(完整版)人教版小学六年级数学比例知识点
六年级下册数学比例知识点

六年级下册数学比例知识点
在六年级下册的数学课程中,比例是一个重要的知识点。
以下是一些关于比例的重要
知识和技能:
1. 比例的概念:比例是指两个或多个相同种类的量之间的关系,在比例中我们将这些
量用分数表示。
2. 比例的性质:比例的两个分数称为一个比例,比例中各个分数的相等关系称为比例
的性质。
例如:如果a:b = c:d,则称a、b、c、d构成一个比例。
3. 比例的基础运算:比例可以进行加、减、乘、除等运算。
例如:如果a:b = c:d,则有a+c:b+d = a-b:b-d = a/b:c/d。
4. 比例的化简和维持:在比例中,我们可以约分或扩大分数的值,得到一个全等的比例。
例如:将2:3化简为2/3:1,将2:3扩大为4:6。
5. 比例的图形应用:比例可以用来解决与图形形状和尺寸相关的问题。
例如:通过比
例可以计算矩形的边长、面积等。
6. 比例和百分数的关系:百分数是一种特殊的比例,其中分子是一个非负整数。
例如:25%表示为25/100或1/4。
7. 比例的应用:比例在日常生活中有很多应用,例如计算折扣、利率、比赛成绩等。
以上是六年级下册数学课程中关于比例的一些重要知识点。
学生可以通过练习题和实
际应用问题来巩固和应用这些知识。
小学数学六年级比例知识点

小学数学六年级比例知识点在小学六年级数学学习中,比例是一个重要的知识点。
比例在日常生活中应用广泛,例如购物时的价格比较、食谱中的食材比例等等。
掌握了比例的概念和运算方法,学生能够更好地理解和解决实际问题。
一、比例的定义比例是指两个或多个具有相同性质的量之间的对应关系。
比例常用两个比例项的比值表示,形式为a:b或a/b,其中a和b称为比例项。
二、比例的性质1. 比例的交换性:比例a:b与b:a相等。
2. 比例的比值性:如果a:b=c:d,则a/c=b/d。
3. 比例的平行性:如果a:b=c:d,且b不为0,则a/b=c/d。
三、比例的表示方法1. 倍数关系表:通过倍数关系表可以清楚地列出两组具有比例关系的数。
2. 比例尺:比例尺是表示长度或面积比例的一种工具。
比例尺的使用可以帮助我们在图纸上进行测量和绘制。
3. 分数形式:将比例转化为分数形式可以更直观地表示比例关系。
四、比例的运算1. 比例的等比乘除:在比例中,如果将两个比例项同时乘以(或除以)同一个非零数,那么得到的新的比例与原比例相等。
2. 比例的合并:当两个比例都有相同的比例项时,可以将其合并为一个比例。
五、比例的应用1. 比例的扩大和缩小:比例可以帮助我们在实际问题中进行数值的扩大和缩小计算。
比如说,地图尺寸的缩小或放大,可以使用比例进行计算。
2. 求解未知量:通过已知比例关系和已知量,可以求解未知量。
例如,知道一个图形的某条边长度与其他边的比例,可以通过比例关系求解其他边的长度。
六、练习题1. 甲园和乙园的面积比为5:8,已知甲园的面积为60平方米,求乙园的面积。
2. 小明用2个小时做完了10道题目,求他还需要多少时间才能做完20道题目?3. 一张长方形的长和宽的比是3:2,且长是12cm,求宽是多少?4. 某商品原价为80元,现以打7折出售,求现价是多少?七、总结小学数学六年级比例知识点涵盖了比例的定义、性质、表示方法、运算方法以及应用等内容。
(完整版)人教版六年级数学上册比知识点

第四章 比一、比的基本概念1、比的意义:两个数相除又叫做两个数的比两个同类量的比表示这两个量之间的倍数关系,两个有联系的不同类量的比表示一个新的量2、比的符号和读、写法 1015是分数形式的比,是比的另一种书写形式 3、比的各部分名称(1)比的前项:在两个数的比中,比号前面的数(2)比的后项:在两个数的比中,比号后面的数(3)比值:比的前项除以后项所得的商4、求比值的计算方法:比的前项除以比的后项比值可用分数、小数或整数表示5、比和比值的联系与区别都可以用分数形式表示:53既可表示3:5,又可表示3:5的比值;比表示两个数的一种关系,比值是一个数;比只能写成a:b 或ba 的形式,比值可以是分数、小数、整数 6、比与分数、除法的关系(1)联系 a:b=a ÷b=ba (b ≠0) 除法 被除数 ÷ 除数 商分数 分子 — 分母 分数值比 前项 : 后项 比值(2)区别①意义不同:比表示两个量的一种关系;除法是一种运算;分数则是一个数②表示方法不同:除法算式不能用分数表示;比可以用分数表示;但分数不一定表示两个量的比 ③结果表达不同:除法要求出商;比只有求比值才求出商;分数本身就是一个数值7、求比中未知项的方法比的前项=比的后项×比值比的后项=比的前项÷比值8、转化法解决问题:把不变量看作单位“1”小明读一本书,已读页数和未读页数只比是5:4.如果再读27页,已读与未读只比为2:1,求这本书多少页2:(1+2)=32 5:(5+4)=95 27÷(32-95)=243(页) 二、比的基本性质1、、比的基本性质比的前项和后项同时乘或除以相同的数(0除外),比值不变。
同样适用于连比2、化简比的意义(1)最简整数比:比的前项和后项是互质数的比(2)化简比的意义:把两个数的比化成最简单的整数比3、整数比的化简方法:把比的前项和后项同时除以它们的最大公因数4、分数比的化简方法(1)比的前项和后项同时乘它们的分母的最小公倍数,变整数比,再化简(2)利用求比值的方法,但结果必须写成比的形式5、小数比的化简方法:先把前项和后项的小数点同时向右移动相同的位数,变成整数比,再化简6、黄金比较短部分与较长部分长度之比等于较长部分与整体长度之比,约为0.618:1三、解决问题1、用转化单位“1”的方法和找中间量的方法解题甲数是乙数的103,乙数是丙数的94,求这三个数的连比 方法一:把乙数看作单位“1”,丙数是乙数的49,所以甲:乙:丙=103:1:49 方法二:找中间量的方法甲:乙=3:10=6:20 乙:丙=4:9=20:45 所以甲:乙:丙=6:20:452、按比例分配问题应用把一个数量按照一定的比来进行分配。
人教版六年级数学上册《比例》知识点归纳(五四制)

人教版六年级数学上册《比例》知识点归纳(五四制)第六章比例一、比例的意义表示两个比相等的式子叫做比例。
如:2:1=6:3二、内外项组成比例的四个数叫做比例的项。
两端的两项叫做外项.中间的两项叫做内项。
三、比例的性质在比例里两个外项的积等于两个两个内向的积。
这叫做比例的基本性质。
例如:3:2=6:4可知3×4=2×6;或者由x×1.5=y×1.2可知x:y=1.2: 1.5。
四、解比例根据比例的基本性质.如果已知比例中的任何三项.就可以求出这个数比例中的另外一个未知项。
求比例中的未知项.叫做解比例。
例如:3:x = 4:8.内项乘内项.外项乘外项.则:4x =3×8.解得x=6。
五、正比例和反比例:(1)、成正比例的量:两种相关联的量.一种量变化.另一种量也随着变化.如果这两种量中相对应的两个数的比值(也就是商)一定.这两种量就叫做成正比例的量.他们的关系叫做正比例关系。
用字母表示y/x=k(一定)例如:①、速度一定.路程和时间成正比例;因为:路程÷时间=速度(一定)。
②、圆的周长和直径成正比例.因为:圆的周长÷直径=圆周率(一定)。
③、圆的面积和半径不成比例.因为:圆的面积÷半径=圆周率和半径的积(不一定)。
④、y=5x.y和x成正比例.因为:y÷x=5(一定)。
⑤、每天看的页数一定.总页数和天数成正比例.因为:总页数÷天数=每天看页数(一定)。
(2)、成反比例的量:两种相关联的量.一种量变化.另一种量也随着变化.如果这两种量中相对应的两个数的积一定.这两种量就叫做成反比例的量.他们的关系叫做反比例关系。
用字母表示x×y=k(一定)例如:①、路程一定.速度和时间成反比例.因为:速度×时间=路程(一定)。
②、总价一定.单价和数量成反比例.因为:单价×数量=总价(一定)。
小学六年级比例知识点总结

小学六年级比例知识点总结一、比例的基本性质: 1。
2。
成反比例的量,除了量的增减外,还有两种情况:一是一种量变化,引起另一种量的相应的变化,这时前后两种量的变化的比,等于后者同前者的比;二是两种量的前后两个数相除所得的商,等于它们的和同除以它们的差,即1: 4。
3。
成正比例的量,它们的比值是一定的,一般在0和1之间,其中最大的是一。
二、比例的基本性质:两种相关联的量,一种量变化,如果另一种量也随着它变化,那么这两种量的乘积就(扩大),这两种量的乘积就(缩小)。
3。
如果两个比相除又叫两个比的比值,表示这两个比相除的结果,这种说法不确切。
4。
比例的基本性质可归纳为以下几点:(1)比例中项必须是一个数,或者是一个数的比,两个外项互为倒数。
(2)比例两个外项的积等于两个内项积的。
(3)两个外项的积等于两个内项积的。
(4)比例的基本性质两边同时乘或除以相同的数( 0除外)比值不变,这与正比例、反比例的情形不同,而且0除外。
(5)两个外项的积等于两个内项积的,叫做两个外项互为倒数。
(6)如果两个外项的积等于两个内项积的,并且一个外项是另一个外项的倒数,那么这两个外项互为倒数。
(7)把比例的基本性质和正比例、反比例的基本性质结合起来,就可以写出比例的基本性质,用字母表示为: p:q=a3。
5。
比例的基本性质两边同时乘或除以一个相同的数(零除外)比值不变,这与反比例的情形类似,但是比例的基本性质中“比例的基本性质两边同时乘或除以相同的数(零除外)比值不变”是没有意义的,因为比例的基本性质的两边仍然可能分别是不相等的量,比值也可能分别是不相等的量,都满足不变性质,故本题错误。
(8)(简)设比例中两个外项的积为x,则x:(9)由比例的基本性质,可知当一个外项是另一个外项的(p÷q),且比例的两个外项的积为a时,比例的两边相等,即两个外项的积等于两个内项积的,这时,(a÷a)成反比例。
当a成比例时,比例的两边仍然相等,即两个外项的积不等于两个内项积的,即a与a成反比例。
六年级下册数学比例知识点

六年级下册数学比例知识点六年级下册数学比例知识点1、比的意义(1)两个数相除又叫做两个数的比(2)“:〞是比号,读作“比〞。
比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
(3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。
(4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。
(5)比的后项不能是零。
(6)根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。
2、比的基本性质:比的前项和后项同时乘或者除以相同的数(0除外),比值不变,这叫做比的基本性质。
3、求比值和化简比:求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。
根据比的基本性质可以把比化成最简单的整数比。
它的结果必须是一个最简比,即前、后项是互质的数。
4、按比例分配:在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。
这种分配的方法通常叫做按比例分配。
方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。
5、比例的意义:表示两个比相等的式子叫做比例。
组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
6、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。
这叫做比例的基本性质。
7、比和比例的区别(1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。
(2)比有基本性质,它是化简比的依据;比例也有基本性质,它是解比例的依据。
8、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。
用字母表示x/y=k(一定)9、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。
人教版六年级下册数学单元知识点归纳——第四单元 比例

4 比 例一、比例的意义表示两个比相等的式子叫做比例。
二、比例的基本性质1.组成比例的四个数,叫做比例的项,两端的两项叫做比例的外项,中间的两项叫做比例的内项。
2.比例的基本性质:在比例里....,.两个外项的积等于两.........个内项的积。
......可以用字母表示比例的基本性质,如果a ∶b=c ∶d ,那么ad=bc 。
3.运用比例的意义和比例的基本性质可以判断两个比是否可以组成比例,也可以解比例。
三、解比例1.求比例中的未知项........,.叫做解比例。
......2.解比例的依据:比例的基本性质.......。
3.解比例的方法:利用比例的基本性质将比例转化..............为外项之积与内项之积相等的等式...............,.再通过解方程求出........未知项的值。
......四、正比例1.两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
2.如果用字母y 和x 表示两种相关联的量,用k 表示它们的比值(一定),正比例关系可以表示为=k ..。
3.正比例的图象......:如果把成正比例关系的两个量中相对应的数都看作是一个数对,在方格纸上把写这些数对相对应的点连起来,形成一条射线..;反之,该射线上的每一个点对应的就是正比例关系中两个相关联的量的一组具体值。
五、反比例提示:组成比例的两个比既可以写成带比号的形式,也可以写成分数的形式,但读法相同。
例如:2.4×40=1.6×60提示:如果4个不同的数能组成比例,那么这4个数一共能组成8个不同的比例。
提示:应用比例的基本性质不是解比例唯一的方法,也可以用求比值的方法或其他方法解比例。
总结:判断两种量是否成正比例的方法:先找变量(两种相关联的量),再看定量(两种量是比值一定,还是乘积一定),最后作出判断。
比例知识点归纳六年级

比例是数学中的一个重要知识点,也是日常生活中经常会涉及到的概念。
在六年级学习比例的内容主要包括比例的定义、比例的性质和比例的应用等方面。
一、比例的定义比例是指两个或者多个相同类型的量的比较关系。
可以用两个或者多个等比例的等式来表示。
比例如下:a∶b=a÷ba∶b∶c=a÷b÷c等等二、比例的性质比例有以下几个基本性质:1.两个比例相等,它们的比较关系是相同的。
如:a∶b=c∶d,则a∶b与c∶d相等。
2.如果两个比例中的两个比值相等,那么这两个比例是相等的。
如:a∶b=c∶d,且a=c,则a∶b与c∶d相等。
3. 如果两个比例存在一个真分数的整数倍关系,那么这两个比例是相等的。
如:a∶b=c∶d,则ka∶kb=kc∶kd。
4.如果两个比例中的比例值相等,那么这两个比例是相等的。
如:a∶b=x∶y,a∶c=x∶z,则b∶c=y∶z。
三、比例的应用比例在日常生活中有广泛的应用,下面介绍几个常见的比例应用的例子:1.比例的放缩2.比例的计算在经济学中,比例经常用来表示价格上涨或者降低的百分比。
例如,商品原价是100元,现在降价30%,根据比例计算可得降价后的价格为100元×70%=70元。
3.比例的推理比例可以用来进行数据的推理和预测。
例如,在一场考试中,小明答对了30道题目,共有50道题目,而小红答对了36道题目,共有60道题目。
根据比例可以判断,小明答对所有题目的可能性更高。
4.比例的换算比例可以进行不同单位之间的换算。
例如,1英寸=2.54厘米,如果需要将10英寸转换成厘米,可以根据比例计算:10英寸×2.54厘米/1英寸=25.4厘米。
综上所述,比例作为数学中的一个重要知识点,在六年级的学习中需要掌握比例的定义、性质和应用。
通过理论知识的学习和实际问题的应用,可以提高学生的计算能力和思维能力,帮助他们更好地理解并运用比例概念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版小学六年级数学比例知识点
1、比的意义:
两个数相除又叫做两个数的比。
2、“:”是比号,读作“比”。
比号前面的数叫做比的前项,比号后面的数叫做比的后项,比的后项不能是零。
比的前项除以
后项所得的商,叫做比值。
比值通常用分数表示,也可以用小
数表示,还可能是整数。
3、比与除法的关系:比的前项相当于被除数,后项相当于除数,比值相当于商。
4、比与分数的关系:比的前项相当于分子,后项相当于分母,比值相当于分数值。
5、比的基本性质:比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。
6、求比值和化简比
(1)求比值:用比的前项除以后项,它的结果是一个数值,可以是整数,也可以是小数或分数。
(2)化简比:根据比的基本性质可以把比化成最简单的整数比。
它的结果必须是一个最简比,即前、后项是互质的数。
7、比例的意义:
表示两个比相等的式子叫做比例。
8、组成比例的四个数,叫做比例的项。
两端的两项叫做外项,中间的两项叫做内项。
9、比例的基本性质:在比例里,两个外项的积等于两个内向的积。
这叫做比例的基本性质。
10、求比例中的未知项,叫做解比例。
11、比例尺:
图上距离:实际距离=比例尺
实际距离×比例尺=图上距离
图上距离÷比例尺=实际距离
12、两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。
用字母表示: = k (一定)
y x 13、两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。
用字母表示x ×y=k (一定)。