数字图像处理课设报告讲解
《数字图像处理》课程设计报告

1.课程设计目的1、提高分析问题、解决问题的能力,进一步巩固数字图像处理系统中的基本原理与方法。
2、熟悉掌握一门计算机语言,可以进行数字图像的应用处理的开发设计。
2.课程设计内容及实现2.1、二维快速傅立叶变换:本项目的重点是:这个项目的目的是开发一个2-D FFT程序“包”,将用于在其他几个项目。
您的实现必须有能力:(a)乘以(-1),x + y的中心变换输入图像进行滤波。
(b) 一个真正的函数相乘所得到的(复杂的)的阵列(在这个意义上的实系数乘以变换的实部和虚部)。
回想一下,对相应的元件上完成两幅图像的乘法。
(c) 计算傅立叶逆变换。
(d) 结果乘以(-1)x + y的实部。
(e) 计算频谱。
基本上,这个项目实现了图。
4.5。
如果您正在使用MATLAB,那么您的傅立叶变换程序将不会受到限制,其大小是2的整数次幂的图像。
如果要实现自己的计划,那么您所使用的FFT例程可能被限制到2的整数次幂。
在这种情况下,你可能需要放大或缩小图像到适当的大小,使用你的程序开发项目02-04逼近:为了简化这个和以下的工程(除项目04-05),您可以忽略图像填充(4.6.3节)。
虽然你的结果不会完全正确,将获得显着的简化,不仅在图像的大小,而且在需要裁剪的最终结果。
由这种近似的原则将不会受到影响结果如下:主要代码f=imread('Fig4.04(a).jpg');H=imread('Fig4.04(a).jpg');subplot(3,2,1);imshow(f);title('(a)原图像');[M1,N1]=size(f);f=im2double(f);[M2,N2]=size(H);H=im2double(H); %把灰度图像I1的数据类型转换成转换成双精度浮点类型for x=1:M1for y=1:N1f(x,y)=(-1)^(x+y)*f(x,y); %用(-1)^(x+y)乘以输入图像,来实现中心化变换endendF=fft2(f); %使用函数fft2可计算傅立叶变换subplot(3,2,3);imshow(F);title('(b)傅立叶变换的图像');if(M2==1)&&(N2==1)G=F(x,y)*H(x,y);elseif((M1==M2)&&(N1==N2))for x=1:M1for y=1:N1G(x,y)=F(x,y)*H(x,y);endendelseerror('输入图像有误','ERROR');end %通过两个图像的乘法程序,实现对相应元素的相乘g=ifft2(G);subplot(3,2,4);imshow(g);title('(c)傅立叶逆变换的图像');for x=1:M1for y=1:N1g(x,y)=(-1)^(x+y)*g(x,y);endendg=real(g);S=log(1+abs(F)); %计算傅立叶幅度谱并做对数变换subplot(3,2,5);plot(S); %二维图像显示幅度谱title('(d)二维图像显示幅度谱');Q=angle(F); %计算傅立叶变换相位谱subplot(3,2,6);plot(Q);title('(e)二维图像显示相位谱'); %二维图像显示相位谱结果截图图1 傅里叶变换及频谱图结果分析:图1中(a)是原始灰度图像,对原图进行傅里叶变换,用(-1)^(x+y)乘以输入图像,来实现中心化变换得到(b),(c)为傅里叶变换的逆变换得到的图像。
数字图像课程设计报告

《数字图像处理》课程设计报告——手写阿拉伯数字的识别1、课程设计目的1)、提高分析问题、解决问题的能力,进一步巩固数字图像处理系统中的基本原理与方法。
2)、掌握文献检索的方法与技巧。
3)、熟悉掌握一门计算机语言,可以进行数字图像的应用处理的开发设计。
2、方法综述字符识别处理的信息可分为两大类:一类是文字信息,处理的主要是用各国家、各民族的文字(如:汉字,英文等)书写或印刷的文本信息,目前在印刷体和联机手写方面技术已趋向成熟,并推出了很多应用系统;另一类是数据信息,主要是由阿拉伯数字及少量特殊符号组成的各种编号和统计数据,如:邮政编码、统计报表、财务报表、银行票据等等,处理这类信息的核心技术是手写数字识别。
本次实验是对手写的阿拉伯数字进行识别,主要步骤包括预处理模块(其中用到图像分割方法),特征提取和利用人工神经网络(具体运用BP 神经网络方法)进行数字的识别。
2.1图像分割:图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。
它是由图像处理到图像分析的关键步骤。
现有的图像分割方法主要分以下几类:基于阈值的分割方法、基于区域的分割方法、基于边缘的分割方法以及基于特定理论的分割方法等。
2.1.1基于阈值的分割方法灰度阈值分割[1]法是一种最常用的并行区域技术,它是图像分割中应用数量最多的一类。
阈值分割方法实际上是输入图像f到输出图像g的如下变换:其中,T为阈值,对于物体的图像元素g(i,j)=l,对于背景的图像元素g(i,j)=0。
由此可见,阈值分割算法的关键是确定阈值,如果能确定一个合适的阈值就可准确地将图像分割开来。
阈值确定后,将阈值与像素点的灰度值比较和像素分割可对各像素并行地进行,分割的结果直接给出图像区域。
阈值分割的优点是计算简单、运算效率较高、速度快。
在重视运算效率的应用场合(如用于硬件实现),它得到了广泛应用。
人们发展了各种各样的阈值处理技术,包括全局阈值、自适应阈值、最佳阈值等等。
数字图像处理课程报告(matlab)

南京理工大学实验报告课程:数字图像处理学生姓名:周一鸣学号:912106840640实验摘要:输入一个图像和一个尺度小的水印图像,对两幅图像求加运算,设置不同透明度,显示加水印的图像。
关键字:图像相加、透明度。
一、实验目的:输入一幅图像,再输入一幅水印图像,水印图像尺寸较小。
之后将两幅图像相加,添加水印到第一幅图像中,之后设置水印图像的透明度,将水印图像显示出来。
二、基本原理:首先,将较小的水印图片进行重采样,使之尺寸与第一幅图像相同,之后两图相加,相加后得到添加水印后的图像,水印可以设置多种透明度。
重采样:水印与图像相加:三、实验算法流程图及算法简介:图像的显示:Matlab显示语句 imshow(I,[low high]) %图像正常显示I为要显示的图像矩阵。
,[low high]为指定显示灰度图像的灰度范围。
高于high 的像素被显示成白色;低于low的像素被显示成黑色;介于high和low之间的像素被按比例拉伸后显示为各种等级的灰色。
subplot(m,n,p)打开一个有m行n列图像位置的窗口,并将焦点位于第p个位置上。
获取图像的尺寸:[m,n]=size(IMG1);重新设置图像的尺寸:IMG2=imresize(IMG2,[m,n]);图像相加运算:IMG3(i,j,1) = IMG1(i,j,1)*ALPHA_PARAM + IMG2(i,j,1)*(1-ALPHA_PARAM);透明度设置:ALPHA_PARAM = 0.85;四、实验结果与分析(该部分是重点,1000字)过程1:程序代码:IMG1 = imread('F:\ronghe\1.jpg'); % 读取RGB文件,小姑娘IMG2 = imread('F:\ronghe\2.jpg'); % 读取RGB文件,水印logo结果:读取了原图像和水印图像。
过程2:程序代码:[m,n]=size(IMG1);IMG2=imresize(IMG2,[m,n]);结果:对较小的水印图片重采样,使之与原图像尺寸相同,才可以相加运算。
《数字图像处理技术课程设计报告》

《数字图像处理技术》课程设计报告设计题目:车牌识别系统班级:数媒姓名:学号:一、目的与要求1、提高分析图像处理问题的能力,进一步巩固在《数字图像处理技术》课程中所掌握的基本原理与方法。
2、掌握并使用一门计算机语言,进行数字图像处理的应用设计。
二、设计的内容1、主要功能:牌照图像的采集和预处理、牌照区域的定位和提取、牌照字符的分割和识别等。
2、系统工作的原理以及过程:(1)当行驶的车辆经过时,触发埋设在固定位置的传感器,系统被唤醒处于工作状态;一旦连接摄像头光快门的光电传感器被触发,设置在车辆前方、后方和侧面的相机同时拍摄下车辆图像;(2)由摄像机或CCD 摄像头拍摄的含有车辆牌照的图像通视频卡输入计算机进行预处理,图像预处理包括图像转换、图像增强、滤波和水平较正等;(3)由检索模块进行牌照搜索与检测,定位并分割出包含牌照字符号码的矩形区域;(4)对牌照字符进行二值化并分割出单个字符,经归一化后输入字符识别系统进行识别。
三、总体方案设计车牌识别的最终目的就是对车牌上的文字进行识别。
主要应用的为模板匹配方法。
因为系统运行的过程中,主要进行的都是图像处理,在这个过程中要进行大量的数据处理,所以处理器和内存要求比较高,CPU要求主频在600HZ及以上,内存在128MB及以上。
系统可以运行于Windows98、Windows2000或者Windows XP操作系统下,程序调试时使用matlab。
1、功能模块的划分:(1)预处理及边缘提取:图象的采集与转换,边缘提取。
(2)牌照的定位和分割:牌照区域的定位,牌照区域的分割,车牌进一步处理。
(3)字符的分割与归一化:字符分割,字符归一化。
(4)字符的识别2、具体功能实现的原理以及流程图:1、预处理及边缘提取预处理及边缘提取流程图(1)图象的采集与转换:考虑到现有牌照的字符与背景的颜色搭配一般有蓝底白字、黄底黑字、白底红字、绿底白字和黑底白字等几种,利用不同的色彩通道就可以将区域与背景明显地区分出来,例如,对蓝底白字这种最常见的牌照,采用蓝色 B 通道时牌照区域为一亮的矩形,而牌照字符在区域中并不呈现。
数字图像处理课程设计报告

数字图像处理课程设计报告课设题目:运动目标的跟踪学院:信息科学与工程学院专业:电子与信息工程班级:0902501班姓名:学号:指导教师:赵占锋周志权于海雁哈尔滨工业大学(威海)2012 年11月12日目录一. 课程设计任务 (1)二. 课程设计原理及设计方案 (1)三. 课程设计的步骤和结果 (4)四. 课程设计总结 (8)五. 设计体会 (8)六. 参考文献 (10)一. 课程设计任务在很多应用中都要对运动目标进行跟踪。
比如激光制导中,弹载摄像机不断检测指向目标的激光束,根据激光光点的位置来修正飞行方向。
使用图像获取工具箱,从摄像机获取视频图像到matlab中,这些图像可以用来跟踪摄像机视场中的目标。
建立一个图像跟踪的演示程序,用于跟踪的目标可由一个激光笔产生的激光点代替。
要求完成功能:1、对连接在计算机上的视频获取设备进行控制;2、显示动态视频画面;3、对画面中内容进行运动目标检测;4、输出检测到的激光点的位置信息;5、设计软件界面。
- 1 -二. 课程设计原理及设计方案2.1运动目标的检测运动目标检测的方法主要有三类:光流法、帧差法和背景差法。
光流法由于其计算量大,算法复杂,一般不被直接应用于实时视频监控场合。
帧差法实时性好,但对物体的运动速度有一定的要求。
背景差法,相对于其他方法而言简单易于实现,能够很精确地提取出运动对象,但是由于场景的复杂性、不可预知性、以及各种环境干扰和噪声的存在,如光照的突然变化、实际背景图像中有些物体的波动、摄像机的抖动、运动物体进出场景对原场景的影响等,使得背景的建模和模拟变得比较困难。
我选择了帧差法。
帧差法利用了视频序列相邻帧之间的强相关性进行变化检测。
连续帧之间利用两帧图像的灰度差分析视频图像序列的运动特性,通过比较目标在两个不同时刻的画面,识别由于物体运动而造成的区域差别。
在实际计算过程中,差分是指将两帧相邻目标图像逐点相减,形成差分图,在差分图中如果差分值大于给定的阀值,则相应的像素取,由此产生非零区,利用非零区就可以检测出运动目标。
数字图像处理课程设计报告

数字图像处理设计报告【设计目的】配合《数字图像处理》课程的教学,使学生能巩固和加深对数字图像处理基础理论和基本知识的理解;掌握使用图像处理软件处理图像基本思想和方法;提高学生对图像处理方面的实际问题的应对能力并将所学知识在实践中巩固。
【设计要求】1.按照题目的要求,简要介绍算法,并对算法进行分析;2.用MATLAB完成算法代码(不能利用MATLAB自身的图像处理函数完成具体算法,读写和显示可以利用MATLAB函数),注释要清晰;3.给出代码运行的结果,并对结论进行总结;4.每人可选一个给出的题目或自己感兴趣的题目,按照上面要求上交报告,内容不得少于5页A4纸。
【所选题目】用直方图均衡化一幅8位的灰度图像【设计环境】MATLAB7.1,所选图片为彩色动画图片,大小为1024*666*24b【算法介绍和分析】1、算法概述:直方图均衡化是图像处理领域中利用图像直方图对对比度进行调整的方法。
直方图均衡化处理的“中心思想”是把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布。
直方图均衡化就是对图像进行非线性拉伸,重新分配图像像素值,使一定灰度范围内的像素数量大致相同。
直方图均衡化就是把给定图像的直方图分布改变成“均匀”分布直方图分布。
2、算法分析:直方图均衡化的基本思想是把原始图的直方图变换为均匀分布的形式,这样就增加了象素灰度值的动态范围从而可达到增强图像整体对比度的效果。
设原始图像在(x,y)处的灰度为f,而改变后的图像为g,则对图像增强的方法可表述为将在(x,y)处的灰度f映射为g。
在灰度直方图均衡化处理中对图像的映射函数可定义为:g = EQ (f),这个映射函数EQ(f)必须满足两个条件(其中L为图像的灰度级数):(1)EQ(f)在0≤f≤L-1范围内是一个单值单增函数。
这是为了保证增强处理没有打乱原始图像的灰度排列次序,原图各灰度级在变换后仍保持从黑到白(或从白到黑)的排列。
数字图像处理B课程报告--

数字图像处理(B)课程报告年月日实验一:直方图均衡化目标:选择图像并对其进行灰度直方图均衡化以增强图像显示效果原理:将原始图像的直方图变为均衡分布的形式,将一个已知灰度概率密度分布的图像经过变换得到一幅具有均匀概率密度分布的新图像,从而增强整个图像的对比度,提升图像的亮度。
代码:clear all;Image = imread('Lena.jpg');Image = rgb2gray(Image);figure(1),imshow(Image);[M,N]=size(Image);total = M*N;count=0;imshow(Image);%计算各个灰度级出现的机率Point = zeros(1,256);for i=0:255for j=1:Mfor k=1:Nif(Image(j,k)==i)count=count+1;endendendPoint(i+1)=count/total;count=0;endcount=0;figure(2),bar(0:255,Point,'g');title('原始图像直方图');xlabel('灰度值');ylabel('出现频率');%计算对应的Skpre=0;for i=1:256Point(i)=Point(i)+pre;pre=Point(i);endSk=round((Point*256));%使用均值化后的像素值代替原先图像中的像素值即可Image2 = Image;for i=0:255for j=1:Mfor k=1:Nif(Image(j,k)==i)Image2(j,k)=Sk(i);endendendendfigure(3),imshow(Image2);%重新计算各个灰度级出现的机率Last = zeros(1,256);for i=0:255for j=1:Mfor k=1:Nif(Image2(j,k)==i)count=count+1;endendendLast(i+1)=count/total;count=0;endfigure(4),bar(0:255,Last,'g');title('均衡后图像直方图');xlabel('灰度值');ylabel('出现频率');实验结果:原图与增强后图像直方图分布实验二:空间域方法滤波增强目标:选择图像并对使用空间域方法――均值滤波进行边缘增强原理:使用均值滤波对含有随机噪声的灰度图像进行平滑处理,采用窗口平移处理使用高频部分的信息被周围的像素点灰度值所制约,从而使高频部分的信息被消除,保留低频信息。
数字图像处理课程设计实验报告

江南大学《数字图像处理技术》课程设计报告设计题目:数字图像处理系统班级:数字媒体班姓名:学号:指导老师:日期:2013.7.2一、课程设计目的要求:1、提高分析图像处理问题的能力,进一步巩固在《数字图像处理技术》课程中所学的基本原理与方法。
2、掌握并使用一门计算机语言,进行数字图像处理的应用设计。
二、设计的内容:根据本次课设完成的系统的主要功能如下:利用matlab的GUI 程序设计一个简单的图像处理程序,含有如下基本功能:1、图像的读取、存储、剪切和粘贴2、图像转化为灰度图像3、图像大小的计算4、直方图均衡化规定化的计算5、图像求反、动态压缩6、直接灰度调整7、空域滤波(均值、中值、对比度增强滤波)8、非线性锐化滤波(log滤波、prewitt滤波、sobel卷积、sobel滤波)9、频域增强(高通、低通滤波)三、总体方案设计:(1)、软件的总体设计界面布局如下图:系统的总体设计界面主要分为2个区域:显示区域和操作区域。
显示区域:在原始图像的基础上显示效果图。
操作区域:通过功能菜单实现图像的各种处理。
设计完成后运行的软件界面如下:(2)、功能模块的划分:1、图像的读取、存储、退出2、编辑(还原、剪切、粘贴)3、图像(图像大小的计算、旋转、直方图均衡化规定化的计算、图像求反、动态压缩)4、滤波(直接灰度调整、空域滤波、非线性锐化滤波、频域增强)(3)、系统运行环境:Windows 7 or SP1、Windows Vista SP2、Windows XP SP3、Windows XP x64 Edition SP2、Windows Server 2008 SP2 or R2、Windows Server 2003 R2 ,CPU要求:X86架构且支持SSE2指令集,硬盘空间:典型安装需要3-4G,内存:最低1G,推荐2G。
(4)、选用的工具:matlab7.0,win7X64(5)、主要实现功能的原理:直方图均衡化方法的基本思想是,对在图像中像素个数多的灰度级进行展宽,而对像素个数少的灰度级进行缩减。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西安工业大学信息与计算科学《数字图像处理》课程设计报告班级: 081001 姓名:高辉学号:081001105指导教师:史延新完成日期: 2011/12/211.题目图像变换和图像增强2.实验目的2.1进一步深入理解数字图像处理的基本概念、基础理论以及解决问题的基本思想方法,掌握基本的处理技术。
2.2培养我们了解处理技术相关的应用领域,阅读各类图像处理文献的能力。
2.3能够运用一门高级语言编写简单的图像处理软件,实现对图像进行的基本处理。
2.4了解与课程有关的工程技术规范,能正确解释和分析实验结果。
2.5图像变换1)了解图像变换的意义和手段;2)熟悉离散傅里叶变换、离散余弦变换、离散小波变换的基本性质;3)熟练掌握图像变换的方法及应用;4)通过实验了解二维频谱的分布特点;5)通过本实验掌握利用MATLAB编程实现数字图像的变换。
2.6图像增强1)掌握灰度直方图的概念及其计算方法;2)熟练掌握直方图均衡化和直方图规定化的计算过程;3)熟练掌握空间域滤波中常用的平滑和锐化滤波器;4)掌握色彩直方图的概念和计算方法;5)利用MATLAB程序进行图像增强。
3.实验原理3.1图像变换图像二维DFT的MATLAB实现MATLAB 提供了 fft 函数、fft2 函数和 fftn 函数分别用于进行一维DFT、二维 DFT 和 n维 DFT 的快速傅立叶变换, ifft 函数、ifft2 函数和ifftn 函数分别用于进行一维 DFT、二维 DFT和 n 维 DFT 的快速傅立叶反变换。
快速傅立叶变换的算法思想:1)首先将原图像进行转置;2)按行对转置后的图像矩阵做一维FFT,将变换后的中间矩阵再转置;3)对转置后的中间矩阵做一维 FFT,最后得到的就是二维 FFT。
步骤:1)对f进行二维快速傅立叶变换2)对上述二维快速傅立叶变换提高分辨率N=300 400 800 1000时,的结论从傅立叶变换的频谱图中可以看出,提高分辨率以后,其边缘更加平滑,锯齿状明显减弱。
但其傅立叶变换后的图像没有明显改变。
3)DC系数移动其系数移动以后,频谱分量都集中到了频谱的中间。
4)滤波器频率响应3.2图像增强图像增强是指按特定的需要突出一幅图像中的某些信息,同时,消弱或去除某些不需要的信息的处理方法。
其主要目的是使处理后的图像对某些特定的应用比原来的图像更加有效。
图像增强技术主要包含直方图修改处理、图像平滑化处理、图像尖锐化处理、和彩色处理技术等。
图像增强有图像对比度增强、亮度增强,轮廓增强等等。
1)图像直方图使图像的重要统计特征。
表示了数字图像中每一个灰度级与该灰度级出现的频率的统计。
若一幅图像其像素占有全部可能的灰度级,且均匀分布,则这样对的图像有高对比度和和多变的灰度色调,从而现实出一幅灰度级丰富切动态范围大的图像,其基本思想是将原始图像不均匀的直方图变换为均匀的分布方式,这样可加大会灰度的动态范范围,从而达到增强整体灰度对比的效果。
2)直方图均衡化是图像处理领域中利用图像直方图对对比度进行调整的方法。
直方图均衡化处理的“中心思想”是把原始图像的灰度直方图从比较集中的某个灰度区间变成在全部灰度范围内的均匀分布。
直方图均衡化就是对图像进行非线性拉伸,重新分配图像像素值,使一定灰度范围内的像素数量大致相同。
直方图均衡化就是把给定图像的直方图分布改变成“均匀”分布直方图分布。
3)直方图规定化,就是通过一个灰度映像函数,将原灰度直方图改造成所希望的直方图。
所以,直方图修正的关键就是灰度映像函数。
4.实验步骤4.1图像变换(采用二维快速傅立叶变换)1)fft2 函数计算二维快速傅立叶变换,语法格式为:B=fft2(I)B=fft2(I,m,n), 通过对图像I 剪切或补零,按用户指定的点数计算fft。
2)fftn 函数计算n维fft,语法格式同fft23)fftshift 函数将变换后的图像频谱移到中心。
语法格式为:B=fftshift(I)4)ifft2 函数计算二维傅立叶反变换,语法格式同 fft2。
5)ifftn 函数计算n维傅立叶反变换。
4.2图像增强灰度直方图变换的步骤:第一,统计每种灰度值出现的次数,记为Nk;第二,计算概率Sk,Sk=Nk/N;第三,求其密度分布函数Sk’=P(R0)+ P(R1)+ P(R2)……+ P(Rk),p 实际上是图像的直方图,归一化到 0——1;第四,利用迭代方案对每一个sk值预计算值;第五,对于原始图像的每个像素,若像素值为rk,将该值映射到其对应的灰度级sk,然后映射到最终灰度级zk。
在均衡化过程中可以对每一象素映射到新的实际灰度值sk*255,就实现了图像的变换(严格理论中应该是灰度正规化到[0,1]区间,然后均衡化后的sk还要量化到原始的正规灰度以实现灰度合并)5. 实验结果5.1图像变换1) 对f进行二维快速傅立叶变换原图像f立体网状图(灰度图像)傅立叶变换后的频谱图(如下图所示)2)对上述二维快速傅立叶变换提高分辨率,即是N=300,400,…,800,…,1000采样点数N(N=300)二维快速傅立叶变换后的图像傅立叶变换后的频谱图采样点数N(N=400)二维快速傅立叶变换后的图像傅立叶变换后的频谱图结论:从傅立叶变换的频谱图中可以看出,提高分辨率以后,其边缘更加平滑,锯齿状明显减弱。
但其傅立叶变换后的图像没有明显改变。
3) DC系数移动DC系数移动(使用函数fftshift)N=200二维快速傅立叶变换后的图像(如上图)4) 滤波器频率响应傅立叶变换后的频谱图结论:其系数移动以后,频谱分量都集中到了频谱的中间。
立体网状图(将图形对象的色度改为灰度图像)5.2图像增强(一)利用直方图统计算法对灰度图像进行增强clear allI=imread('cameraman.tif');subplot(121)imshow(I);title('原始图像');subplot(122)imhist(I,64) %imhist(I,256)%绘制图像的直方图,n=64为灰度图像灰度级,若I为灰度图像,默认n=256;%若I为二值图像,默认n=2。
title('图像的直方图');绘制图像的直方图,n=64为灰度图像灰度级I为灰度图像,默认n=256(如下图所示)(二)利用直方图均衡化增强图像的对比度clear allI=imread('cameraman.tif');J=histeq(I);%将灰度图像转换成具有64(默认)个离散灰度级的灰度图像imshow(I)title('原始图像')figure,imshow(J)title('直方图均衡化后的图像')figure(1)subplot(121);imhist(I,64)title('原始图像的直方图')subplot(122);imhist(J,64)title('均衡化的直方图')原始图像:原始的直方图与均衡化的直方图直方图均衡化后的图像对比效果如下图所示:结论:从上图中可以看出,用直方图均衡化后,图像的直方图的灰度间隔被拉大了,均衡化的图像的一些细节显示了出来,这有利于图像的分析和识别。
直方图均衡化就是通过变换函数histeq将原图的直方图调整为具有“平坦”倾向的直方图,然后用均衡直方图校正图像。
(三)下面利用直方图规定化对图像进行增强clear all%下面利用直方图规定化对图像进行增强:I=imread('cameraman.tif');figure,imshow(I);title('原始图像');hgram=50:2:250; %规定化函数J=histeq(I,hgram);figure,imshow(J);title('直方图规定化后的图像');figure,imhist(I,64);title('原始图像的直方图');figure,imhist(J,64);title('直方图规定化后的直方图');(原始图像)原始图像与直方图规定化的图像对比如下:变换灰度间隔后的图像和直方图:若hgram=50:1:250时,结果如图所示:若hgram=50:5:250时,如图所示:结论:从上图中可以看出,用直方图规定化后,图像的直方图的灰度间隔被拉大了,规定化的图像的一些细节显示不出来,这不利于图像的分析和识别。
直方图规定化,就是通过一个灰度映像函数,将原灰度直方图改造成所希望的直方图。
所以,直方图修正的关键就是灰度映像函数。
6.参考文献《数字图像处理(第二版)》冈萨雷斯著,阮秋琦译 电子工业出版社 2003年3月《图像处理和分析》章毓晋 清华大学出版社,2000年6月《MATLAB 图形图像处理》王家文 国防工业出版社 2004年5月。