人教版小学六年级数学比例知识点
人教版小学六年级数学上册第四、五单元知识点

第四单元比的知识点1、比的意义:两个数相除又叫做两个数的比。
2、比各部分名称:“:”是比号,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值(比值通常用分数表示,也可以用小数或整数表示)。
3、比与除法的关系:比的前项相当于被除数,后项相当于除数,比值相当于商。
4、比与分数的关系:比的前项相当于分子,后项相当于分母,比值相当于分数值。
5、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。
6、除法里除数不能为0、分数中分母不能为0,比的后项也不能为0。
7、比的前项和后项同时乘或除以相同的数(0除外),比值不变。
这叫做比的基本性质。
8、求比值和化简比(1)求比值:用比的前项除以后项,它的结果是一个数值,可以是整数,也可以是小数或分数。
(2)化简比:根据比的基本性质可以把比化成最简单的整数比。
它的结果必须是一个最简比,即前、后项是互质数。
9、把一个数量按照一定的比来进行分配。
这种方法通常叫做按比例分配。
第五单元圆的认识知识点1、圆是由曲线围成的平面图形。
2、圆中心的一点,叫做圆心。
一般用字母O表示。
3、连接圆心和圆上任意一点的线段叫做半径。
一般用字母r表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4、通过圆心并且两端都在圆上的线段叫做直径。
一般用字母d表示。
直径是一个圆内最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。
6、在同圆或等圆内,有无数条半径,有无数条直径。
所有的半径都相等,所有的直径都相等。
7、在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的21。
用字母表示为:d=2r 或r=2d 。
8、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图 形。
折痕所在的这条直线叫做对称轴。
长方形、正方形和圆都是轴对称图形。
9、围成圆的曲线的长度叫做圆的周长。
用字母C 表示。
圆的周长公式:C= πd 或C= 2πr 。
人教版六年级数学上册《比例》知识点归纳(五四制)

人教版六年级数学上册《比例》知识点归纳(五四制)第六章比例一、比例的意义表示两个比相等的式子叫做比例。
如:2:1=6:3二、内外项组成比例的四个数叫做比例的项。
两端的两项叫做外项.中间的两项叫做内项。
三、比例的性质在比例里两个外项的积等于两个两个内向的积。
这叫做比例的基本性质。
例如:3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2: 1.5。
四、解比例根据比例的基本性质.如果已知比例中的任何三项.就可以求出这个数比例中的另外一个未知项。
求比例中的未知项.叫做解比例。
例如:3:x = 4:8.内项乘内项.外项乘外项.则:4x =3×8.解得x=6。
五、正比例和反比例:(1)、成正比例的量:两种相关联的量.一种量变化.另一种量也随着变化.如果这两种量中相对应的两个数的比值(也就是商)一定.这两种量就叫做成正比例的量.他们的关系叫做正比例关系。
用字母表示y/x=k(一定)例如:①、速度一定.路程和时间成正比例;因为:路程÷时间=速度(一定)。
②、圆的周长和直径成正比例.因为:圆的周长÷直径=圆周率(一定)。
③、圆的面积和半径不成比例.因为:圆的面积÷半径=圆周率和半径的积(不一定)。
④、y=5x.y和x成正比例.因为:y÷x=5(一定)。
⑤、每天看的页数一定.总页数和天数成正比例.因为:总页数÷天数=每天看页数(一定)。
(2)、成反比例的量:两种相关联的量.一种量变化.另一种量也随着变化.如果这两种量中相对应的两个数的积一定.这两种量就叫做成反比例的量.他们的关系叫做反比例关系。
用字母表示x×y=k(一定)例如:①、路程一定.速度和时间成反比例.因为:速度×时间=路程(一定)。
②、总价一定.单价和数量成反比例.因为:单价×数量=总价(一定)。
人教版六年级《解比例》2

•
板书 解比例
模型的高度:原塔的高度=1:10 解:设模型的高度为x米。 X:320=1:10 1 0 X=320×1 X=320÷10 X=32 在一个比例式中,共有四项,如果已知其中的任何三 项, 要能很快求出这个比例中的另外一个未知项,就要用我们今天学 的知识——解比例。 8∶12=x∶45 12 x=8×45 12 x ÷12=360÷12 x=30
这一步计算的依
拓展延伸 4:8=12:24,如果将第二项减少1, 要使比例成立,则第四项减少多少?
中午,太阳当头照.小明身高1.5米,他的影 子长0.5米.一棵松树的影子长10米,它的高度 是多少米呢?
同学们,你有什么好办法能迅速算出松 树的高度吗?
新课总结
解比例
一概念:求比例中的未知项, 叫做解比例 二依据: 比例的基本性质
解:设这座模型高X 米 . X : 320 = 1 : 10 10X = 320×1
320×1 X= 10源自X =32答:这座模型高 32米.
把下面的照片 按比例放大后,宽应该 是多少?
两张照 片长的比和 宽的比能组 成比例。
x
13.5cm
?
4cm
6cm
解:设放大后照片的宽是
x 厘米。
13.5 :6 = x : 4 据是什么? 6 x =13.5 x 4 6 x =54 x = 9 答:放大后照片的宽是54厘米。
1.5:x=3.6:4.8 解:3.6x=7.2 x=2
艾菲尔铁塔高320米, 它不仅是一座吸引游 人观光的纪念塔,还 是巴黎这座具有悠久 历史的美丽城市的象 征。
法国巴黎的埃菲尔铁塔 高320米,北京的“世界公园” 里有一座埃菲尔铁塔的模型,它 的高度与原塔高度的比是1:10. 这座模型高多少米?
人教版六年级数学下册第四单元第6课时比例尺1《比例尺的意义及求比例尺》(授课课件)

(3)在比例尺是50∶1的平面图上,表示( 图上 )距离是
( 实际 )距离的50倍。
(4)
这是( 线段 )比例尺,表示图上距离
1 cm相当于实际距离( 50 )m,将这个线段比例尺改
成数值比例尺是( 1∶5000)。
2.判断。(对的画“√”,错的画“×”)
(1) 实际距离一定比图上距离大。
()
(2) 在比例尺是20∶1的图纸上,2 cm长的线段表示零
或
图上距离 实际距离
=比例尺
生活中常见的比例尺有:
数值比例尺
线段比例尺
1∶50000
1 ∶ 50000
数值比例尺
比的前项 比的后项
1 50000
图上距离 实际距离 1cm 50000cm
把线段比例尺改 成数值比例尺。 图上距离∶实际距离
线段比例尺 =1 cm∶50 km =1 cm∶5000000 cm
4 比例
比例尺1 (比例尺的意义及求比例尺)
你知道地图是怎 么绘制出来的吗?
探究点 1 比例尺的意义和分类
在绘制地图时,需要 把实际距离按一定比 缩小,再画在图纸上。 这时,就要确定图上 距离和相对应的实际 距离的比。
一幅图的图上距离和实际距离的 比,叫做这幅图的比例尺。
图上距离∶实际距离=比例尺
地图上1cm的距离相当于
=1∶5000000
地面上50km的实际距离。
单位要统一。
想一想: 比例尺1∶5000000表示图上距离是实际距离的几分之几?实 际距离是图上距离的多少倍?
图上距离 实际距离
比例尺1∶5000000表示图上距离是实际距离的
50010000,实际距离是图上距离的5000000倍。
小学六年级数学知识点比的认识知识点

比的认识是小学六年级数学的一个重要知识点,通过学习比的认识,可以对数量的大小进行比较和形成比例关系,进而解决实际生活中的问题。
下面将详细介绍小学六年级数学中与比的认识相关的知识点。
一、比的概念比是指两个或多个数的大小关系,以冒号“:”表示,例如5:3表示5和3的比,可以读作“5比3”。
二、比的表示比可以用两种方式表示:1.线段比:用线段表示比的数量大小关系,线段的长度表示数量的大小。
2.分数比:用分数表示比的大小关系,被除数表示较大的数量,除数表示较小的数量,比值用分号表示。
三、比的种类比可以分为三种情况:1.同类比较:比较同一种类的量,例如比较两个长度、两个重量的大小关系,这种比较叫做同类比较。
2.异类比较:比较不同种类的量,例如比较一个长度和一个重量的大小关系,这种比较叫做异类比较。
3.混合比较:同一种类和不同种类的量混合在一起进行比较,例如比较两个长度和一个重量的大小关系,这种比较叫做混合比较。
四、比的性质1.比的单位相同:进行比较的两个量必须拥有相同的单位。
2.比的特殊位置:比的两个量中,较大的在前,较小的在后。
3.比的相等:如果两个比中的两个量的比值相等,那么这两个比是相等的。
五、比的应用1.比的扩大和缩小:当比中的较大数乘以(或除以)相同的因数时,比的结果不变。
例如,5:3是一个比,如果将5和3同时乘以2,得到的新比是10:6,它们是等价的。
2.比的分解与合并:一个比可以通过分解和合并得到不同的比。
例如,10:5可以分解为5:5和5:5,可以合并为20:10。
3.比的比较:比的大小关系可以通过直接比较两个比的大小关系,或者将两个比转化为分数比进行比较。
4.比的应用问题:比的认识可以应用于很多实际生活问题中,例如在购物中比较商品价格、在做菜中调配食材的比例等。
总结起来,小学六年级数学中的比的认识知识点包括比的概念、表示方法、种类、性质以及比的应用。
通过学习这些知识点,可以在实际生活中进行数量的比较和解决实际问题。
人教版六年级数学下册 比例 讲义

比例知识点一、比例的概念和性质两个数( ),叫做两个的比,符号是“:”,所得的商叫做( )。
两个比( )的式子叫做比例。
组成比例的四个数,叫做比例的( )。
两端的项叫做比例的( ),中间的项叫做比例的( )。
例如:例1、在比例1:2=3:6中,外项是( )和( ),内项是( )和( )例2、在比例1.2:2.1=4:7中,( )和( )是外项,( )和( )是内项,将这个比例改写成分数形式是=()()()()比例的基本性质:在比例中,( ) 例3、在比例1:2=3:6中,有( )×( )= ( )×( ) 例4、在等式53=159中,有( )×( )= ( )×( )比例还有另外一个性质:在比例中,两个外项交换位置或者两个内项交换位置,比例( )。
例5、已知比例3:5=6:10,运用以上性质,写出另外3个比例:( )、( )、( ) 例6、已知等式23=812,运用以上性质,写出另外3个等式:( )( )=( )( ),( )( )=( )( ),( )( )=( )( )例3、在下面的括号里填上适当的数; (1)4:( )=0.5:0.7 (2)87:25=( ):( ) (3)2.1:3.5=( ):2.5 (4) ( ):2.4=1:0.2例4、在一个比例中,两个内项互为倒数,一个外项是25,另一个外项是( )例5、写出比值是0.2的两个比:( )和( )。
组成比例是( ):( )=( ):( ) 例6、大小齿轮齿数的比是5:3,小齿轮有15个齿,大齿轮有( )个齿 例7、用36的因数组成一个比例是1:( )=( ):( )例8、18的约数有( ),选出其中四个数组成一个比例是( ) 例9、如果7a=4b ,那么a:b=( ): ( ) 例10、x ×13=y ×15时,x :y =( )A 、13 :15B 、5:3C 、3:5例11、能与32:43组成比例的是( ) A 、2:3 B 、4:29 C 、1816:21 D 、21:31例12、解比例。
六年级数学知识点:正比例与反比例

六年级数学知识点:正比例与反比例六年级数学知识点:正比例与正比例什么叫正比例?两种相关联的量,一种质变化,另一种量也随着化,假设这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。
如:y/x=k(k一定)或kx=y正比例的意义满足关系式y/x=k(k为常量)的两个变量,我们称这两个变量的关系成正比例。
显然,假定y与x成正比例,那么y/x=k(k为常量);反之亦然。
例如:内行程效果中,假定速度一定时,那么路程与时间成正比例;在工程效果中,假定任务效率一定时,那么任务总量与任务时间成正比例。
留意:k不能等于0.正比例的例子:正方形的周长与边长(比值4)。
圆的周长与直径(比值π)。
购置的总价与购置的数量(比值单价)。
路程的例子:1.速度一定,路程和时间成正比例。
2.时间一定,路程和速度成正比例。
长方形面积:面积一定,长和宽成正比例。
都是定一个,变一个。
例如aX=Y中,a不变,那么X与Y 成正比例。
正比例和正比例相反与联络相反之处1.事物关系中都有两个变量,一个常量。
2.在两个变量中,当一个变量发作变化时,那么另一个变量也随之发作变化。
3.相对应的两个变数的积或商都是一定的。
相互转化当正比例中的x值(自变量的值)也转化为它的倒数时,由正比例转化为正比例;当正比例中的x值(自变量的值)转化为它的倒数时,由正比例转化为正比例。
2021年小升初数学正比例的定义及考点什么叫正比例?两种相关联的量,一种质变化,另一种量也随着变化,这两种量中相对应的两个数的积一定。
这两种量叫做成正比例的量。
它们的关系叫做正比例关系。
用k=y*x(一定)x不等于0,k不等于0来表示。
复杂点来说,就是假设一样事物添加了,另一样事物增加,他增加了,另一样事物添加,这两个事物的关系就叫做正比例。
正比例的意义满足关系式xy=k(k为常量)的两个变量,我们称这两个变量的关系成正比例;显然,假定y与x成正比例,那么xy=k(k为常量);反之亦然。
小学六年级数学比知识点

《小学六年级数学“比”的深度探索》引言:在小学六年级的数学学习中,“比”是一个重要的知识点。
它不仅在数学领域有着广泛的应用,还与我们的日常生活息息相关。
从比较两个数量的关系到解决实际问题,比都发挥着独特的作用。
那么,究竟什么是比?它又有哪些特点和应用呢?让我们一起走进小学六年级数学“比”的世界,深入探索这个充满魅力的知识点。
一、比的定义与表示方法1. 比的定义两个数相除又叫做两个数的比。
例如,6÷4 可以写成 6:4 的形式,其中“6”是前项,“4”是后项,“:”是比号。
比表示的是两个数之间的倍数关系。
2. 比的表示方法比可以用分数的形式表示,如 6:4 也可以写成\(\frac{6}{4}\)。
同时,比也可以用小数的形式表示,例如 6:4 = 1.5。
二、比的基本性质1. 比的前项和后项同时乘或除以一个相同的数(0 除外),比值不变。
例如,6:4 的前项和后项同时乘以 2,得到 12:8,比值仍然是1.5。
2. 利用比的基本性质可以化简比。
化简比的方法是将比的前项和后项同时除以它们的最大公因数。
例如,12:18,12 和 18 的最大公因数是 6,将前项和后项同时除以 6,得到 2:3。
三、比与除法、分数的关系1. 比与除法的关系比的前项相当于被除数,后项相当于除数,比号相当于除号,比值相当于商。
例如,6:4 = 6÷4 = 1.5。
2. 比与分数的关系比的前项相当于分子,后项相当于分母,比号相当于分数线,比值相当于分数值。
例如,6:4 = \(\frac{6}{4}\) = 1.5。
四、比的应用1. 按比例分配问题按比例分配问题是指把一个数量按照一定的比进行分配。
例如,有一个果园,苹果树和梨树的比是 3:2,总共有 50 棵树,那么苹果树和梨树各有多少棵?首先,求出总份数:3 + 2 = 5。
然后,计算每份的数量:50÷5 = 10(棵)。
最后,求出苹果树的数量:10×3 = 30(棵),梨树的数量:10×2 = 20(棵)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版小学六年级数学比例知识点
1、比的意义:
两个数相除又叫做两个数的比。
2、“:”是比号,读作“比” 。
比号前面的数叫做比的前项,比号后面的数叫做比的后项,比的后项不能是零。
比的前项除以后项所得的商,叫做比值。
比值通常用分数表示,也可以用小数表示,还可能是整数。
3、比与除法的关系:比的前项相当于被除数,后项相当于除数,比值相当于商。
4、比与分数的关系:比的前项相当于分子,后项相当于分母,比值相当于分数值。
5、比的基本性质:比的前项和后项同时乘上或者除以相同的数
(0 除外),比值不变,这叫做比的基本性质。
6、求比值和化简比(1)求比值:用比的前项除以后项,它的结果是一个数值,可以是整数,也可以是小数或分数。
(2)化简比:根据比的基本性质可以把比化成最简单的整数比。
它的结果必须是一个最简比,即前、后项是互质的数。
7、比例的意义:表示两个比相等的式子叫做比例。
8、组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的
两项叫做内项。
9、比例的基本性质:在比例里,两个外项的积等于两个内向的
积。
这叫做比例的基本性质。
10、求比例中的未知项,叫做解比例。
11、比例尺:
图上距离:实际距离=比例尺
实际距离X比例尺=图上距离
图上距离+比例尺=实际距离
12、两种相关联的量,一种量变化,另一种量也随着变化,如果
这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。
用字母表示:y = k(一定)
X
13、两种相关联的量,一种量变化,另一种量也随着变化,如果
这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。
用字母表示x X y=k (一定)。