填料塔吸收传质系数的测定实验doc

合集下载

填料塔中传质系数的测定

填料塔中传质系数的测定

填料塔中传质系数的测定实验六吸收实验⼀、实验⽬的⼆、基本原理三、计算⽅法、原理、公式四、设备参数和⼯作原理五、操作步骤六、实验报告要求七、思考题⼋、注意事项实验⽬的1、了解填料吸收装置的基本流程及设备结构;2、了解填料特性的测量与计算⽅法;3、⽓液两相逆向通过填料层的压降变化规律以及液泛现象;4、喷淋密度对填料层压降和泛点速度的影响;5、测定在操作条件下的总传质系数K;6、了解吸收过程的基本操作与控制⽅法。

1、填料塔流体⼒学特性:⽓体通过⼲填料层时,流体流动引起的压降和湍流流动引起的压降规律相⼀致。

在双对数坐标系中⽤压降对⽓速作图得到⼀条斜率为1.8-2的直线(图中aa线)。

⽽有喷淋量时,在低⽓速时(C点以前)压降也⽐例于⽓速的1.8-2次幂,但⼤于同⼀⽓速下⼲填料的压降(图中bc段)。

随⽓速增加,出现载点(图中c 点),持液量开始logbcdaa log△PU填料层压降空塔⽓速关系图1、填料塔流体⼒学特性:增⼤,压降-⽓速线向上弯曲,斜率变⼤,(图中cd 段)。

到液泛点(图中d 点)后在⼏乎不变的⽓速下,压降急剧上升。

测定填料塔的压降和液泛速度,是为了计算填料塔所需动⼒消耗和确定填料塔的适宜制作范围,选择合适的⽓液负荷。

log b c da a log △PU 填料层压降空塔⽓速关系图2、传质实验:填料塔与板式塔内⽓液两相的接触情况有着很⼤的不同。

在板式塔中,两相接触在各块塔板上进⾏,因此接触是不连续的。

但在填料塔中,两相接触是连续地在填料表⾯上进⾏,需计算的是完成⼀定吸收任务所需填料⾼度。

填料层⾼度计算⽅法有传质系数法、传质单元法以及等板⾼度法。

总体积传质系数KYa是单位填料体积、单位时间吸收的溶质量。

它是反映填料吸收塔性能的主要参数,是设计填料⾼度的重要数据。

本实验是⽔吸收空⽓-氨混合⽓体中的氨。

混合⽓体中氨的浓度很低。

吸收所得的溶液浓度也不⾼。

⽓液两相的平衡关系可以认为服从亨利定律(即平衡线在x-y 坐标系为直线)。

实验七填料吸收塔的操作及吸收传质系数的测定

实验七填料吸收塔的操作及吸收传质系数的测定

实验六 吸收实验(一)丙酮填料吸收塔的操作及吸收传质系数的测定一、实验目的1、了解填料吸收塔的结构和流程;2、了解吸收剂进口条件的变化对吸收操作结果的影响;3、掌握吸收总传质系数Kya 的测定方法。

二、实验内容1、测定吸收剂用量与气体进出口浓度y 1、y 2的关系;2、测定气体流量与气体进出口浓度y 1、y 2的关系;3、测定吸收剂及气体温度与气体进出口浓度y 1、y 2的关系; 三、实验原理吸收是分离混合气体时利用混合气体中某组分在吸收剂中的溶解度不同而达到分离的一种方法。

不同的组分在不同的吸收剂、吸收温度、液气比及吸收剂进口浓度下,其吸收速率是不同的。

所选用的吸收剂对某组分具有选择性吸收。

1、吸收总传质系数K y a 的测定传质速率式: N A =K y a ·V 填·△Ym (1)物料衡算式: G 空(Y 1-Y 2)=L(X 1-X 2) (2) 相平衡式: Y=mX (3)(1)和(2)式联立得: K y a=12()mG Y Y V Y -∆空填 (4)由于实验物系是清水吸收丙酮,惰性气体为空气,气体进口中丙酮浓度y 1>10%,属于高浓度气体吸收,所以: Y 1=111y y - ; Y 2= 221y y - ;G 空—空气的流量(由装有测空气的流量计测定),Kmol/m 2·h ;V 填—与塔结构和填料层高度有关; 其中:22112211ln)()(mX Y mX Y mX Y mX Y Y m -----=∆ (5)02=X ; )(211Y Y LGX -=空 ;L —吸收剂的流量(由装有测吸收剂的流量计测定), Kmol/m 2·h ; m---相平衡常数(由吸收剂进塔与出塔处装的温度计所测温度确定),吸收温度:附:流量计校正公式为:2出进t t t +=G G =, L/h (G N 为空气转子流量计读数) 单位变换:G A =空,Kmol/m 2·h ;(其中,A 为塔横截面积,PG n RT=)o L L M A=,Kmol/m 2·h ;(其中,L 0是水流量l/h ,M 0是水的摩尔质量)2、吸收塔的操作吸收操作的目标函数:y 2 或 η=影响y 2 有:1).设备因素;2).操作因素。

填料塔实验报告

填料塔实验报告

填料吸收塔传质 数测定实验一、实验目的1.了解填料塔吸收装置的基本结构及流程; 2.掌握总体积传质系数的测定方法;3.了解气体空塔速度和液体喷淋密度对总体积传质系数的影响; 二、基本原理气体吸收是典型的传质过程之一。

由于CO 2气体无味、无毒、廉价,所以气体吸收实验常选择CO 2作为溶质组分。

本实验采用水吸收空气中的CO 2组分。

一般CO 2在水中的溶解度很小,即使预先将一定量的CO 2气体通入空气中混合以提高空气中的CO 2浓度,水中的CO 2含量仍然很低,所以吸收的计算方法可按低浓度来处理,并且此体系CO 2气体的解吸过程属于液膜控制。

因此,本实验主要测定K x a 和H OL 。

1.计算公式 填料层高度Z 为OL OL x x x ZN H x x dxa K L dZ z ⋅=-==⎰⎰*120令:吸收因数A=L/mG])1ln[(111121A mx y mx y A A N OL +----=2.测定方法(1)空气流量和水流量的测定本实验采用转子流量计测得空气和水的流量,并根据实验条件(温度和压力)和有关公式换算成空气和水的摩尔流量。

(2)测定填料层高度Z 和塔径D ; (3)测定塔顶和塔底气相组成y 1和y 2; (4)平衡关系。

本实验的平衡关系可写成y = mx对清水而言,x 2=0,由全塔物料衡算 )()(2121x x L y y G -=- 可得x 1 。

三、实验装置 1.装置流程实验装置如图1所示。

本实验装置流程:由自来水来的水经离心泵加压后送入填料塔塔顶经喷头喷淋在填料顶层。

由压缩机送来的空气和由二氧化碳钢瓶来的二氧化碳混合后,一起进入气体中间贮罐,然后再直接进入塔底,与水在塔内进行逆流接触,进行质量和热量的交换,由塔顶出来的尾气经转子流量计后放空,由于本实验为低浓度气体的吸收,所以热量交换可略,整个实验过程看成是等温操作。

图1 吸收装置流程图2.主要设备(1)吸收塔:高效填料塔,塔径100mm,塔内装有金属丝网板波纹规整填料,填料层总高度1200mm。

实验四填料塔吸收传质系数的测定

实验四填料塔吸收传质系数的测定

4填料塔吸收传质系数的测定实验目的1. 了解填料塔吸收装置的基本结构及流程;2. 掌握总体积传质系数的测定方法;3. 了解气体空塔速度和液体喷淋密度对总体积传质系数的影响; 4.了解气相色谱仪和六通阀在线检测CO 2浓度和测量方法。

实验原理气体吸收是典型的传质过程之一。

由于CO 2气体无味、无毒、廉价,所以气体吸收实验选择CO 2作为溶质组分是最为适宜的。

本实验采用水吸收空气中的CO 2组分。

一般将配置的原料气中的CO 2浓度控制在10%以内,所以吸收的计算方法可按低浓度来处理。

又CO 2在水中的溶解度很小,所以此体系CO 2气体的吸收过程属于液膜控制过程。

因此,本实验主要测定K xa 和H OL 。

1)计算公式填料层高度Z 为OL OL x x xaZN H xx dxK LdZ z ⋅=-==⎰⎰*120 (6-1)式中: L 液体通过塔截面的摩尔流量,kmol/(m 2·s); K xa △X 为推动力的液相总体积传质系数,kmol/(m 3·s); H OL 传质单元高度,m ;N OL 传质单元数,无因次。

令:吸收因数A=L/mG(6-2)])1ln[(111121A mx y mx y A A N OL +----=?(6-3)2)测定方法(1)空气流量和水流量的测定本实验采用转子流量计测得空气和水的流量,并根据实验条件(温度和压力)和有关公式换算成空气和水的摩尔流量。

(2)测定塔顶和塔底气相组成y1和y2;(3)平衡关系。

本实验的平衡关系可写成y=m x(6-4)式中:m相平衡常数,m=E/P;E亨利系数,E=f(t),Pa,根据液相温度测定值由附录查得;p总压,Pa,取压力表指示值。

对清水而言,x2=0,由全塔物料衡算可得x1。

实验装置与流程1〕装置流程本实验装置流程如图6-1所示:水经转子流量计后送入填料塔塔顶再经喷淋头喷淋在填料顶层。

由风机输送来的空气和由钢瓶输送来的二氧化碳气体混合后,一起进入气体混合稳压罐,然后经转子流量计计量后进入塔底,与水在塔内进行逆流接触,进行质量和热量的交换,由塔顶出来的尾气放空,由于本实验为低浓度气体的吸收,所以热量交换可略,整个实验过程可看成是等温吸收过程。

填料塔中传质系数的测定

填料塔中传质系数的测定

实验六吸收实验一、实验目的二、基本原理三、计算方法、原理、公式四、设备参数和工作原理五、操作步骤六、实验报告要求七、思考题八、注意事项实验目的1、了解填料吸收装置的基本流程及设备结构;2、了解填料特性的测量与计算方法;3、气液两相逆向通过填料层的压降变化规律以及液泛现象;4、喷淋密度对填料层压降和泛点速度的影响;5、测定在操作条件下的总传质系数K;6、了解吸收过程的基本操作与控制方法。

1、填料塔流体力学特性:气体通过干填料层时,流体流动引起的压降和湍流流动引起的压降规律相一致。

在双对数坐标系中用压降对气速作图得到一条斜率为1.8-2的直线(图中aa线)。

而有喷淋量时,在低气速时(C点以前)压降也比例于气速的1.8-2次幂,但大于同一气速下干填料的压降(图中bc段)。

随气速增加,出现载点(图中c 点),持液量开始logbcdaa log△PU填料层压降空塔气速关系图1、填料塔流体力学特性:增大,压降-气速线向上弯曲,斜率变大,(图中cd 段)。

到液泛点(图中d 点)后在几乎不变的气速下,压降急剧上升。

测定填料塔的压降和液泛速度,是为了计算填料塔所需动力消耗和确定填料塔的适宜制作范围,选择合适的气液负荷。

log b c da a log △PU 填料层压降空塔气速关系图2、传质实验:填料塔与板式塔内气液两相的接触情况有着很大的不同。

在板式塔中,两相接触在各块塔板上进行,因此接触是不连续的。

但在填料塔中,两相接触是连续地在填料表面上进行,需计算的是完成一定吸收任务所需填料高度。

填料层高度计算方法有传质系数法、传质单元法以及等板高度法。

总体积传质系数KYa是单位填料体积、单位时间吸收的溶质量。

它是反映填料吸收塔性能的主要参数,是设计填料高度的重要数据。

本实验是水吸收空气-氨混合气体中的氨。

混合气体中氨的浓度很低。

吸收所得的溶液浓度也不高。

气液两相的平衡关系可以认为服从亨利定律(即平衡线在x-y 坐标系为直线)。

实验十三吸收塔的操作和吸收传质系数的测定

实验十三吸收塔的操作和吸收传质系数的测定

YY 1Y 2XX 1X 2图12-1 吸收操作线和平衡线操作线22()LY X X Y G=-+ 平衡线Y=mX实验十二 填料吸收塔的操作及吸收传质系数的测定一、实验目的一、了解填料吸收塔的结构和流程。

二、了解吸收剂入口条件的转变对吸收操作结果的影响。

3、掌握吸收总体积传质系数a K y 和a K x 的测定方式。

二、大体原理一、测气相整体积传质系数的原理气相整体积传质系数由填料层高度公式决定12Y mY Y VZ K a Y -=⋅Ω∆ (12-1) **1122*11*22()()()ln()m Y Y Y Y Y Y Y Y Y ---∆=-- (12-2) 式中yK 气相总传质系数,mol/m 2·h ;m Y ∆塔顶、塔底气相平均推动力; a 填料的有效比表面积,m 2/m 3;a K y 气相总体积吸收传质系数,mol/m 3·h 。

(1)Z ――填料层高度m ,按照所装填料的高度直接测量。

(2)Ω――塔截面积m 2,24D πΩ=,而D 塔径为已知。

(3)V ――情性气体摩尔流量(空气)mol/ h ,按照理想气体状态方程可知:vpq V RT =,p――压力Pa ,压力表测量空气压力;q v ――体积流量m 3/h ,转子流量计测量(注意读数为实验条件20℃、1atm 下的,可直接利用公式进行计算,若是用操作条件则需要进行换算,其依据为'0'0(')()f v v f q q ρρρρρρ-=-;T ――空气温度K ,温度计测量。

(4)Y 1――1111y Y y =-,稳固操作后(各仪表读数恒定5min )测量气体入口浓度(丙酮的摩尔分率),取样后采用气相色谱仪分析,测得的是丙酮的质量分率。

(5)Y 2――2221y Y y =-,稳固操作后(各仪表读数恒定5min )测量气体出口浓度(丙酮的摩尔分率),取样后采用气相色谱仪分析,测得的是丙酮的质量分率。

填料吸收塔传质系数测定实验报告数据处理

填料吸收塔传质系数测定实验报告数据处理

填料吸收塔传质系数测定实验报告的数据处理是为了从实验数据中计算出填料吸收塔的传质系数。

下面是一个常见的数据处理步骤,供参考:
1. 数据整理:整理实验所得数据,包括填料层高度、溶液进口浓度、出口浓度等参数,以及实验过程中记录的温度、压力等信息。

2. 确定传质模型:根据实验设计和填料吸收塔的结构特点,确定适合的传质模型,如洗涤理论、湿壁传质模型等。

3. 建立浓差和质量平衡方程:根据传质模型和实验条件,建立质量平衡和浓差方程,用以描述塔内物质的传质过程。

4. 参数拟合:通过最小二乘法等拟合方法,将实验数据与传质模型进行拟合,得到各传质参数的估计值。

这可能涉及到填料层高度、传质系数、扩散系数等参数。

5. 统计分析:进行相关的统计分析,如计算参数估计的标准误差或置信区间,以评估参数估计的精确性和可靠性。

6. 结果解释:根据参数估计结果,计算填料吸收塔的传质系
数,并结合理论知识和实验结果,对传质过程进行分析和解释。

需要注意的是,数据处理的具体方法和步骤可能因实验设计和传质模型的不同而有所差异。

在进行数据处理时,应参考相关的传质模型和实验设计,并根据实际情况进行适当的调整和修正。

此外,数据处理的结果应结合实验结果和领域知识进行分析和解释,以得出准确且有意义的结论。

吸收实验—填料塔吸收传质系数的测定.

吸收实验—填料塔吸收传质系数的测定.

实验八吸收实验—填料塔吸收传质系数的测定一、实验目的⒈了解填料塔吸收装置的基本结构及流程;⒉掌握总体积传质系数的测定方法;⒊测定填料塔的流体力学性能;⒋了解气体空塔速度和液体喷淋密度对总体积传质系数的影响;⒌了解气相色谱仪和六通阀在线检测CO2浓度和测量方法;二、基本原理气体吸收是典型的传质过程之一。

由于CO2气体无味、无毒、廉价,所以气体吸收实验选择CO2作为溶质组分是最为适宜的。

本实验采用水吸收空气中的CO2组分。

一般将配置的原料气中的CO2浓度控制在10%以内,所以吸收的计算方法可按低浓度来处理。

又CO2在水中的溶解度很小,所以此体系CO2气体的吸收过程属于液膜控制过程。

因此,本实验主要测定Kxa和HOL。

⒈计算公式:填料层高度h为:h=⎰h0dh=LKXaΩ⎰XbdXX-X*Xa=HOL⋅NOL A=LmV,则:NOL=11-Aln[(1-A)Yb-mXaYb-mXb+A]令:吸收因数HOL=LKxaΩ=hNOLKXa=LHOLΩ式中:h──填料层高度,m;L──液体的摩尔流量,kmol/s;Ω──填料塔的横截面积,m2;Kxa──以△X为推动力的液相总体积传质系数,kmol/(m3〃s);HOL──液相总传质单元高度,m;NOL──液相总传质单元数,无因次;Xa,Xb──CO2在塔顶、塔底液相中的摩尔比浓度,无因次;Ya,Yb──CO2在塔顶、塔底气相中的摩尔比浓度,无因次。

⒉测定方法(a)空气流量和水流量的测定本实验采用转子流量计测得空气和水的流量,并根据实验条件(温度和压力)和有关公式换算成空气和水的摩尔流量。

(b)测定塔顶和塔底气相组成yb和ya;(c)平衡关系。

本实验的平衡关系可写成: Y=mX 式中:m──相平衡常数,m=E/P;E──亨利系数,E=f(t),Pa,根据液相温度测定值由附录查得;P──总压,Pa。

对清水而言,Xa=0,由全塔物料衡算V(Yb-Ya)=L(Xb-Xa),可得Xb。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

填料塔吸收传质系数的测定
一、实验目的
1.了解填料塔吸收装置的基本结构及流程; 2.掌握总体积传质系数的测定方法;
3.了解气体空塔速度和液体喷淋密度对总体积传质系数的影响;
二、基本原理
气体吸收是典型的传质过程之一。

由于CO 2气体无味、无毒、廉价,所以气体吸收实验常选择CO 2作为溶质组分。

本实验采用水吸收空气中的CO 2组分。

一般CO 2在水中的溶解度很小,即使预先将一定量的CO 2气体通入空气中混合以提高空气中的CO 2浓度,水中的CO 2含量仍然很低,所以吸收的计算方法可按低浓度来处理,并且此体系CO 2气体的解吸过程属于液膜控制。

因此,本实验主要测定K x a 和H OL 。

a) 计算公式
填料层高度Z 为:
OL OL x x x Z
N H x
x dx
a K L dZ z ⋅=-=
=⎰⎰*120
式中: L 液体通过塔截面的摩尔流量,kmol / (m 2·s); K x a 以△X 为推动力的液相总体积传质系数,kmol / (m 3·s);
H OL 液相总传质单元高度,m ;
N OL 液相总传质单元数,无因次。

令:吸收因数A=L/mG
])1ln[(11
1
121A mx y mx y A A N OL +----=
b) 测定方法
(1)空气流量和水流量的测定
本实验采用转子流量计测得空气和水的流量,并根据实验条件(温度和压力)和有关公式换算成空气和水的摩尔流量。

(2)测定填料层高度Z 和塔径D ; (3)测定塔顶和塔底气相组成y 1和y 2; (4)平衡关系。

本实验的平衡关系可写成
y = mx
式中: m 相平衡常数, m=E/P ; E 亨利系数,E =f(t),Pa ,根据液相温度由附录查得;
P 总压,Pa ,取1atm 。

对清水而言,x 2=0,由全塔物料衡算
)()(2121x x L y y G -=-
可得x 1 。

三、实验装置
1〕装置流程
本实验装置(如图1所示)流程:由自来水来的水经离心泵加压后送入填料塔塔顶经喷头喷淋在填料顶层。

由压缩机送来的空气和由二氧化碳钢瓶来的二氧化碳混合后,一起进入气体中间贮罐,然后再直接进入塔底,与水在塔内进行逆流接触,进行质量和热量的交换,由塔顶出来的尾气经转子流量计后放空,由于本实验为低浓度气体的吸收,所以热量交换可略,整个实验过程看成是等温操作。

图1 吸收装置流程图
2〕主要设备
(1)吸收塔:高效填料塔,塔径100mm ,塔内装有θ环散装填料(金属丝网板波纹规整填料),填料层总高度2000mm 。

塔顶有液体初始分布器,塔中部有液体再分布器,塔底部有栅板式填料支承装置。

填料塔底部有液封装置,以避免气体泄漏。

(2)填料:θ环散装填料,金属丝网板波纹规整填料。

(3)转子流量计;
(4)空压机:空压0.8MPa ; (5)二氧化碳钢瓶及氢气钢瓶; (6)气相色谱仪分析。

四、实验步骤与注意事项
(1)熟悉实验流程。

(2)打开仪表电源开关及多级离心泵电源开关(或打开水龙头开关);
(3)开启液体调节阀门(4),让水进入填料塔润湿填料,仔细调节阀门(4),使转子流量计(6)流量稳定在某一实验值。

(塔底液封控制:仔细调节阀门(1)、(2)的开度,使塔底液位缓慢地在一段区间内变化,以免塔底液封过高溢满或过低而泄气;
(4)启动空压机,打开CO 2钢瓶总阀,并缓慢调节钢瓶的减压阀,使其压力稳定在0.2~0.3Mpa 左右;
(5)调节CO 2转子流量计(15)的流量,使其稳定在某一值;
(6)待塔操作稳定后,读取各流量计的读数及通过温度、U 型压差计上读取各温度及塔顶1、2、球阀
3、闸阀
5、6、15、转子流量计 7、液体分布器 8、填料 9、液体再分布器 10
、塔体 12、U 型压差计
14、压力表
16、气体中间贮罐 4、液体调节阀门 11、填料支承板
13、尾气放空阀
塔底间压差读数,通过CO2测定仪分析出塔顶、塔底气相CO2含量;
(7)改变实验条件测定一系列实验数据,并记录在数据记录纸上。

(8)实验完毕,关闭CO2转子流量计(15),水转子流量(6),再关闭空压机和多级离心泵电源开关(或水龙头),清理实验仪器和实验场地。

2)注意事项
(1)固定好操作点后,应随时注意调整以保持各量不变。

(2)在填料塔操作条件改变后,需要有较长的稳定时间,一定要等到稳定以后方能读取有关数据。

(3)由于CO2在水中的溶解度很小,因此,在测定组成时一定要仔细认真,这是做好本试验的关键。

五、实验数据记录及处理
2、数据处理
1) 将原始数据列表并计算二氧化碳的体积传质系数、传质单元高度。

2)在双对数坐标纸上绘图表示二氧化碳吸收时体积传质系数、传质单元高度与气体流量的关系。

3)列出实验结果与计算示例。

六、思考题
1.本实验中,为什么塔底要有液封?液封高度如何计算?
2.测定K x a有什么工程意义?
3.当气体温度和液体温度不同时,应用什么温度计算亨利系数?。

相关文档
最新文档