,y x y x ⎧=⎪⎨=⎪⎩ 得 010101()()y y y y x x -+=-,即011ME k y y =+;同理021MF k y y =+.∵ MA MB =,∴ ME MF k k =-,即010211y y y y =-++,∴ 1202y y y +=-.所以,1212221212120112EF y y y y k x x y y y y y --====---+(定值). 第一问的变式:过点M 作倾斜角互补的直线ME 、MF ,则直线EF 的斜率为定值;根据不同的倾斜角,可得出一组平行弦.(2)90,45,1,EMF MAB k ∠=∠==当时所以直线ME 的方程为200()y y k x y -=- 由2002y y x y y x⎧-=-⎪⎨=⎪⎩得200((1),1)E y y --同理可得200((1),(1)).F y y +-+设重心G (x , y ),则有222200000000(1)(1)23333(1)(1)333M E F M E F y y y y x x x x y y y y x x x y ⎧+-+++++===⎪⎪⎨+--+++⎪===-⎪⎩消去参数0y 得2122()9273y x x =->. 20.如图,ABCD 是边长为2的正方形纸片,沿某动直线l 为折痕将正方形在其下方的部分向上翻折,使得每次翻折后点B 都落在边AD 上,记为B ',折痕l 与AB 交于点E ,点M 满足关系式EM EB EB '=+. (1)建立适当的直角坐标系,求点M 的轨迹方程;(2)若曲线C 是由点M 的轨迹及其关于边AB 对称的曲线组成的,F 是AB 边上的一点,4BA BF =,过点F 的直线交曲线C 于P 、Q 两点,且PF FQ λ=,求实数λ的取值范围.。

相关文档
最新文档