2013数字图像处理课程设计报告

2013数字图像处理课程设计报告
2013数字图像处理课程设计报告

数字图像处理

课程设计报告

课设题目:彩色图像增强软件学院:信息科学与工程学院专业:电子与信息工程

班级: 1002501

姓名:曾小路

学号: 100250131

指导教师:赵占峰

哈尔滨工业大学(威海)

2013 年12月27日

目录

目录 .......................................................................................................................... I

一. 课程设计任务 (1)

二. 课程设计原理及设计方案 (2)

2.1 彩色图像基础 (2)

2.2 彩色模型 (2)

三. 课程设计的步骤和结果 (6)

3.1 采集图像 (6)

3.2 图像增强 (7)

3.3 界面设计 (9)

四. 课程设计总结 (12)

五. 设计体会 (13)

六. 参考文献 (14)

哈尔滨工业大学(威海)课程设计报告

一. 课程设计任务

1.1设计内容及要求:

(1)、独立设计方案,根据所学知识,对由于曝光过度、光圈过小或图像亮度不均匀等情况下的彩色图像进行增强,提高图像的清晰度(通俗地讲,就是图像看起来干净、对比度高、颜色鲜艳)。

(2)、参考photoshop 软件,设计软件界面,对处理前后的图像以及直方图等进行对比显示;

(3)、将实验结果与处理前的图像进行比较、分析。总结设计过程所遇到的问题。

1.2参考方案

1、实现图像处理的基本操作

学习使用matlab 图像处理工具箱,利用imread()语句读入图像,例如image=imread(flower.jpg),利用彩色图像模型转换公式,将RGB 类型图像转换为HSI 类型图像,显示各分量图像(如imshow(image)),以及计算和显示各分量图像直方图。

2、彩色图像增强实现

对HSI彩色模型图像的I分量进行对比度拉伸或直方图均衡化等处理,提高亮度图像的对比度。对S分量图像进行适当调整,使图像色彩鲜艳或柔和。

H 分量保持不变。将处理后的图像转换成RGB 类型图像,并进行显示。分析处理图像过程和结果存在的问题。

3、参照“photoshop”软件,设计图像处理软件界面

可设计菜单式界面,在功能较少的情况下,也可以设计按键式界面,视

功能多少而定;参考matlab 软件中GUI 设计,学习软件界面的设计

- 1 -

哈尔滨工业大学(威海)课程设计报告

- 2 -

二. 课程设计原理及设计方案

2.1 彩色图像基础

在图像处理中,颜色的运用主要受两个因素推动。第一,颜色是一个

强有力的描绘子,它常常可简化目标物的区分及从场景中抽取目标;第二,人可以辨别几千种颜色色调和亮度,但相比之下只能辨别几十种灰度层次。第二个因素对于人工图像分析特别重要。

虽然人的大脑感知和理解颜色所遵循的过程是一种生理心理现象,这一现象还未被完全了解,但颜色的物理性质可以由实验和理论结果支持的基本形式来表示。

2.2 彩色模型

色彩模型:RGB 模型、CMY 模型、CMYK 模型、HIS 模型、HSV 模型、YUV 模型、YIQ 模型。 2.2.1 RGB 模型

国际照明委员会

(CIE )规定以蓝(435.8nm )、绿(546.1nm )和红(700nm )作为主原色。

哈尔滨工业大学(威海)课程设计报告

- 3 -

Matlab 中一幅RGB 图可表示为一个M*N*3的3维矩阵。其中每一个彩色像素都在特定空间位置的彩色图像中对应红、绿、蓝3个分

2.2.2 HSI 模型

HSI 模型是从人的视觉系统出发,直

接使用颜色三要素色调(Hue )、饱和度(Saturation )和亮度(Intensity )来描述颜色。

-亮度指人眼感觉光的明暗程度。光的能量越大,亮度越大。 -色调由物体反射光线中占优势的波长决定。反映颜色的本质。 -饱和度指颜色的深浅和浓淡程度,饱和度越高,颜色越深。 HIS 色彩空间比RGB 彩色空间更符合人的视觉特性。亮度和色度具有可分离特性,使得图像处理和机器视觉中大量灰度处理算法都可在HIS 彩色空间中方便使用。

色调: ()??

?>-≤=G B G B H ,360)

(,θθ 其中: []???

???????????--+--+-=212

))(()()]()[(21arccos B G G R G R B R G

R

θ

哈尔滨工业大学(威海)课程设计报告

- 4 -

饱和度: []),,min()

(3

1B G R B G R S ++-

=

强度: )(3

1

B G R I ++=

从HSI 到RGB 的转换:

在[0,1]内给出HSI 值,现在要在相同的值域找到RGB 值,可利用H 值公式。在原始分割中有3个相隔120°的扇形。从H 乘以360°开始,这时色调值返回原来的[0°,360°]的范围。

RGB 扇区(0°≦H<120°):在H 位于这一扇区时,RGB 分量由下时给出: )1(S I B -=

])60cos(cos 1[H H

S I R -+=。 )(3B R I G +-=

GB 扇区(120°≦H<240°):如果给定的H 值在这一扇区,则首先从H 中减去120°,即

120-=H H

然后RGB 分量为

)1(S I R -=

])60cos(cos 1[H H

S I G -+=。 )(3G R I B +-=

BR 扇区(240°≦H<360°):最后,如果H 在这一扇区,则从H 中减去240°,即

240-=H H

哈尔滨工业大学(威海)课程设计报告

- 5 -

)1(S I G -=

])

60cos(cos 1[H H

S I B -+=。 )(3B G I R +-=

哈尔滨工业大学(威海)课程设计报告

三. 课程设计的步骤和结果

3.1 采集图像

利用imread()语句读入图像,利用彩色图像模型转换公式,将RGB 类型图像转换为HSI 类型图像,显示各分量图像(如imshow(image)),以及计算和显示各分量图像直方图。

image=imread('tuxiangzq.jpg');

image=im2double(image);

[H,S,I]=rgb2hsi(image); %RGB到HSI的转换

figure(1);

subplot(231);

imshow(H);

title('HSI H分量图');

subplot(232);

imshow(S);

title('HSI S分量图');

subplot(233);

imshow(I);

title('HSI I分量图');

%画各分量的直方图

subplot(234);

imhist(H);

title('H分量的直方图');

subplot(235);

imhist(S);

title('S分量的直方图');

subplot(236);

imhist(I);

title('I分量的直方图');

figure(2);

subplot(121);

- 6 -

哈尔滨工业大学(威海)课程设计报告 - 7 -

imshow(image); title('原图');

J = imadjust(I,[0.3 0.7],[]); subplot(122);

imshow(J) %对比度增强 title('增强对比度后'

);

3.2 图像增强

3.2.1 对I 分量进行对比度拉伸

对HSI 彩色模型图像的I 分量进行对比度拉伸,对S 分量图像进行适当调整,使图像色彩鲜艳或柔和,H 分量保持不变。将处理后的图像转换成 RGB 类型图像,并进行显示:

image=imread('tuxiangzq.jpg'); %采集图像 image=im2double(image);

[H,S,I]=rgb2hsi(image); %RGB 到HSI 的转换 i2 = imadjust(I,[0.3 0.7],[]); %对I 分量进行对比度拉伸 S=imadjust(S,[0.1 0.5],[]); %对S 分量进行对比度拉伸 x_hsi=cat(3,H,S,i2);

哈尔滨工业大学(威海)课程设计报告

- 8 -

x_h_r=hsi2rgb(x_hsi); % HSI 空间转换为RGB 空间 figure

imshow(x_h_r); title('I 分量均衡化'

);

3.2.2 对I 分量进行均衡化

I 分量直方图均衡化,对S 分量图像进行适当调整,使图像色彩鲜艳或柔和,H 分量保持不变。将处理后的图像转换成 RGB 类型图像,并进行显示:

image=imread('tuxiangzq.jpg'); %采集图像 image=im2double(image);

[H,S,I]=rgb2hsi(image); %RGB 到HSI 的转换

i2=histeq(I); %对I 分量进行直方图均衡化,加强对比度 S=imadjust(S,[0.1 0.5],[]); %对S 分量进行对比度拉伸 x_hsi=cat(3,H,S,i2);

x_h_r=hsi2rgb(x_hsi); % HSI 空间转换为RGB 空间 figure

imshow(x_h_r); title('I 分量均衡化');

哈尔滨工业大学(威海)课程设计报告

- 9 -

3.3 界面设计

主要控件程序如下: ①图像采集

function pushbuttonCJ_Callback(hObject, eventdata, handles) image=imread('tuxiangzq.jpg'); image=im2double(image); axes(handles.axes1); imshow(image); title('原图'); ②显示各分量图像

function pushbuttonFLT_Callback(hObject, eventdata, handles) image=imread('tuxiangzq.jpg'); image=im2double(image);

[H,S,I]=rgb2hsi(image); %RGB 到HSI 的转换 axes(handles.axes2);

imshow(H); title('HSI H 分量图');

哈尔滨工业大学(威海)课程设计报告

%figure(2);

axes(handles.axes3);

imshow(S);

title('HSI S分量图');

%figure(3);

axes(handles.axes4);

imshow(I);

title('HSI I分量图');

③显示各分量直方图

function pushbuttonFLZFT_Callback(hObject, eventdata, handles) image=imread('tuxiangzq.jpg');

image=im2double(image);

[H,S,I]=rgb2hsi(image); %RGB到HSI的转换

axes(handles.axes5);

imhist(H);

title('H分量的直方图');

axes(handles.axes6);

imhist(S);

title('S分量的直方图');

axes(handles.axes7);

imhist(I);

title('I分量的直方图');

④图像增强

function pushbuttonZQ_Callback(hObject, eventdata, handles) val = get(handles.popupmenuzq,'value');

while (val~=0)

switch val

case 1; image=imread('tuxiangzq.jpg');

image=im2double(image);

[H,S,I]=rgb2hsi(image); %RGB到HSI的转换

i2 = imadjust(I,[0.3 0.7],[]); %对比度拉伸

S=histeq(S);

x_hsi=cat(3,H,S,i2);

x_h_r=hsi2rgb(x_hsi); % HSI空间转换为RGB空间

- 10 -

哈尔滨工业大学(威海)课程设计报告 - 11 -

axes(handles.axes10); imshow(x_h_r); title('对比度拉伸'); break ;

case 2; image=imread('tuxiangzq.jpg'); image=im2double(image);

[H,S,I]=rgb2hsi(image); %RGB 到HSI 的转换

i2=histeq(I); %对I 分量进行直方图均衡化,加强对比度 S=histeq(S); x_hsi=cat(3,H,S,i2);

x_h_r=hsi2rgb(x_hsi); % HSI 空间转换为RGB 空间 axes(handles.axes11); imshow(x_h_r); title('I 分量均衡化'); break ; end end

效果图如下:

哈尔滨工业大学(威海)课程设计报告

四. 课程设计总结

本文主要介绍了运用MATLAB来实现彩色图像增强的方法研究。基于彩色图像包含丰富的信息,介绍了如何利用图像处理工具MATLAB来进行彩色图像增强是有用信息加强,获得更有价值的图片和更好的视觉效果。图像增强的方法有很多种,既可对图像时域进行处理,也可在频域中处理。

我在上面的课设中主要对图像的HSI图像中的I分量和S分量进行了处理,得到的图像对比度更强了,色彩更加鲜艳了。从结果分析得出对I 分量进行均衡化更能突出图像主要内容;对I分量进行对比度拉伸所得图像更加清晰一些,对S分量的调整可以改变图像的色调。

- 12 -

哈尔滨工业大学(威海)课程设计报告

五. 设计体会

通过此次课程设计,了解到MATLAB的诸多强大的数值处理功能,但是我更想说的是改变了我对设计的认识。以前的我看到别人优秀的设计成果,总是会心生欣羡之情,但是那时的我也仅限于此。古语云:纸上得来终觉浅,绝知此事要躬行。以前总是听别人说:我们通常只是看到了别人的光鲜却没有看到别人的汗水。此时此刻,我才真正有点明白这句话的意思了。是的,设计是一个不断探索的过程,是一个不断改进的过程。因为面对的是一个未知的世界,所以没有人告诉你应该怎么办,或者说你的坚持到底会不会开花结果。但是也正是因了这个未知性,才给这个单调枯燥的设计过程增添了一份神秘,一份独特的魅力。希望以后的我能逐步学会体验这份未知的美。最后,对此次课程设计中给予我无私帮助的老师,同学,我谨表示真挚的谢意!

- 13 -

哈尔滨工业大学(威海)课程设计报告

六. 参考文献

1 数字图像处理(第二版)冈萨雷斯著,阮秋琦阮宇智译

2 MATLAB数字图像处理.第二版张德丰编著机械工业出版社

- 14 -

哈尔滨工业大学(威海)课程设计报告

课程设计成绩评定表

设计上机验收成绩表

姓名曾小路学号100250131 课题

名称彩色图像增强软件

序号验收项目分值得分

1 设计内容合理、目的明确10分

2 实现了课程设计的基本要求,演示结果正确50分

3 对课程设计中所涉及的知识理解正确10分

4 方案正确,在基本要求基础上有改进、创新20分

5 界面设计合理、美观10分

总分100分

课程设计总评分成绩表

评定项目分值评分成绩

1 设计上机验收成绩、答辩60%

2 设计报告的规范化、参考文献充分30%

3 平时成绩10%

总分

- 15 -

数字图像处理实验报告完整版

数字图像处理 实验一 MATLAB数字图像处理初步 一、显示图像 1.利用imread( )函数读取一幅图像,假设其名为lily.tif,存入一个数组中; 2.利用whos 命令提取该读入图像flower.tif的基本信息; 3.利用imshow()函数来显示这幅图像; 实验结果如下图: 源代码: >>I=imread('lily.tif') >> whos I >> imshow(I) 二、压缩图像 4.利用imfinfo函数来获取图像文件的压缩,颜色等等其他的详细信息; 5.利用imwrite()函数来压缩这幅图象,将其保存为一幅压缩了像素的jpg文件,设为lily.jpg;语法:imwrite(原图像,新图像,‘quality’,q), q取0-100。 6.同样利用imwrite()函数将最初读入的tif图象另存为一幅bmp图像,设为flily.bmp。7.用imread()读入图像Sunset.jpg和Winter.jpg; 8.用imfinfo()获取图像Sunset.jpg和Winter.jpg的大小; 9.用figure,imshow()分别将Sunset.jpg和Winter.jpg显示出来,观察两幅图像的质量。 其中9的实验结果如下图:

源代码: 4~6(接上面两个) >>I=imread('lily.tif') >> imfinfo 'lily.tif'; >> imwrite(I,'lily.jpg','quality',20); >> imwrite(I,'lily.bmp'); 7~9 >>I=imread('Sunset.jpg'); >>J=imread('Winter.jpg') >>imfinfo 'Sunset.jpg' >> imfinfo 'Winter.jpg' >>figure(1),imshow('Sunset.jpg') >>figure(2),imshow('Winter.jpg') 三、二值化图像 10.用im2bw将一幅灰度图像转化为二值图像,并且用imshow显示出来观察图像的特征。实验结果如下图: 源代码: >> I=imread('lily.tif') >>gg=im2bw(I,0.4); F>>igure, imshow(gg)

数字图像处理 课程设计报告

数字图像处理 课程设计报告 姓名: 学号: 班级: 设计题目:图像处理 教师:赵哲老师 提交日期: 12月29日

一、设计内容: 主题:《图像处理》 详细说明:对图像进行处理(简单滤镜,模糊,锐化,高斯模糊等),对图像进行处理(上下对称,左右对称,单双色显示,亮暗程度调整等),对图像进行特效处理(反色,实色混合,色彩平衡,浮雕效果,素描效果,雾化效果等), 二、涉及知识内容: 1、二值化 2、各种滤波 3、算法等 三、设计流程图 四、实例分析及截图效果: 运行效果截图: 第一步:读取原图,并显示 close all;clear;clc; % 清楚工作窗口clc 清空变量clear 关闭打开的窗口close all I=imread(''); % 插入图片赋给I imshow(I);% 输出图I I1=rgb2gray(I);%图片变灰度图 figure%新建窗口 subplot(321);% 3行2列第一幅图 imhist(I1);%输出图片

title('原图直方图');%图片名称 一,图像处理模糊 H=fspecial('motion',40); %% 滤波算子模糊程度40 motion运动 q=imfilter(I,H,'replicate');%imfilter实现线性空间滤波函数,I图经过H滤波处理,replicate反复复制q1=rgb2gray(q); imhist(q1); title('模糊图直方图'); 二,图像处理锐化 H=fspecial('unsharp');%锐化滤波算子,unsharp不清晰的 qq=imfilter(I,H,'replicate'); qq1=rgb2gray(qq); imhist(qq1); title('锐化图直方图'); 三,图像处理浮雕(来源网络) %浮雕图 l=imread(''); f0=rgb2gray(l);%变灰度图 f1=imnoise(f0,'speckle',; %高斯噪声加入密度为的高斯乘性噪声 imnoise噪声污染图像函数 speckle斑点 f1=im2double(f1);%把图像数据类型转换为双精度浮点类型 h3=1/9.*[1 1 1;1 1 1;1 1 1]; %采用h3对图像f2进行卷积滤波 f4=conv2(f1,h3,'same'); %进行sobel滤波 h2=fspecial('sobel'); g3=filter2(h2,f1,'same');%卷积和多项式相乘 same相同的 k=mat2gray(g3);% 实现图像矩阵的归一化操作 四,图像处理素描(来源网络) f=imread(''); [VG,A,PPG] = colorgrad(f); ppg = im2uint8(PPG); ppgf = 255 - ppg; [M,N] = size(ppgf);T=200; ppgf1 = zeros(M,N); for ii = 1:M for jj = 1:N if ppgf(ii,jj)

数字图像处理实验报告

实验一灰度图像直方图统计 一、实验目的 掌握灰度图像直方图的概念和计算方法,了解直方图的作用和用途。提高学生编程能力,巩固所学知识。 二、实验内容和要求 (1)用Photoshop显示、了解图像平均明暗度和对比度等信息; (2)用MatLab读取和显示一幅灰度图像; (3)用MatLab编写直方图统计的程序。 三、实验步骤 1. 使用Photoshop显示直方图: 1)点击文件→打开,打开一幅图像; 2)对图像做增强处理,例如选择图像→调整→自动对比度对图像进行灰度拉伸,观察图像进行对比度增强前后的视觉变化。 3)利用统计灰度图像直方图的程序分别针对灰度拉伸前后的灰度图像绘制其灰度直方图,观察其前后的直方图变化。 2.用MatLab读取和显示一幅灰度图像; 3. 绘制图像的灰度直方图; function Display_Histogram()

Input=imread('timg.jpg'); figure(100); imshow(uint8(Input)); title('原始图像'); Input_Image=rgb2gray(Input); figure(200); imshow(uint8(Input_Image)); title('灰度图像'); sum=0; His_Image=zeros(1,256); [m,n]=size(Input_Image); for k=0:255 for I=1:m for j=1:n if Input_Image(I,j)==k His_Image(k+1)=His_Image(k+1)+1; end end end end figure(300); plot(His_Image); title('图像的灰度直方图'); 4.显示图像的灰度直方图。

电子科技大学-数字图像处理-课程设计报告

电子科技大学 数字图像处理课程设计 课题名称数字图像处理 院(系)通信与信息工程学院 专业通信工程 姓名 学号 起讫日期 指导教师

2015年12月15日 目录 摘要: (03) 课题一:图像的灰度级分辨率调整 (04) 课题二:噪声的叠加与频域低通滤波器应用 (06) 课题三:顶帽变换在图像阴影校正方面的应用 (13) 课题四:利用Hough变换检测图像中的直线 (15) 课题五:图像的阈值分割操作及区域属性 (20) 课题六:基于MATLAB?的GUI程序设计 (23)

结束语: (36) 参考文献: (37)

基于MATLAB?的数字图像处理课题设计 摘要 本文首先对数字图像处理的相关定义、概念、算法与常用变换进行了介绍;并通过七个课题实例,借助MATLAB?的图像处理工具箱(Computer Vision System Toolbox)对这些案例逐一实现,包括图像的灰度值调整、图像噪声的叠加、频域低通滤波器、阈值分割、Hough变换等,常用的图像变化与处理;然后通过MATLAB?的GUI程序设计,对部分功能进行模块化整合,设计出了数字图像处理的简易软件;最后给出了软件的帮助文件以及该简易程序的系统结构和m代码。 关键词:灰度值调整噪声图像变换 MATLAB? GUI设计

课题一:图像的灰度级分辨率调整 设计要求: 128,64,32,16,8,4,2,并在同一个figure窗将图像的灰度级分辨率调整至{} 口上将它们显示出来。 设计思路: 灰度级分辨率又称色阶,是指图像中可分辨的灰度级的数目,它与存储灰度级别所使用的数据类型有关。由于灰度级度量的是投射到传感器上的光辐射值的强度,所以灰度级分辨率又称为辐射计量分辨率。随着图像灰度级分辨率的的逐渐降低,图像中所包含的颜色数目将变得越来越少,从而在颜色维度造成图像信息量的退化。 MATLAB?提供了histeq函数用于图像灰度值的改变,调用格式如下: J = histeq(I,n) 其中J为变换后的图像,I为输入图像,n为变换的灰度值。依次改变n的值为 128、64、32、16、8、4、2 就可以得到灰度值分辨率为128、64、32、16、8、4、2 的输出图像。利用MATLAB?的subplot命令可以将不同灰度的图像放在同一个figure中方便对比。 课题实现: 该思路的MATLAB?源代码如下: in_photo=imread('lena.bmp'); %读入图片“lena.bmp”,位置在matlab当前工作区路径下D:\TempProject\Matlab\Works for i = [128,64,32,16,8,4,2] syms(['out_photo',num2str(i)]); %利用for循环定义7个变量,作为不同灰度值分辨率的输出变量 eval(['out_photo',num2str(i), '=histeq(in_photo,i)',';']); %histeq函数用于改变图像灰度值,用eval函数给变量循环赋值

武汉科技大学 数字图像处理实验报告

二○一四~二○一五学年第一学期电子信息工程系 实验报告书 班级:电子信息工程(DB)1102班姓名 学号: 课程名称:数字图像处理 二○一四年十一月一日

实验一图像直方图处理及灰度变换(2学时) 实验目的: 1. 掌握读、写、显示图像的基本方法。 2. 掌握图像直方图的概念、计算方法以及直方图归一化、均衡化方法。 3. 掌握图像灰度变换的基本方法,理解灰度变换对图像外观的改善效果。 实验内容: 1. 读入一幅图像,判断其是否为灰度图像,如果不是灰度图像,将其转化为灰度图像。 2. 完成灰度图像的直方图计算、直方图归一化、直方图均衡化等操作。 3. 完成灰度图像的灰度变换操作,如线性变换、伽马变换、阈值变换(二值化)等,分别使用不同参数观察灰度变换效果(对灰度直方图的影响)。 实验步骤: 1. 将图片转换为灰度图片,进行直方图均衡,并统计图像的直方图: I1=imread('pic.jpg'); %读取图像 I2=rgb2gray(I1); %将彩色图变成灰度图 subplot(3,2,1); imshow(I1); title('原图'); subplot(3,2,3); imshow(I2); title('灰度图'); subplot(3,2,4); imhist(I2); %统计直方图 title('统计直方图'); subplot(3,2,5); J=histeq(I2); %直方图均衡 imshow(J); title('直方图均衡'); subplot(3,2,6); imhist(J); title('统计直方图');

原 图 灰度图 01000 2000 3000统计直方图 100200直方图均衡 0统计直方图 100200 仿真分析: 将灰度图直方图均衡后,从图形上反映出细节更加丰富,图像动态范围增大,深色的地方颜色更深,浅色的地方颜色更前,对比更鲜明。从直方图上反应,暗部到亮部像素分布更加均匀。 2. 将图片进行阈值变换和灰度调整,并统计图像的直方图: I1=imread('rice.png'); I2=im2bw(I1,0.5); %选取阈值为0.5 I3=imadjust(I1,[0.3 0.9],[]); %设置灰度为0.3-0.9 subplot(3,2,1); imshow(I1); title('原图'); subplot(3,2,3); imshow(I2); title('阈值变换'); subplot(3,2,5); imshow(I3); title('灰度调整'); subplot(3,2,2); imhist(I1); title('统计直方图'); subplot(3,2,4);

数字图像处理实验报告

数字图像处理实验报告 实验一数字图像基本操作及灰度调整 一、实验目的 1)掌握读、写图像的基本方法。 2)掌握MATLAB语言中图像数据与信息的读取方法。 3)理解图像灰度变换处理在图像增强的作用。 4)掌握绘制灰度直方图的方法,理解灰度直方图的灰度变换及均衡化的方 法。 二、实验内容与要求 1.熟悉MATLAB语言中对图像数据读取,显示等基本函数 特别需要熟悉下列命令:熟悉imread()函数、imwrite()函数、size()函数、Subplot()函数、Figure()函数。 1)将MATLAB目录下work文件夹中的forest.tif图像文件读出.用到imread, imfinfo 等文件,观察一下图像数据,了解一下数字图像在MATLAB中的处理就是处理一个矩阵。将这个图像显示出来(用imshow)。尝试修改map颜色矩阵的值,再将图像显示出来,观察图像颜色的变化。 2)将MATLAB目录下work文件夹中的b747.jpg图像文件读出,用rgb2gray() 将其 转化为灰度图像,记为变量B。 2.图像灰度变换处理在图像增强的作用 读入不同情况的图像,请自己编程和调用Matlab函数用常用灰度变换函数对输入图像进行灰度变换,比较相应的处理效果。 3.绘制图像灰度直方图的方法,对图像进行均衡化处理 请自己编程和调用Matlab函数完成如下实验。 1)显示B的图像及灰度直方图,可以发现其灰度值集中在一段区域,用 imadjust函 数将它的灰度值调整到[0,1]之间,并观察调整后的图像与原图像的差别,调整后的灰

度直方图与原灰度直方图的区别。 2) 对B 进行直方图均衡化处理,试比较与源图的异同。 3) 对B 进行如图所示的分段线形变换处理,试比较与直方图均衡化处理的异同。 图1.1 分段线性变换函数 三、实验原理与算法分析 1. 灰度变换 灰度变换是图像增强的一种重要手段,它常用于改变图象的灰度范围及分布,是图象数字化及图象显示的重要工具。 1) 图像反转 灰度级范围为[0, L-1]的图像反转可由下式获得 r L s --=1 2) 对数运算:有时原图的动态范围太大,超出某些显示设备的允许动态范围, 如直接使用原图,则一部分细节可能丢失。解决的方法是对原图进行灰度压缩,如对数变换: s = c log(1 + r ),c 为常数,r ≥ 0 3) 幂次变换: 0,0,≥≥=γγc cr s 4) 对比拉伸:在实际应用中,为了突出图像中感兴趣的研究对象,常常要求 局部扩展拉伸某一范围的灰度值,或对不同范围的灰度值进行不同的拉伸处理,即分段线性拉伸: 其对应的数学表达式为:

数字图象处理课程设计

课程设计 课程名称___ 数字图像处理课程设计__ 题目名称一个简单的“photoshop”软件 学生学院信息工程学院 专业班级电子信息工程 学号 学生姓名 指导老师 2014年 1 月 3 日

一、课程设计题目 设计内容及要求: 1、独立设计方案,实现对图像的3种处理。 2、利用VC++实现软件框架:有操作菜单、能显示某项操作前后的图像。 3、查找相关算法,至少实现3种功能,比如:灰度增强、直方图显示、浮雕等等(底片化、二值化及平滑等实验内容不计算在内)。 4、将实验结果与其他软件实现的效果进行比较、分析。总结设计过程所遇到的问题。 二、课程设计目的 数字图像处理,就是用数字计算机及其他有关数字技术,对图像进行处理,以达到预期的目的。随着计算机的发展,图像处理技术在许多领域得到了广泛应用,数字图像处理已成为电子信息、通信、计算机、自动化、信号处理等专业的重要课程。 数字图像处理课程设计是在完成数字图像处理的相关理论的学习后,进行的综合性训练课程,其目的主要包括: 1、使学生进一步巩固数字图像处理的基本概念、理论、分析方法和实现方法; 2、增强学生应用VC++编写数字图像处理的应用程序及分析、解决实际问题的能力; 3、尝试将所学的内容解决实际工程问题,培养学生的工程实践能力,提高工科学生的就业能力。 三、设计内容 1、直方图显示 直方图显示就是统计图像某一灰度级出现的次数,保存到一个数组中。然后在一个直方图上画图显示出来。 2、直方图均衡化 直方图就是某一灰度级的象素个数占整幅图像的象素比h=nj/N,其中nj是灰度级在j的象素数,N是总象素数,扫描整幅图像得出的h的离散序列就是图像的直方图,h求和必然=1,所以直方图可以看成是象素对于灰度的概率分布函数。直方图均衡化算法分为三个步骤,第一步是统计直方图每个灰度级出现的次数,第二步是累计归一化的直方图,第三步是计算新的像素值。对于彩色的图片来说,直方图均衡化一般不能直接对R、G、B三个分量分别进行上述的操作,而要将RGB转换成HSV来对V分量进行直方图均衡化的操作。3、浮雕效果 浮雕效果就是将图像的变化部分突出显示,颜色相同部分淡化处理,使图像出现浮雕效果。实现图像浮雕效果的一般原理是,将图像上每个像素点与其对角线的像素点形成差值,使相似颜色值淡化,不同颜色值突出,从而产生纵深感,达到浮雕的效果,具体的做法是用处于对角线的2个像素值相减,再加上一个背景常数,一般为128而成。这样颜色变化大的地方色彩就明显,颜色变化小的地方因为差值几乎为零则成黑色。 4、均值滤波 图像平滑主要是为了消除噪声。噪声并不限于人眼所能看的见的失真和变形,有些噪声只有在进行图像处理时才可以发现。图像的常见噪声主要有加性噪声、乘性噪声和量化噪声等。图像中的噪声往往和信号交织在一起,尤其是乘性噪声,如果平滑不当,就会使图像本身的细节如边界轮廓、线条等变的模糊不清,如何既平滑掉噪声有尽量保持图像细节,是图像平滑主要研究的任务。 这次实验采用的均值滤波,原理是采用一个3*3的模板

数字图像处理技术应用课程报告

集中稀疏表示的图像恢复 董伟胜中国西安电子科技大学电子工程学院wsdong@https://www.360docs.net/doc/12569552.html, 张磊香港理工大学计算机系cslzhang@https://www.360docs.net/doc/12569552.html,.hk 石光明中国西安电子科技大学电子工程学院gmshi@https://www.360docs.net/doc/12569552.html, 摘要 本文对于图像恢复任务提出了一种新的称为集中稀疏表示(CSR)的稀疏表示模型。为了重建高还原度的图像,通过给定的字典,退化图像的稀疏编码系数预计应该尽可能接近那些未知的原始图像。然而,由于可用的数据是原始图像的退化版本(如噪声、模糊和/或者低采样率),正如许多现有的稀疏表示模型一样,如果只考虑局部的稀疏图像,稀疏编码系数往往不够准确。为了使稀疏编码更加准确,通过利用非局部图像统计,引入一个集中的稀疏性约束。为了优化,局部稀疏和非局部稀疏统一到一个变化的框架内。大量的图像恢复实验验证了我们的CSR模型在以前最先进的方法之上取得了令人信服的改进。 1、介绍 图像恢复(IR)目的是为了从,比如说通过一个低端摄像头或者在有限条件下得到图像的图像退化版本(例如噪声、模糊和/或者低采样率),来恢复一副高质量的图像。对于观察的图像y,IR问题可以表示成: y = Hx + v (1) 其中H是一个退化矩阵,x是原始图像的矢量,v是噪声矢量。由于IR的病态特性,尝试把观察模型和所需解决方案的先验知识合并到一个变分公式的正则化技术,已经被广泛地研究。对于正则方法,对自然图像适当的先验知识进行寻找和建模是最重要的关注点之一,因此学习自然图像先验知识的各种方法已经被提出来了【25,5,6,12】。 近年来,对于图像恢复基于建模的稀疏表示已经被证明是一种很有前途的模型【9,5,13,20,16,21,27,15,14】。在人类视觉系统【23,24】的研究中,已经发现细胞感受区域使用少量的从一个超完备的编码集中稀疏选出的结构化基元来编码自然图像。在数学上,一个x ∈ R N的信号可以表示为一个字典Φ中的几个原子的线性组合,例如,X ≈Φα,用|0 最小化:

2013数字图像处理课程设计报告

数字图像处理 课程设计报告 课设题目:彩色图像增强软件学院:信息科学与工程学院专业:电子与信息工程 班级: 1002501 姓名:曾小路 学号: 100250131 指导教师:赵占峰 哈尔滨工业大学(威海) 2013 年12月27日

目录 目录 .......................................................................................................................... I 一. 课程设计任务 (1) 二. 课程设计原理及设计方案 (2) 2.1 彩色图像基础 (2) 2.2 彩色模型 (2) 三. 课程设计的步骤和结果 (6) 3.1 采集图像 (6) 3.2 图像增强 (7) 3.3 界面设计 (9) 四. 课程设计总结 (12) 五. 设计体会 (13) 六. 参考文献 (14)

哈尔滨工业大学(威海)课程设计报告 一. 课程设计任务 1.1设计内容及要求: (1)、独立设计方案,根据所学知识,对由于曝光过度、光圈过小或图像亮度不均匀等情况下的彩色图像进行增强,提高图像的清晰度(通俗地讲,就是图像看起来干净、对比度高、颜色鲜艳)。 (2)、参考photoshop 软件,设计软件界面,对处理前后的图像以及直方图等进行对比显示; (3)、将实验结果与处理前的图像进行比较、分析。总结设计过程所遇到的问题。 1.2参考方案 1、实现图像处理的基本操作 学习使用matlab 图像处理工具箱,利用imread()语句读入图像,例如image=imread(flower.jpg),利用彩色图像模型转换公式,将RGB 类型图像转换为HSI 类型图像,显示各分量图像(如imshow(image)),以及计算和显示各分量图像直方图。 2、彩色图像增强实现 对HSI彩色模型图像的I分量进行对比度拉伸或直方图均衡化等处理,提高亮度图像的对比度。对S分量图像进行适当调整,使图像色彩鲜艳或柔和。 H 分量保持不变。将处理后的图像转换成RGB 类型图像,并进行显示。分析处理图像过程和结果存在的问题。 3、参照“photoshop”软件,设计图像处理软件界面 可设计菜单式界面,在功能较少的情况下,也可以设计按键式界面,视 功能多少而定;参考matlab 软件中GUI 设计,学习软件界面的设计 - 1 -

数字图像处理报告

数字图像处理的起源与应用 1.概述 数字图像处理(Digital Image Processing)是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。数字图像处理技术目前广泛应用于各个领域,其发挥的作用有效提高了人们的生产生活质量。 2.起源与发展 (1)20世纪 20 年代,数字图像处理最早应用于报纸行业。由于报纸行业信息传输的需要,一根海底电缆从英国伦敦连输到美国纽约,实现了第一幅数组照片的传送。(在当时那个年代如果不采用数字图像处理,一张图像传达的时间需要7 天,而借助数字图像处理技术仅耗费 3 小时)。 (2)20世纪50年代,当时的图像处理是以人为对象,以改善人的视觉效果为目的。 (3)20世纪60年代的美国喷气推进实验室是图像处理技术首次获得实际成功的应用,推动了数字图像处理这门学科的诞生。 (4)20世纪70年代英国EMI公司工程师Housfield发明了CT并获得了诺贝尔奖,这对人类的发展作出了划时代的贡献。借助计算机、人工智能等方面的快速发展,数字图像处理技术实现了更高层次的发展。相关工作人员已经着手研究如何使用计算机进行图像解释。 (5)20世纪 80 年代。研究人员将数字图像处理应用于地理信息系统。从这个阶段开始数字图像处理技术的应用领域不断扩大,在工业检测、遥感等方面也得到了广泛应用,在遥感方面实现了对卫星传送回来的图像的处理。 (6)20世纪 90 年代。数字图像处理技术就得到了一个快速发展,其中特别是小波理论和变换方法的诞生(Mallat在1988年有效地将小波分析应用于图像分解和重构),更好地实现了数字图像的分解与重构。 (7)进入到 21 世纪,借助计算机技术的飞速发展与各类理论的不断完善,数字图像处理技术的应用范围被拓宽,甚至已经在某些领域取得突破。从目前数字图像处理技术的特点进行分析,可以发现图像信息量巨大,在图像处理综合性方面显示出十分明显的优势,其中就借助了图像信息理论与通信理论的紧密联系。再加上数字图像处理技术具有处理精度高、灵活性强、再现性好、适用面广、信息压缩的潜力大等特点,因此已经成功地应用在各个领域。 3.应用 (1)航天和航空技术方面:早在1964年美国就利用图像处理技术对月球照片进行处理,并且成功地绘制出月球表面地图,这个重大的突破使得图像处理技术在航天技术中发挥着越来越重要的作用。“卡西尼”号飞船进入土星轨道后传回地球的土星环照片,“火星快车”拍摄到的火星山体滑坡照片,还有我国嫦娥探测器拍摄的月球表面照片,以及近来很火的“大疆”无人机航拍等等。这些照片都体现了数字图像处理技术在航空航天技术领域不可或缺的重要作用。 (2)遥感领域方面的应用:数字图像处理在遥感的应用,主要是获取地形地质及地面设施资料,矿藏探查、森林资源状况、海洋和农业等资源的调查、自然灾害预测预报、环境污染检测、气象卫星云图处理以及地面军事目标的识别。例

数字图像处理课程设计

数字图像处理课程设计报告 目录 一.实验目的 (3) 二.实验内容............ ................... . (3) 1.打开图像 (3) (1)、图像信息获取 (3) (2). RgbtoHsi(&rgb, &Hsi) (4) (3).OnMouseMove(UINT nFlags, CPoint point) (4) 2.标记Mark点 (5)

(1)标记可能的点 (5) (2)把可能标记的点变为标记点 (5) (3) EdgeIformation边缘标记 (6) (4)EdgeFilter边缘滤波 (6) 3.二值化 (7) 4.填洞 (8) 5收缩 (10) 6获取中心点 (11) 三.学习心得 1.错误总结 (16) 2.心得体 会 (17) 一.实验目的: 对血液细胞切片图片进行各种处理,最终得出细胞的数目、半径等信息 基于vc的红细胞识别统计系统设计 它主要以病人的血液样本为原始数据。经过一系列的图像处理和分析,识别出血液中的红细胞,并能给出红细胞的个数。而得到红细胞的个数以后,通过血液量的检测,就可以得出血液中红细胞的密度。该系统可以很方便的利用在临床上,大大提高速度和效率。

二、实验内容 基于VC++6.0软件下的细胞识别,通过细胞的标记、二值化、提取边缘、填洞、收缩、找中心点、计数等过程完成实验目的 1 . 打开图像 (1)图像信息获取 该步骤实现的功能是打开bmp格式的图像文件,要对图像进行操作,系统必须能调用图像。 打开bmp图像的具体步骤为 1.新建项目:--MFC AppWizard、工程名 2.拷贝cdib.h,cdib.cpp到工程文件夹,再向工程里添加 3.~Doc.h添加变量:m_pDib 4.~doc.cpp:变量(m_pDib):new、delete 5.~doc.cpp: Serialize() 6.~View.cpp: OnDraw() m_pDib->Draw() 2.RgbtoHsi(&rgb, &Hsi)

数字图像处理课程设计报告

课程设计报告书课程名称:数字图像处理 题目:数字图像处理的傅里叶变换 学生姓名: 专业:计算机科学与技术 班别:计科本101班 学号: 指导老师: 日期: 2013 年 06 月 20 日

数字图像处理的傅里叶变换 1.课程设计目的和意义 (1)了解图像变换的意义和手段 (2)熟悉傅里叶变换的基本性质 (3)热练掌握FFT的方法反应用 (4)通过本实验掌握利用MATLAB编程实现数字图像的傅里叶变换 通过本次课程设计,掌握如何学习一门语言,如何进行资料查阅搜集,如何自己解决问题等方法,养成良好的学习习惯。扩展理论知识,培养综合设计能力。 2.课程设计内容 (1)熟悉并掌握傅立叶变换 (2)了解傅立叶变换在图像处理中的应用 (3)通过实验了解二维频谱的分布特点 (4)用MATLAB实现傅立叶变换仿真 3.课程设计背景与基本原理 傅里叶变换是可分离和正交变换中的一个特例,对图像的傅里叶变换将图像从图像空间变换到频率空间,从而可利用傅里叶频谱特性进行图像处理。从20世纪60年代傅里叶变换的快速算法提出来以后,傅里叶变换在信号处理和图像处理中都得到了广泛的使用。 3.1课程设计背景 数字图像处理(Digital Image Processing)又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。是通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。 3.2 傅里叶变换 (1)应用傅里叶变换进行数字图像处理 数字图像处理(digital image processing)是用计算机对图像信息进行处理的一门技术,使利用计算机对图像进行各种处理的技术和方法。 20世纪20年代,图像处理首次得到应用。20世纪60年代中期,随电子计算机的发展得到普遍应用。60年代末,图像处理技术不断完善,逐渐成为一个新兴的学科。利用数字图像处理主要是为了修改图形,改善图像质量,或是从图像中提起有效信息,还有利用数字图像处理可以对图像进行体积压缩,便于传输和保存。数字图像处理主要研究以下内容:傅立叶变换、小波变换等各种图像变换;对图像进行编码和压缩;采用各种方法对图像进行复原和增强;对图像进行分割、描述和识别等。随着技术的发展,数字图像处理主要应用于通讯技术、宇宙探索遥感技术和生物工程等领域。

东南大学数字图像处理实验报告

数字图像处理 实验报告 学号:04211734 姓名:付永钦 日期:2014/6/7 1.图像直方图统计 ①原理:灰度直方图是将数字图像的所有像素,按照灰度值的大小,统计其所出现的频度。 通常,灰度直方图的横坐标表示灰度值,纵坐标为半个像素个数,也可以采用某一灰度值的像素数占全图像素数的百分比作为纵坐标。 ②算法: clear all PS=imread('girl-grey1.jpg'); %读入JPG彩色图像文件figure(1);subplot(1,2,1);imshow(PS);title('原图像灰度图'); [m,n]=size(PS); %测量图像尺寸参数 GP=zeros(1,256); %预创建存放灰度出现概率的向量 for k=0:255 GP(k+1)=length(find(PS==k))/(m*n); %计算每级灰度出现的概率end figure(1);subplot(1,2,2);bar(0:255,GP,'g') %绘制直方图 axis([0 255 min(GP) max(GP)]); title('原图像直方图') xlabel('灰度值') ylabel('出现概率') ③处理结果:

原图像灰度图 100 200 0.005 0.010.0150.020.025 0.030.035 0.04原图像直方图 灰度值 出现概率 ④结果分析:由图可以看出,原图像的灰度直方图比较集中。 2. 图像的线性变换 ①原理:直方图均衡方法的基本原理是:对在图像中像素个数多的灰度值(即对画面起主 要作用的灰度值)进行展宽,而对像素个数少的灰度值(即对画面不起主要作用的灰度值)进行归并。从而达到清晰图像的目的。 ②算法: clear all %一,图像的预处理,读入彩色图像将其灰度化 PS=imread('girl-grey1.jpg'); figure(1);subplot(2,2,1);imshow(PS);title('原图像灰度图'); %二,绘制直方图 [m,n]=size(PS); %测量图像尺寸参数 GP=zeros(1,256); %预创建存放灰度出现概率的向量 for k=0:255

数字图像处理课程设计(实验报告)

上海理工大学 计算机工程学院 实验报告 实验名称红细胞数目统计课程名称数字图像处理 姓名王磊学号0916020226 日期2012-11-27 地点图文信息中心成绩教师韩彦芳

一、设计内容: 主题:《红细胞数目检测》 详细说明:读入红细胞图片,通过中值滤波,开运算,闭运算,以及贴标签等方法获得细胞个数。 二、现实意义: 细胞数目检测在现实生活中的意义主要体现在医学上的作用,可通过细胞数目的检测来查看并估计病人或动物的血液中细胞数,如估测血液中红细胞、白细胞、血小板、淋巴细胞等细胞的数目,同时也可检测癌细胞的数目来查看医疗效果,根据这一系列的指标来对病人或动物进行治疗,是具有极其重要的现实作用的。 三、涉及知识内容: 1、中值滤波 2、开运算 3、闭运算 4、二值化 5、贴标签 四、实例分析及截图效果: (1)代码如下: 1、程序中定义图像变量说明 (1)Image--------------------------------------------------------------原图变量;

(2)Image_BW-------------------------------------------------------值化图象; (3)Image_BW_medfilt-------------------------中值滤波后的二值化图像; (4)Optimized_Image_BW---通过“初次二值化图像”与“中值滤波后的二值化图像”进行“或”运算优化图像效果; (5)Reverse_Image_BW--------------------------优化后二值化图象取反;(6)Filled_Image_BW----------------------已填充背景色的二进制图像;(7)Open_Image_BW--------------------------------------开运算后的图像; 2、实现代码: %-------图片前期处理------------------- %第一步:读取原图,并显示 A = imread('E:\红细胞3.png'); Image=rgb2gray(A); %RGB转化成灰度图 figure,imshow(Image); title('【原图】'); %第二步:进行二值化 Theshold = graythresh(Image); %取得图象的全局域值 Image_BW = im2bw(Image,Theshold); %二值化图象 figure,imshow(Image_BW); title('【初次二值化图像】'); %第三步二值化图像进行中值滤波 Image_BW_medfilt= medfilt2(Image_BW,[13 13]); figure,imshow(Image_BW_medfilt); title('【中值滤波后的二值化图像】'); %第四步:通过“初次二值化图像”与“中值滤波后的二值化图像”进行“或”运算优化图像效果 Optimized_Image_BW = Image_BW_medfilt|Image_BW; figure,imshow(Optimized_Image_BW); title('【进行“或”运算优化图像效果】'); %第五步:优化后二值化图象取反,保证:‘1’-〉‘白色’,‘0’-〉‘黑色’ %方便下面的操作 Reverse_Image_BW = ~Optimized_Image_BW; figure,imshow(Reverse_Image_BW); title('【优化后二值化图象取反】');

数字图像处理课设报告

数字图像处理课程设计报告 细胞识别 目录 第一部分 1、实验课题名称----------------------------------------------------------------------------------3 2、实验目的----------------------------------------------------------------------------------------3

3、实验内容概要----------------------------------------------------------------------------------3 第二部分 1、建立工程文件----------------------------------------------------------------------------------3 2、图像信息获取----------------------------------------------------------------------------------4 3、如何建立下拉菜单----------------------------------------------------------------------------6 4、标记Mark点------------------------------------------------------------------------------------6 5、二值化---------------------------------------------------------------------------------------------9 6、填洞------------------------------------------------------------------------------------------------9 7、收缩------------------------------------------------------------------------------------------------10 8、获取中心点--------------------------------------------------------------------------------------11 9、细胞计数-----------------------------------------------------------------------------------------13 10、All-steps-----------------------------------------------------------------------------------------13 11、扩展功能---------------------------------------------------------------------------------------14 第三部分 12、各步骤结果和错误举例--------------------------------------------------------------------16 第四部分 13、心得体会----------------------------------------------------------------------------------------22 第一部分 1、实验课题:细胞识别 2、实验目的:对血液细胞切片图片进行各种处理,最终得出细胞的数目、面积等信息。 3、实验内容概要:基于VC++软件下的细胞识别,通过细胞的标记、二值化、

数字图像处理报告

《数字图像处理》 实验报告 院系:XXXXX 学号:XXXXXXX 姓名:XXX 指导老师:XX XX 完成时间:2020.02.02

题目一: (1)将宽为2n的正方形图像,用FFT算法从空域变换到频域,并用频域图像的模来进行显示; (2)使图像能量中心,对应到几何中心,并用频域图像的模来进行显示; (3)将频域图象,通过FFT逆变换到空域,并显示。 该题实现环境为操作系统:Windows 10 操作系统;编程环境:VS2013;内部核心处理算法库:OpenCV。 此题目的具体实现过程及其展示如下所示:

} imshow("原始图像", srcImage); //将输入图像延扩到最佳的尺寸,边界用0补充 int m = getOptimalDFTSize(srcImage.rows); int n = getOptimalDFTSize(srcImage.cols); //将添加的像素初始化为0. Mat padded; copyMakeBorder(srcImage, padded,0, m - srcImage.rows,0, n -srcImage.cols, BORDER_CONSTANT, Scalar::all(0)); //为傅立叶变换的结果(实部和虚部)分配存储空间。 //将planes数组组合合并成一个多通道的数组complexI Mat planes[]={ Mat_(padded), Mat::zeros(padded.size(), CV_32F)}; Mat complexI; merge(planes,2, complexI); //进行就地离散傅里叶变换 dft(complexI, complexI); //将复数转换为幅值,即=> log(1 + sqrt(Re(DFT(I))^2 + Im(DFT(I))^2)) split(complexI, planes); // 将多通道数组complexI分离成几个单通道数组,planes[0] = Re(DFT(I), //planes[1] = Im(DFT(I))

相关文档
最新文档