2020-2021学年广东省东莞市虎门捷胜中学八年级下期中数学试卷

合集下载

广东省东莞市2020版八年级下学期数学期中考试试卷(II)卷

广东省东莞市2020版八年级下学期数学期中考试试卷(II)卷

广东省东莞市2020版八年级下学期数学期中考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019八上·余姚期中) 如图所示,下列图形中不是轴对称图形的是()A .B .C .D .2. (2分)若在实数范围内有意义,则a的取值范围是()A . a>3B . a≥3C . a≤3D . a<33. (2分)一元二次方程的一次项系数、常数项分别是()。

A . -1,1B . -1,-1C . 1,1D . 1,-14. (2分)(2019·萧山模拟) 某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确的是()A . 甲运动员得分的极差大于乙运动员得分的极差B . 甲运动员得分的的中位数大于乙运动员得分的的中位数C . 甲运动员的得分平均数大于乙运动员的得分平均数D . 甲运动员的成绩比乙运动员的成绩稳定5. (2分)已知如图,AD∥CE,则∠A+∠B+∠C=()A . 180°B . 270°C . 360°D . 540°6. (2分)将二次函数y=x2-2x+3化为y=(x-h)2+k的形式,结果为()A . y=(x+1)2+4B . y=(x-1)2+4C . y=(x+1)2+2D . y=(x-1)2+27. (2分)(2018·牡丹江模拟) 一组数据1,2,的平均数为2,另一组数据-1,,1,2,b的唯一众数为-1,则数据-1,,,1,2的中位数为()A . -1B . 1C . 2D . 38. (2分)(2019·惠民模拟) 同一根细铁丝可以折成边长为10cm的等边三角形,也可以折成面积为50cm2的矩形.设所折成的矩形的一边长为xcm,则可列方程为()A . x(10-x)=50B . x(30-x)=50C . x(15-x)=50D . x(30-2x)=509. (2分)在矩形ABCD中,点A关于角B的角平分线的对称点为E,点E关于角C的角平分线的对称点为F.若AD=AB=,则AF2=()A . 8-4B . 10-4C . 8+4D . 10+410. (2分)(2017·深圳模拟) 下列说法正确的是().A . 将抛物线 = 向左平移4个单位后,再向下平移2个单位,则此时抛物线的解析式是.B . 方程有两个不相等的实数根.C . 平行四边形既是中心对称图形又是轴对称图形.D . 平分弦的直径垂直于弦,并且平分这条弦所对的两条弧.二、填空题 (共8题;共8分)11. (1分) (2017八下·文安期中) 计算下列各式:(1)(﹣4 )﹣(3 ﹣2 )(2).12. (1分)若x2=3x,则x=________.13. (1分) (2019八上·天台月考) 若正多边形的一个外角等于40°,则这个多边形是正________边形.14. (1分) (2020八上·昌平期末) 六个正整数的中位数是4.5,众数是7,极差是6,这六个正整数的和为________.15. (1分)如图,四边形ABCD的对角线相交于点O,AO=CO,请添加一个条件________(只添一个即可),使四边形ABCD是平行四边形.16. (1分)命题“任意多面体的面至少有一个是三角形或四边形或五边形”的结论的否定是________.17. (1分) (2017八下·萧山期中) 我们已经学习了一元二次方程的多种解法:如因式分解法,开平方法,配方法和公式法,还可以运用十字相乘法,请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程.①x2﹣4x﹣1=0②x(2x+1)=8x﹣3③x2+3x+1=0④x2﹣9=4(x﹣3)我选择第________个方程.18. (1分)(2017·昌乐模拟) 如图,在▱ABCD中,DB=DC,∠C的度数比∠ABD的度数大54°,AE⊥BD于点E,则∠DAE的度数等于________.三、解答题 (共7题;共44分)19. (10分) (2019八下·广安期中) 计算题:(1)(2 )(2 )(2)(4 )(3)20. (10分)(2017·金乡模拟) 解方程:x2+4x﹣5=0.21. (3分)(2017·陕西) 养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A,B,C,D四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在________区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)22. (10分) (2016九上·宁江期中) 已知关于x的一元二次方程x2+2kx+k2﹣k=0(k>0).问x=0可能是方程一个根吗?若是,求出k值及方程的另一个根,若不是,请说明理由.23. (5分) (2016九上·平潭期中) 在长为8cm、宽为5cm的矩形的四个角上分别截去四个全等的小正方形,使得留下的图形(图中阴影部分)面积是原矩形面积的80%,求所截去小正方形的边长.24. (3分) (2019八下·广安期中) 阅读下面材料,回答问题:在化简的过程中,小张和小李的化简结果不同;小张的化简如下:;小李的化简如下:;(1)请判断谁的化简结果是正确,谁的化简结果是错误的,并说明理由.(2)请你利用上面所学的方法化简.25. (3分) (2017八下·路南期末) 如图,点O是△ABC内一点,连结OB、OC ,并将AB、OB、OC、AC的中点D、E、F、G依次连接,得到四边形DEFG .(1)求证:四边形DEFG是平行四边形;(2)如果∠BOC=90°,∠OCB=30°,OB=2,求EF的长.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、11-2、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共7题;共44分) 19-1、19-2、19-3、20-1、21-1、21-2、21-3、22-1、23-1、24-1、24-2、25-1、25-2、。

2020-2021学年八年级数学下学期期中测试卷(人教版,广东专用)(解析版)01

2020-2021学年八年级数学下学期期中测试卷(人教版,广东专用)(解析版)01

2019-2020学年八年级下学期期中考试数学试(测试范围:第16章~第19章第1节,满分:120分,时间:90分钟)一、单选题1.下列式子是最简二次根式的是()A B.C D2【答案】BA,被开方数中含有分母2,不是最简二次根式,故错误;B,符合最简二次根式的条件,故正确;C=,不是最简二次根式,故错误;D,被开方数8还可以开方=故选:B.2.下列计算正确的是()A B C D.【答案】C解:AB3,故不正确;CD选项:23.关于函数y=2x,下列说法错误的是()A.它是正比例函数B.图象经过(1,2)C.图象经过一、三象限D.当x>0,y<0【答案】D关于函数y=2x,A、它是正比例函数,说法正确,不合题意;B、当x=1时,y=2,图象经过(1,2),说法正确,不合题意;C 、图象经过一、三象限,说法正确,不合题意;D 、当x >0时,y >0,说法错误,符合题意;4.a 、b 、c 为ABC ∆三边,下列条件不能判断它是直角三角形的是( ) A .222a c b =-B .3a =,4b =,5c =C .::3:4:5A B C ∠∠∠=D .5a k =,12b k =,13c k =(k 为正整数)【答案】C解:A. 222a c b =-即222a b c +=,根据勾股定理逆定理可判断△ABC 为直角三角形;B. 3a =,4b =,5c =,因为222345+=,即222a b c +=,,根据勾股定理逆定理可判断△ABC 为直角三角形;C. ::3:4:5A B C ∠∠∠= 根据三角形内角和定理可得最大的角518075345C ∠=︒⨯=︒++,可判断△ABC 为锐角三角形;D. 5a k =,12b k =,13c k =(k 为正整数),因为2222(5)(12)(13)169k k k k +==,即222a b c +=,根据勾股定理逆定理可判断△ABC 为直角三角形; 5.下列各曲线中,表示y 是x 的函数的是( )A .B .C .D .【答案】B6 )A B C D 【答案】C7.下列说法中正确的是( ) A .对角线相等的四边形是矩形B .对角线互相垂直的四边形是正方形C.平行四边形的对角线平分一组对角D.矩形的对角线相等且互相平分【答案】D∵对角线相等的平行四边形是矩形,∴A不正确;∵对角线互相垂直的矩形是正方形,∴B不正确;∵平行四边形的对角线互相平分,菱形的对角线平分一组对角,∴C不正确;∵矩形的对角线互相平分且相等,∴D正确;8.如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=100°,则∠DAE的度数为()A.20°B.25°C.30°D.35°【答案】A∵▱ABCD与▱DCFE的周长相等,且CD=CD,∴AD=DE,∵∠DAE=∠DEA,∵∠BAD=60°,∠F=100°,∴∠ADC=120°,∠CDE═∠F=100°,∴∠ADE=360°﹣120°﹣100°=140°,∴∠DAE=(180°﹣140°)÷2=20°,9.如图,已知菱形的两条对角线分别为6cm和8cm,则这个菱形的高DE为()A.2.4cm B.4.8cm C.5cm D.9.6cm 【答案】B解:如图所示:∵四边形ABCD是菱形,∴OA=12AC=4,OB=12BD=3,AC⊥BD,∴5==,∵菱形ABCD的面积=AB•DE=12AC•BD=12×8×6=24,∴DE=245=4.8;10.如图,点E F G H、、、分别是四边形ABCD边AB、BC、CD、DA的中点.则下列说法:①若AC BD=,则四边形EFGH为矩形;②若AC BD⊥,则四边形EFGH为菱形;③若四边形EFGH是平行四边形,则AC与BD互相平分;④若四边形EFGH是正方形,则AC与BD互相垂直且相等.其中正确的个数是()A.1 B.2 C.3 D.4【答案】A因为一般四边形的中点四边形是平行四边形,当对角线BD=AC时,中点四边形是菱形,当对角线AC⊥BD时,中点四边形是矩形,当对角线AC=BD,且AC ⊥BD 时,中点四边形是正方形, 故④选项正确, 二、填空题11.函数y=√x –1的自变量x 的取值范围是 . 【答案】x≥012.()2210,a b a b c ++-=++=则_______________。

2020-2021东莞市初二数学下期中模拟试题(带答案)

2020-2021东莞市初二数学下期中模拟试题(带答案)

2020-2021东莞市初二数学下期中模拟试题(带答案)一、选择题1.下列二次根式中,最简二次根式是( )A.10B.12C.12D.82.下列四组线段中,可以构成直角三角形的是()A.1,2,3B.2,3,4C.1, 2,3D.2,3,53.如图,在菱形ABCD中,AB=6,∠ABC=60°,M为AD中点,P为对角线BD上一动点,连接PA和PM,则PA+PM的最小值是( )A.3 B.2C.3D.64.把式子1aa-号外面的因式移到根号内,结果是()A.a B.a-C.a-D.a--5.函数y=11xx+-中,自变量x的取值范围是()A.x>-1B.x>-1且x≠1C.x≥一1D.x≥-1且x≠16.如图,菱形ABCD的对角线AC,BD相交于点O,E,F分别是AB,BC边上的中点,连接EF.若3EF=,BD=4,则菱形ABCD的周长为()A.4B.46C.47D.287.如图,函数y=2x和y=ax+4的图象相交于A(m,3),则不等式2x ax+4<的解集为()A.3x2>B.x3>C.3x2<D.x3<8.如图,在Rt ABC ∆中,90ACB ∠=︒,CD ,CE 分别是斜边上的高和中线,30B ∠=︒,4CE =,则CD 的长为( )A .25B .4C .23D .59.在▱ABCD 中,已知AB =6,AD 为▱ABCD 的周长的27,则AD =( ) A .4B .6C .8D .10 10.有一个直角三角形的两边长分别为3和4,则第三边的长为( )A .5B .7C .5D .5或7 11.如图,矩形纸片ABCD ,3AB =,点E 在BC 上,且AE EC =.若将纸片沿AE 折叠,点B 恰好落在AC 上,则矩形ABCD 的面积是( )A .12B .63C .93D .1512.在水平地面上有一棵高9米的大树, 和一棵高4米的小树,两树之间的水平距离是12米,一只小鸟从小树的顶端飞到大树的顶端,则小鸟至少飞行( )A .12米B .13米C .9米D .17米二、填空题13.菱形ABCD 中,边长为10,对角线AC =12.则菱形的面积为__________.14.1x -x 的取值范围是 _____.15.计算:221)=__________.16.一组数据4、5、a 、6、8的平均数5x =,则方差2s =________.17.计算:662)=________.18.如图,矩形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AD 和BC 于点E 、F ,AB=2,BC=4,则图中阴影部分的面积为_______.19.如图,四边形ABCD 为菱形,8AC =,6DB =,DH AB ⊥于点H ,则BH =__________.20.矩形两条对角线的夹角为60°,矩形的较短的一边为5,则矩形的对角线的长是_____.三、解答题21.先化简,再求值:2222211()a ab b a b a b-+÷--,其中21a =,21b = 22.(1)用>=<、、填空 32 21②23 3252 2365 5220182017 20172016(2)观察.上式,请用含1)1,(,1n n n n -+≥的式子,把你发现的规律表示出来,并证明结论的正确性.23.善于学习的小明在学习了一次方程(组),一元一次不等式和一次函数后,把相关知识归纳整理如下:(1)请你根据以上方框中的内容在下面数字序号后写出相应的结论: ① ;② ;③ ;④ ;(2)如果点C 的坐标为(1,3),那么不等式kx +b ≤k 1x +b 1的解集为 .24.已知,如图,BD 平分ABC ∠交AC 于点D ,点E 、F 分别是AB 、BC 的中点,连接DE ,且// DE BC .(1) 求证:BE CF =;(2)连接DF ,若5AB BC ==,6AC =,求四边形BEDF 的面积.25.一次函数y 1=kx +b 和y 2=﹣4x +a 的图象如图所示,且A (0,4),C (﹣2,0). (1)由图可知,不等式kx +b >0的解集是 ;(2)若不等式kx +b >﹣4x +a 的解集是x >1.①求点B 的坐标;②求a 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,结合选项求解即可.【详解】A是最简二次根式,本选项正确.B==C2A=不是最简二次根式,本选项错误.故选A.【点睛】本题考查了最简二次根式的知识,解答本题的关键在于掌握最简二次根式的概念,对各选项进行判断.2.C解析:C【解析】【分析】求出两小边的平方和、最长边的平方,看看是否相等即可.【详解】A.∵12+22≠32,∴以1,2,3为边组成的三角形不是直角三角形,故本选项错误;B.∵22+32≠42,∴以2,3,4为边组成的三角形不是直角三角形,故本选项错误;C.∵12+)2=2,∴以1选项正确;D)2+32≠523,5为边组成的三角形不是直角三角形,故本选项错误.故选C.【点睛】本题考查了勾股定理的逆定理的应用,能熟记勾股定理的逆定理的内容是解答此题的关键.3.C解析:C【解析】首先连接AC ,交BD 于点O ,连接CM ,则CM 与BD 交于点P ,此时PA+PM 的值最小,由在菱形ABCD 中,AB=6,∠ABC=60°,易得△ACD 是等边三角形,BD 垂直平分AC ,继而可得CM ⊥AD ,则可求得CM 的值,继而求得PA+PM 的最小值.【详解】解:连接AC ,交BD 于点O ,连接CM ,则CM 与BD 交于点P ,此时PA+PM 的值最小,∵在菱形ABCD 中,AB=6,∠ABC=60°,∴∠ADC=∠ABC=60°,AD=CD=6,BD 垂直平分AC ,∴△ACD 是等边三角形,PA=PC ,∵M 为AD 中点,∴DM=AD=3,CM ⊥AD ,∴CM==3, ∴PA+PM=PC+PM=CM=3. 故选:C .【点睛】此题考查了最短路径问题、等边三角形的判定与性质、勾股定理以及菱形的性质.注意准确找到点P 的位置是解此题的关键. 4.D解析:D【解析】【分析】先根据二次根式有意义的条件求出a 的范围,再把根号外的非负数平方后移入根号内即可.【详解】 要使1a- 10a∴-≥ 0a ∴<211a a a a∴-=-⨯=--故选D .本题考查了二次根式的意义,解题的关键是能正确把根号外的代数式或数字移到根号内部,它是开方的逆运算.从根号外移到根号内要平方,并且移到根号内与原来根号内的式子是乘积的关系.如果根号外的数字或式子是负数时,代表整个式子是负值,要把负号留到根号外再平方后移到根号内.5.D解析:D【解析】根据题意得:1010x x +≥⎧⎨-≠⎩, 解得:x≥-1且x≠1.故选D .6.C解析:C【解析】【分析】首先利用三角形的中位线定理得出AC ,进一步利用菱形的性质和勾股定理求得边长,得出周长即可.【详解】解:∵E ,F 分别是AB ,BC 边上的中点,∴∵四边形ABCD 是菱形,∴AC ⊥BD ,OA=12OB=12BD=2,∴,∴菱形ABCD 的周长为.故选C .7.C解析:C【解析】【分析】【详解】解:∵函数y=2x 和y=ax+4的图象相交于点A (m ,3),∴3=2m ,解得m=32. ∴点A 的坐标是(32,3).∵当3x 2<时,y=2x 的图象在y=ax+4的图象的下方, ∴不等式2x <ax+4的解集为3x 2<. 故选C .8.C解析:C【解析】【分析】由直角三角形斜边上的中线求得AB 的长度,再根据含30°角直角三角形的性质求得AC 的长度,最后通过解直角△ACD 求得CD 的长度.【详解】如图,在Rt ABC ∆中,90ACB ∠=︒,CE 是斜边上的中线,4CE =,28AB CE ∴==.30B ∠=︒,60A ∴∠=︒,142AC AB ==. CD 是斜边上的高,30ACD ∠=︒122AD AC ∴== 22224223CD AC AD ∴=-=-=故选:C .【点睛】考查了直角三角形斜边上的中线、含30度角直角三角形的性质.直角三角形斜边上的中线等于斜边的一半.9.C解析:C【解析】【分析】由平行四边形的性质和已知条件得出AD=27(AB+BC+CD+AD ),求出AD 即可. 【详解】∵四边形ABCD是平行四边形,∴CD=AB=6,AD=BC,∵AD27=(AB+BC+CD+AD),∴AD27=(2AD+12),解得:AD=8,∴BC=8;故选C.【点睛】本题考查了平行四边形的性质以及周长的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.10.D解析:D【解析】【分析】分4是直角边、4是斜边,根据勾股定理计算即可.【详解】当4是直角边时,斜边,当4是斜边时,另一条直角边=故选:D.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.11.C解析:C【解析】【分析】证明30BAE EAC ACE,求出BC即可解决问题.【详解】解:四边形ABCD是矩形,90B∴∠=︒,EA=EC,EAC ECA∴∠=∠,EAC BAE,又∵将纸片沿AE折叠,点B恰好落在AC上,30BAE EAC ACE,3AB=,333BC AB,∴矩形ABCD的面积是33393AB BC.故选:C.【点睛】本题考查矩形的性质,翻折变换,直角三角形30角性质等知识,解题的关键是灵活运用所学知识解决问题.12.B解析:B【解析】【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【详解】如图,设大树高为AB=9m,小树高为CD=4m,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4m,EC=12m,AE=AB-EB=9-4=5m,在Rt△AEC2222==.++AE EC m51213故小鸟至少飞行13m.故选:B.【点睛】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.二、填空题13.96【解析】【分析】已知ABAC根据勾股定理即可求得AO的值根据对角线长即可计算菱形ABCD的面积【详解】解:∵四边形ABCD是菱形AC=12∴AO=AC=6∵菱形对角线互相垂直∴△ABO为直角三角解析:96【解析】【分析】已知AB,AC,根据勾股定理即可求得AO的值,根据对角线长即可计算菱形ABCD的面积.【详解】解:∵四边形ABCD是菱形,AC=12,∴AO=12AC=6,∵菱形对角线互相垂直,∴△ABO为直角三角形,∴BO=22AB OA=8,BD=2BO=16,∴菱形ABCD的面积=12AC•BD=12×12×16=96.故答案为:96.【点睛】本题考查了菱形对角线互相垂直平分的性质,菱形各边长相等的性质,勾股定理在直角三角形中的运用,本题中根据勾股定理求AO的值是解题的关键.14.x≤1【解析】由题意得:1-x≥0解得x≤1故答案为x≤1点睛:二次根式有意义的条件是:a≥0解析:x≤1【解析】由题意得:1-x≥0,解得x≤1.故答案为x≤1.a a≥0.15.3+2【解析】【分析】【详解】解:故答案为:3+2解析:2【解析】【分析】【详解】解:222(2+1)2)2+12故答案为:2.16.4【解析】【分析】首先根据其平均数为5求得a的值然后再根据方差的计算方法计算即可【详解】解:根据题意得(4+5+a+6+8)=5×5解得a=2则这组数据为45268的平均数为5所以这组数据的方差为s解析:4【解析】【分析】首先根据其平均数为5求得a的值,然后再根据方差的计算方法计算即可.【详解】解:根据题意得(4+5+a+6+8)=5×5,解得a=2,则这组数据为4,5,2,6,8的平均数为5,所以这组数据的方差为s2= 15[(4-5)2+(5-5)2+(2-5)2+(6-5)2+(8-5)2]=4.故答案为:4【点睛】本题考查方差的定义、意义、计算公式,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.17.2【解析】试题解析:原式=()2-22=6-4=2解析:2【解析】试题解析:原式=)2-22=6-4=2.18.4【解析】【分析】根据矩形的性质可得阴影部分的面积等于矩形面积的一半即可求得结果【详解】由图可知阴影部分的面积故答案为:4考点:本题考查的是矩形的性质点评:解答本题的关键是根据矩形的性质得到△DOE解析:4【解析】【分析】根据矩形的性质可得阴影部分的面积等于矩形面积的一半,即可求得结果.【详解】由图可知,阴影部分的面积1424 2=⨯⨯=故答案为:4考点:本题考查的是矩形的性质点评:解答本题的关键是根据矩形的性质得到△DOE的面积等于△BOF的面积,从而可以判断阴影部分的面积等于矩形面积的一半.19.【解析】【分析】由四边形ABCD是菱形AC=8BD=6可推出AD=AB=5由面积的可列出关于DH的方程求出DH的长度利用勾股定理即可求出BH的长度【详解】∵四边形ABCD是菱形AC=8BD=6∴AO解析:18 5.【解析】【分析】由四边形ABCD是菱形,AC=8,BD=6可推出AD=AB=5,由ABD∆面积的可列出关于DH的方程,求出DH的长度,利用勾股定理即可求出BH的长度.【详解】∵四边形ABCD是菱形,AC=8,BD=6,∴AO=4,OD=3,AC⊥BD,∴2234+,∵DH⊥AB,∴12⨯AO×BD=12⨯DH×AB,∴4×6=5×DH,∴DH=245,∴222465⎛⎫- ⎪⎝⎭=185.【点睛】本题考查的考点是菱形的性质及勾股定理,灵活运用菱形的性质及勾股定理是解题的关键. 20.10【解析】【分析】首先根据题意画出图形然后再根据矩形两条对角线的夹角为60°证得△AOB是等边三角形即可解答本题【详解】解:如图:∵四边形ABCD是矩形∴OA=ACOB=BDAC=BD∴OA=OB解析:10【解析】【分析】首先根据题意画出图形,然后再根据矩形两条对角线的夹角为60°,证得△AOB是等边三角形,即可解答本题.【详解】解:如图:∵四边形ABCD是矩形,∴OA=12AC,OB=12BD,AC=BD∴OA=OB,∵∠A0B=60°,∴△AOB是等边三角形,∴OA=OB=AB=5,∴AC=2OA=10,即矩形对角线的长为10.故答案为:10.【点睛】本题考查了矩形的性质以及等边三角形的判定与性质,弄清题意、画出图形是解答本题的关键.三、解答题21.ab a b -+,24-. 【解析】【分析】首先通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.【详解】 解:原式=a b ab ab a b b a a b -⋅=-+-+. ∵ab =)21211=,a +b =22 2422=--. 22.(1)<,<,<,<,<;(211n n n n +<- 【解析】【分析】(1)首先用1除以每个数,求出商是多少;再比较出它们商的大小;然后根据商越大,则原来的数就越小,判断出它们的大小关系即可;(2)根据(111n n n n +<-1+1n n +-n【详解】解:(1) 3+23232(32)(32)=--+2+12121(21)(21)=--+ 3+221>1;2==∵>∴22=2=2>+2<2=2=2>2==>故答案为:<;<;<;<;<;(2<证明:因为22n =+ (24n =②②-①得(222n -=-因为1n ≥<n <所以(220->200n>>∴>【点睛】此题主要考查了实数大小的比较,二次根式的性质,以及不等式的性质,解答此题的关键是要明确:被除数一定时,商越大,则除数越小. 23.(1)①kx +b =0,②11y kx b y k x b =+⎧⎨=+⎩,③kx +b >0,④kx +b <0;(2)x ≥1. 【解析】【分析】(1)①由于点B 是函数y=kx+b 与x 轴的交点,因此B 点的横坐标即为方程kx+b=0的解;②因为C 点是两个函数图象的交点,因此C 点坐标必为两函数解析式联立所得方程组的解;③函数y=kx+b 中,当y >0时,kx+b >0,因此x 的取值范围是不等式kx+b >0的解集; 同理可求得④的结论.(2)由图可知:在C 点右侧时,直线y=kx+b 的函数值要小于直线y=k 1x+b 1的函数值.【详解】解:(1)根据观察得:①kx +b =0,②11y kx b y k x b =+⎧⎨=+⎩,③kx +b >0,④kx +b <0. 故答案为:kx +b =0,11y kx b y k x b =+⎧⎨=+⎩,kx +b >0,kx +b <0; (2)∵点C 的坐标为(1,3),∴不等式kx +b ≤k 1x +b 1的解集为x ≥1.故答案为:x ≥1.【点睛】此题主要考查了一次函数与一元一次方程及一元一次不等式,二元一次方程组之间的内在联系.24.(1)见解析;(2)6【解析】【分析】(1)由平行线的性质和角平分线的概念可得BE =DE ,易证四边形DEFC 是平行四边形,可得DE =CF ,等量代换即可得出结论;(2)易证四边形BEDF是平行四边形,再由BE=DE证得四边形BEDF是菱形,由等腰三角形“三线合一”可得BD⊥EF,根据勾股定理求得BD,根据三角形中位线定理求得EF,根据菱形的面积公式即可得出答案.【详解】(1)证明:∵DE∥BC,∴∠DBC=∠BDE,∵BD平分∠ABC,∴∠EBD=∠DBC,∴∠BDE=∠EBD,∴BE=DE,∵E、F是AB、BC的中点,∴EF∥AC,∵DE∥BC,∴四边形DEFC是平行四边形,∴DE=CF,∴BE=CF;(2)∵AB=BC=5,BD平分∠ABC,∴BD⊥AC,CD=12AC=3.在Rt△BDC中,BD∵E、F是AB、BC的中点,∴EF=12AC=3.∵F是BC中点,∴BF=CF,∴DE=BF,DE∥BF,∴四边形BEDF是平行四边形,又∵BE=DE,∴四边形BEDF是菱形,∴S菱形BEDF=12 BD·EF=12×4×3=6.【点睛】本题主要考查了等腰三角形的判定和性质,平行四边形的判定和性质,菱形的判定和性质,三角形中位线定理,根据三角形中位线定理和平行四边形的判定证出平行四边形是解决(1)的关键,证出四边形BEDF是菱形是解决(2)的关键.25.(1)x>﹣2;(2)①(1,6);②10.【解析】【分析】(1)求不等式kx+b>0的解集,找到x轴上方的范围就可以了,比C点横坐标大就行了(2)①我们可以先根据B,C两点求出k值,因为不等式kx+b>﹣4x+a的解集是x>1所以B点横坐标为1,利用x=1代入y1=kx+b,即求出B点的坐标;②将B点代入y2=﹣4x+a中即可求出a值.【详解】解:(1)∵A(0,4),C(﹣2,0)在一次函数y1=kx+b上,∴不等式kx+b>0的解集是x>﹣2,故答案为:x>﹣2;(2)①∵A(0,4),C(﹣2,0)在一次函数y1=kx+b上,∴b=4-2k+b=0⎧⎨⎩,得b=4k=2⎧⎨⎩,∴一次函数y1=2x+4,∵不等式kx+b>﹣4x+a的解集是x>1,∴点B的横坐标是x=1,当x=1时,y1=2×1+4=6,∴点B的坐标为(1,6);②∵点B(1,6),∴6=﹣4×1+a,得a=10,即a的值是10.【点睛】本题主要考查学生对于一次函数图像性质的掌握程度。

广东省东莞市虎门捷胜中学八年级数学下学期期中试卷(

广东省东莞市虎门捷胜中学八年级数学下学期期中试卷(

2015-2016学年广东省东莞市虎门捷胜中学八年级(下)期中数学试卷一、选择题(共30分)1.下列二次根式中,是最简二次根式的是()A.2 B. C.D.2.要使式子有意义,则x的取值范围是()A.x>0 B.x≥﹣2 C.x≥2 D.x≤23.下列运算正确的是()A.﹣=B. =2C.﹣=D. =2﹣4.有六根细木棒,它们的长度分别是2,4,6,8,10,12(单位:cm),从中取出三根首尾顺次连接搭成一个直角三角形,则这三根木棒的长度分别为()A.2,4,8 B.4,8,10 C.6,8,10 D.8,10,125.如图所示:是一段楼梯,高BC是3m,斜边AC是5m,如果在楼梯上铺地毯,那么至少需要地毯()A.5m B.6m C.7m D.8m6.如图,在平行四边形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,则AD的长为()A.4cm B.5cm C.6cm D.8cm7.如果等边三角形的边长为3,那么连接各边中点所成的三角形的周长为()A.9 B.6 C.3 D.8.如图,在周长为20cm的▱ABCD中,AB≠AD,对角线AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为()A.4cm B.6cm C.8cm D.10cm9.在▱ABCD中,∠A:∠B:∠C:∠D的值可以是()A.1:2:3:4 B.1:2:2:1 C.1:1:2:2 D.2:1:2:110.如图,以正方形ABCD的对角线AC为一边作菱形AEFC,则∠FAB=()A.30° B.45° C.22.5°D.135°二、填空题(共24分)11.如果▱ABCD的周长为28cm,且AB:BC=2:5,那么AD= cm,CD= cm.12.直角三角形的两条直角边长分别为cm、cm,则这个直角三角形的斜边长为,面积为.13.化简: = ;(x>0,y>0)= .14.已知O是▱ABCD对角线的交点,AC=24cm,BD=38cm,AD=28cm,则△AOD的周长是cm.15.菱形ABCD的周长为36,其相邻两内角的度数比为1:5,则此菱形的面积为.16.如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF= cm.三、解答题(一)(共18分)17.计算:(1)•2•(﹣);(2)•(÷2).18.如图,在△ABC中,AD⊥BC,垂足为D,∠B=60°,∠C=45°.(1)求∠BAC的度数.(2)若AC=2,求AD的长.19.已知菱形ABCD中,对角线AC和BD相交于点O,∠BAD=120°,求∠ABD的度数.四、解答题(二)(共24分)20.先化简,再求值:,其中a=,b=.21.如图,一次“台风”过后,一根旗杆被台风从高地面5米处吹断,倒下的旗杆的顶端落在离旗杆底部12米处,那么这根旗杆被吹断裂前至少有多高?22.如图所示,在△ABC中,∠ABC=90°,BD平分∠ABC,DE⊥BC,DF⊥AB.求证:四边形BEDF是正方形.五、解答题(三)(共24分)23.如图,在矩形ABCD中,E、F分别是边AB、CD的中点,连接AF,CE.(1)求证:△BEC≌△DFA;(2)求证:四边形AECF是平行四边形.24.如图,在△ABC中,AB=BC,D、E、F分别是BC、AC、AB边上的中点.(1)求证:四边形BDEF是菱形;(2)若AB=12cm,求菱形BDEF的周长.2015-2016学年广东省东莞市虎门捷胜中学八年级(下)期中数学试卷参考答案与试题解析一、选择题(共30分)1.下列二次根式中,是最简二次根式的是()A.2 B. C.D.【考点】最简二次根式.【分析】最简二次根式的特点:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.【解答】解:A、2是最简二次根式,故A正确;B、12=4×3,的被开放数中含有能够开方的因数,不是最简二次根式,故B错误;C、被开方数含分母,不是最简二次根式,故C错误;D、=,被开方数中含有能开得尽方的因式,故D错误.故选:A.2.要使式子有意义,则x的取值范围是()A.x>0 B.x≥﹣2 C.x≥2 D.x≤2【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:根据题意得,2﹣x≥0,解得x≤2.故选D.3.下列运算正确的是()A.﹣=B. =2C.﹣=D. =2﹣【考点】二次根式的加减法;二次根式的性质与化简.【分析】根据二次根式的加减法对各选项进行逐一分析即可.【解答】解:A、与不是同类项,不能合并,故本选项错误;B、=,故本选项错误;C、﹣=2﹣=,故本选项正确;D、=﹣2,故本选项错误.故选C.4.有六根细木棒,它们的长度分别是2,4,6,8,10,12(单位:cm),从中取出三根首尾顺次连接搭成一个直角三角形,则这三根木棒的长度分别为()A.2,4,8 B.4,8,10 C.6,8,10 D.8,10,12【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理进行分析,从而得到答案.【解答】解:由勾股定理的逆定理分析得,只有C中有62+82=102,故选C.5.如图所示:是一段楼梯,高BC是3m,斜边AC是5m,如果在楼梯上铺地毯,那么至少需要地毯()A.5m B.6m C.7m D.8m【考点】勾股定理.【分析】先根据直角三角形的性质求出AB的长,再根据楼梯高为BC的高=3m,楼梯的宽的和即为AB的长,再把AB、BC的长相加即可.【解答】解:∵△ABC是直角三角形,BC=3m,AC=5m∴AB===4m,∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=7米.故选C.6.如图,在平行四边形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,则AD的长为()A.4cm B.5cm C.6cm D.8cm【考点】平行四边形的性质.【分析】由平行四边形ABCD,根据平行四边形的对角线互相平分,可得OA=OC,OB=OD,又由∠ODA=90°,根据勾股定理,即可求得AD的长.【解答】解:∵四边形ABCD是平行四边形,AC=10cm,BD=6cm∴OA=OC=AC=5cm,OB=OD=BD=3cm,∵∠ODA=90°,∴AD==4cm.故选A.7.如果等边三角形的边长为3,那么连接各边中点所成的三角形的周长为()A.9 B.6 C.3 D.【考点】三角形中位线定理;等边三角形的性质.【分析】等边三角形的边长为3,根据三角形的中位线定理可求出中点三角形的边长,所以中点三角形的周长可求解.【解答】解:连接各边中点所成的线段是等边三角形的中位线,每条中位线的长是,故新成的三角形的周长为×3=.故选D8.如图,在周长为20cm的▱ABCD中,AB≠AD,对角线AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为()A.4cm B.6cm C.8cm D.10cm【考点】线段垂直平分线的性质;平行四边形的性质.【分析】根据线段垂直平分线的性质可知BE=DE,再结合平行四边形的性质即可计算△ABE 的周长.【解答】解:根据平行四边形的性质得:OB=OD,∵EO⊥BD,∴EO为BD的垂直平分线,根据线段的垂直平分线上的点到两个端点的距离相等得:BE=DE,∴△ABE的周长=AB+AE+DE=AB+AD=×20=10cm.故选:D.9.在▱ABCD中,∠A:∠B:∠C:∠D的值可以是()A.1:2:3:4 B.1:2:2:1 C.1:1:2:2 D.2:1:2:1【考点】平行四边形的性质;平行线的性质.【分析】根据平行四边形的性质得到∠A=∠C,∠B=∠D,∠B+∠C=180°,∠A+∠D=180°,根据以上结论即可选出答案.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,AB∥CD,∴∠B+∠C=180°,∠A+∠D=180°,即∠A和∠C的数相等,∠B和∠D的数相等,且∠B+∠C=∠A+∠D,故选D.10.如图,以正方形ABCD的对角线AC为一边作菱形AEFC,则∠FAB=()A.30° B.45° C.22.5°D.135°【考点】菱形的性质;正方形的性质.【分析】由正方形的性质得对角线AC平分直角,因为菱形的对角线平分所在的角,所以∠FAB为直角的.【解答】解:因为AC为正方形ABCD的对角线,则∠CAE=45°,又因为菱形的每一条对角线平分一组对角,则∠FAB=22.5°,故选:C.二、填空题(共24分)11.如果▱ABCD的周长为28cm,且AB:BC=2:5,那么AD= 4 cm,CD= 10 cm.【考点】平行四边形的性质.【分析】由▱ABCD的周长为28cm,根据平行四边形的性质,即可求得AB+BC=14cm,又由AB:BC=2:5,即可求得答案.【解答】解:∵▱ABCD的周长为28cm,∴AB+BC=14cm,∵AB:BC=2:5,∴CD=AB=×14=4(cm),AD=BC=×14=10(cm).故答案为:4,10.12.直角三角形的两条直角边长分别为cm、cm,则这个直角三角形的斜边长为2cm ,面积为cm2.【考点】勾股定理.【分析】此题直接利用勾股定理及三角形的面积解答即可.【解答】解:由勾股定理得,直角三角形的斜边长==2cm;直角三角形的面积=×=cm2.故填2cm, cm2.13.化简: = ;(x>0,y>0)= 3xy.【考点】分母有理化;二次根式的性质与化简.【分析】分子、分母同时乘以,即可化简;利用积的算术平方根的性质即可化简.【解答】解: ==;∵x>0,y>0,∴==3xy.故答案为;3xy.14.已知O是▱ABCD对角线的交点,AC=24cm,BD=38cm,AD=28cm,则△AOD的周长是59 cm.【考点】平行四边形的性质.【分析】根据平行四边形的性质可知,平行四边形的对角线互相平分,所以OA,OD可求出,AD已知,所以三角形的周长可求解.【解答】解:∵四边形ABCD是平行四边形∴OA=AC=12cm,OD=BD=19cm∵AD=28cm∴△AOD的周长=OA+OD+AD=12+19+28=59cm故答案为59.15.菱形ABCD的周长为36,其相邻两内角的度数比为1:5,则此菱形的面积为40.5 .【考点】菱形的性质.【分析】根据相邻两内角的度数比为1:5,可求出一个30°角,根据周长为36,求出菱形的边长,根据直角三角形里30°角的性质求出高,从而求出面积.【解答】解:作AE⊥BC于E点,∵其相邻两内角的度数比为1:5,∴∠B=180°×=30°,∵菱形ABCD的周长为36,∴AB=BC=×36=9.∴AE=×9=.∴菱形的面积为:BC•AE=9×=40.5.故答案为:40.5.16.如图,将菱形纸片ABCD折叠,使点A恰好落在菱形的对称中心O处,折痕为EF,若菱形ABCD的边长为2cm,∠A=120°,则EF= cm.【考点】菱形的性质;翻折变换(折叠问题).【分析】根据菱形性质得出AC⊥BD,AC平分∠BAD,求出∠ABO=30°,求出AO,BO、DO,根据折叠得出EF⊥AC,EF平分AO,推出EF∥BD,推出,EF为△ABD的中位线,根据三角形中位线定理求出即可.【解答】解:连接BD、AC,∵四边形ABCD是菱形,∴AC⊥BD,AC平分∠BAD,∵∠BAD=120°,∴∠BAC=60°,∴∠ABO=90°﹣60°=30°,∵∠AOB=90°,∴AO=AB=×2=1,由勾股定理得:BO=DO=,∵A沿EF折叠与O重合,∴EF⊥AC,EF平分AO,∵AC⊥BD,∴EF∥BD,∴EF为△ABD的中位线,∴EF=BD=(+)=,故答案为:.三、解答题(一)(共18分)17.计算:(1)•2•(﹣);(2)•(÷2).【考点】二次根式的乘除法.【分析】(1)直接利用二次根式的乘法运算法则求出即可;(2)首先除法化成乘法,进而利用二次根式乘法运算法则求出即可.【解答】解:(1)•2•(﹣)=2×(﹣)=﹣=﹣4;(2)•(÷2)=×××=.18.如图,在△ABC中,AD⊥BC,垂足为D,∠B=60°,∠C=45°.(1)求∠BAC的度数.(2)若AC=2,求AD的长.【考点】勾股定理.【分析】(1)根据三角形内角和定理,即可推出∠BAC的度数;(2)由题意可知AD=DC,根据勾股定理,即可推出AD的长度.【解答】解:(1)∠BAC=180°﹣60°﹣45°=75°;(2)∵AD⊥BC,∴△ADC是直角三角形,∵∠C=45°,∴∠DAC=45°,∴AD=DC,∵AC=2,∴AD=.19.已知菱形ABCD中,对角线AC和BD相交于点O,∠BAD=120°,求∠ABD的度数.【考点】菱形的性质.【分析】根据已知及菱形的性质:邻角互补,可求得∠ABC 的度数;进而依据菱形的对角线平分一组对角,可得到∠ABD 的度数.【解答】解:∵四边形ABCD 是菱形,∠BAD=120°,∴∠ABC=60°.(菱形的邻角互补)∵菱形的每条对角线平分一组对角,∴∠ABD=∠ABC=30°.四、解答题(二)(共24分)20.先化简,再求值:,其中a=,b=.【考点】分式的化简求值.【分析】本题中直接代数求值是非常麻烦的.本题的关键是正确进行分式的通分、约分,并准确代值计算.【解答】解:原式===∵,;∴原式=.21.如图,一次“台风”过后,一根旗杆被台风从高地面5米处吹断,倒下的旗杆的顶端落在离旗杆底部12米处,那么这根旗杆被吹断裂前至少有多高?【考点】勾股定理的应用.【分析】先根据勾股定理求出BC 的长,再由旗杆高度=AB+BC 解答即可.【解答】解:∵旗杆剩余部分、折断部分与地面正好构成直角三角形,∴BC==13m ,∴旗杆的高=AB+BC=13+5=18m .答:这根旗杆被吹断裂前有18米高.22.如图所示,在△ABC中,∠ABC=90°,BD平分∠ABC,DE⊥BC,DF⊥AB.求证:四边形BEDF是正方形.【考点】正方形的判定.【分析】由题意知,四边形BEDF是矩形,只要证明有一组邻边相等即可得到,四边形BEDF 是正方形.【解答】证明:∵∠ABC=90°,DE⊥BC,DF⊥AB,∴∠BFD=∠BED=∠AB C=90°.∴四边形BEDF为矩形.又∵BD平分∠ABC,DE⊥BC,DF⊥AB,∴DF=DE.∴矩形BEDF为正方形.五、解答题(三)(共24分)23.如图,在矩形ABCD中,E、F分别是边AB、CD的中点,连接AF,CE.(1)求证:△BEC≌△DFA;(2)求证:四边形AECF是平行四边形.【考点】矩形的性质;全等三角形的判定与性质;平行四边形的判定.【分析】(1)根据E、F分别是边AB、CD的中点,可得出BE=DF,继而利用SAS可判断△BEC ≌△DFA;(2)由(1)的结论,可得CE=AF,继而可判断四边形AECF是平行四边形.【解答】证明:(1)∵四边形ABCD是矩形,∴AB=CD,AD=BC,又∵E、F分别是边AB、CD的中点,∴BE=DF,∵在△BEC和△DFA中,,∴△BEC≌△DFA(SAS).(2)由(1)得,CE=AF,AD=BC,故可得四边形AECF是平行四边形.24.如图,在△ABC中,AB=BC,D、E、F分别是BC、AC、AB边上的中点.(1)求证:四边形BDEF是菱形;(2)若AB=12cm,求菱形BDEF的周长.【考点】菱形的判定;三角形中位线定理.【分析】(1)可根据菱形的定义“一组邻边相等的平行四边形是菱形”,先证明四边形BFED 是平行四边形,然后再证明四边形的邻边相等即可.(2)F是AB的中点,有了AB的长也就求出了菱形的边长BF的长,那么菱形BDEF的周长也就能求出了.【解答】(1)证明:∵D、E、F分别是BC、AC、AB的中点,∴DE∥AB,EF∥BC,∴四边形BDEF是平行四边形,又∵DE=AB,EF=BC,且AB=BC,∴DE=EF,∴四边形BDEF是菱形;(2)解:∵AB=12cm,F为AB中点,∴BF=6cm,∴菱形BDEF的周长为6×4=24cm.。

2020-2021东莞市八年级数学下期中一模试题(含答案)

2020-2021东莞市八年级数学下期中一模试题(含答案)

2020-2021东莞市八年级数学下期中一模试题(含答案)一、选择题1.下列运算正确的是( )A .347+=B .1232=C .2(-2)2=-D .142136= 2.小明搬来一架 3.5 米长的木梯,准备把拉花挂在 2.8 米高的墙上,则梯脚与墙脚的距离为( )A .2.7 米B .2.5 米C .2.1 米D .1.5 米 3.下列结论中,矩形具有而菱形不一定具有的性质是( )A .内角和为360°B .对角线互相平分C .对角线相等D .对角线互相垂直 4.如图,在边长为a 的正方形ABCD 中,把边BC 绕点B 逆时针旋转60︒,得到线段BM .连接AM 并延长交CD 于点N ,连接MC ,则MNC ∆的面积为( )A .2312a -B .2212a -C .2314a -D .2214a - 5.如图,在平行四边形ABCD 中,AC 、BD 相交于点O ,下列结论:①OA =OC ;②∠BAD =∠BCD ;③AC ⊥BD ;④∠BAD +∠ABC =180°中,正确的个数有( )A .1个B .2个C .3个D .4个6.下列各组数据中能作为直角三角形的三边长的是( )A .1,2,2B .1,1,3C .4,5,6D .1,3,2 7.菱形ABCD 中,AC =10,BD =24,则该菱形的周长等于( )A .13B .52C .120D .240 8.如图,矩形纸片ABCD ,3AB =,点E 在BC 上,且AE EC =.若将纸片沿AE 折叠,点B 恰好落在AC 上,则矩形ABCD 的面积是( )A .12B .3C .3D .159.如图,已知圆柱底面的周长为4dm ,圆柱的高为2dm ,在圆柱的侧面上,过点A 和点C 嵌有一圈金属丝,则这圈金属丝的周长最小为( )A .42dmB .22dmC .25dmD .45dm10.在矩形ABCD 中,AB=2,AD=4,E 为CD 的中点,连接AE 交BC 的延长线于F 点,P 为BC 上一点,当∠PAE=∠DAE 时,AP 的长为 ( )A .4B .C .D .511.如图是自动测温仪记录的图象,它反映了齐齐哈尔市的春季某天气温T 如何随时间t 的变化而变化,下列从图象中得到的信息正确的是( )A .0点时气温达到最低B .最低气温是零下4℃C .0点到14点之间气温持续上升D .最高气温是8℃ 12.如图,在正方形ABCD 外侧,作等边三角形ADE ,AC 、BE 相交于点F ,则∠CFE 为()A .150°B .145°C .135°D .120° 二、填空题 13.若实数,,x y z ()22130x y z -++-=,则x y z ++的平方根是______.14.函数26y x =+的自变量x 的取值范围是_________. 15.在矩形ABCD 中,点E 为AD 的中点,点F 是BC 上的一点,连接EF 和DF ,若AB=4,BC=8,5DF 的长为___________.16.已知一个直角三角形的两边长分别为12和5,则第三条边的长度为_______17.如图所示,图中所有三角形都是直角三角形,所有四边形都是正方形,123916144S ===,S ,S ,则4S =_____.18.如图,矩形ABCD 中,15cm AB =,点E 在AD 上,且9cm AE =,连接EC ,将矩形ABCD 沿直线BE 翻折,点A 恰好落在EC 上的点A'处,则'A C =____________cm .19.如图,已知函数y ax b =+和y kx =的图象交于点P, 则根据图象可得,关于y ax b y kx =+⎧⎨=⎩的二元一次方程组的解是_____________。

广东省东莞市八年级数学下学期期中试题(含解析)

广东省东莞市八年级数学下学期期中试题(含解析)

广东省东莞市八年级数学下学期期中试题一、填空题每小题2分,共20分)1.①×=________;②×=_________.【答案】 (1). (2). 3.【解析】【分析】直接利用二次根式的乘法的法则进行运算即可.【详解】解:①×==;②×===3.故答案为:(1). (2). 3.【点睛】考查二次根式的乘法,属于基础运算,解题关键是牢固掌握二次根式乘法的运算法则,难度不大.2.二次根式有意义的条件是_____.【答案】a≥1.【解析】【分析】根据二次根式的性质,被开方数大于等于0,列不等式求解.【详解】根据二次根式的性质可知:a﹣1≥0;解得a≥1.故答案为:a≥1.【点睛】二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.3.化简二次根式=_____;=_____.【答案】 (1). 2 (2). 4xb【解析】【分析】先将积的二次根式转化为二次根式的积,再进行化简.【详解】解:=×= 2;=××=4xb.故答案为:(1). 2 (2). 4xb【点睛】本题考查二次根式的性质与化简,正确运用二次根式乘法法则是解题关键.4. “两直线平行,内错角相等”的逆命题是__________.【答案】内错角相等,两直线平行【解析】解:“两直线平行,内错角相等”的条件是:两条平行线被第三条值线索截,结论是:内错角相等.将条件和结论互换得逆命题为:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,可简说成“内错角相等,两直线平行”。

5.比较大小:5_____.【答案】>【解析】【分析】根据实数大小比较的方法比较即可.【详解】解:∵5=∴5故答案为:>.【点睛】本题考查实数大小的比较,熟练掌握实数大小的比较方法是解题关键6.直角三角形斜边上的中线等于斜边的_____.【答案】一半【解析】试题解析:根据在直角三角形中,斜边上的中线等于斜边的一半得解.故答案为:一半.7.计算:÷=_____.【答案】3【解析】【分析】直接利用二次根式的除法运算法则得出即可.【详解】解:÷==3.故答案为:3.【点睛】本题考查二次根式的除法运算,根据二次根式的运算法则得出是解题关键.8.长方形的一边长是,面积为9,则另一边的长为_____.【答案】【解析】【分析】根据矩形的面积公式.利用二次根式的除法法则即可得到结论.【详解】解:∵长方形的一边长是,面积为9,∴另一边的长==,故答案为:.【点睛】本题考查二次根式的除法运算,解题关键是熟记二次根式的除法法则.9.若x=3,则的值为_____.【答案】4【解析】【分析】先把根号内的数进行因式分解,再代入求值即可.【详解】解:∵x=3,∴原式===4.故答案为:4【点睛】本题考查二次根式的化简求值,解题的关键是正确的因式分解.10.计算:(﹣2)(+2)=_____.【答案】﹣5【解析】【分析】根据平方差公式可以解答本题.【详解】解:(﹣2)(+2)=()2-(2)2=3﹣8=﹣5,故答案为:﹣5.【点睛】本题考查二次根式的混合运算,解题关键是明确二次根式混合运算的计算方法.二.选择题(每小题2分,共20分)11.若有意义,则x满足条件()A. x>1.B. x≥1C. x<1D. x≤1.【答案】B【解析】【分析】二次根式的被开方数是非负数.【详解】依题意得:x﹣1≥0,解得:x≥1.故选B.【点睛】本题考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.12.下列计算正确的是()A. B. C. D.【答案】AC【解析】A选项所以A对;C选项所以C对,B选项根号内的数不能直接加减所以B错;D选项13.以下列各组数为边长,能构成直角三角形的是()A. 2,3,5B. 6,8,10C. ,,D. ,,【答案】B【解析】【分析】根据勾股定理的逆定理对各选项进行逐一判断即可.【详解】解:A.∵22+32≠52,∴不能构成直角三角形,故本选项错误;B.∵62+82=102,∴能构成直角三角形,故本选项正确;C.∵()2+()2≠()2,∴不能构成直角三角形,故本选项错误;D.∵()2+()2≠()2,∴不能构成直角三角形,故本选项错误.故选:B.【点睛】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解题关键.14.如图字母B所代表的正方形的面积是()A. 12B. 13C. 144D. 194【答案】C【解析】∵图中三角形为,∴,∴.故选C.15.下列二次根式中,最简二次根式是()A. B. C. D.【答案】A【解析】【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】解:A. 是最简二次根式;B. = |a|b2 ,被开方数含能开得尽方的因数,不是最简二次根式;C. =3,不是最简二次根式;,D. =,不是最简二次根式;故选:A.【点睛】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.16.一架5m的梯子,斜靠在一竖直的墙上,这时梯足距墙角3m,若梯子的顶端下滑1m,则梯足将滑动()A. 0mB. 1mC. 2mD. 3m【答案】B【解析】【分析】在Rt△ACB中,运用勾股定理,求出AC的长;根据题意,在Rt△A'CB'中,再利用勾股定理,求出B'C的长,从而求出BB'即为所求【详解】在Rt△ACB中,∠C=90°,AB=5 m,BC=3 m.由勾股定理,得AB2=AC2+BC2.∴AC2=AB2-BC2=52-32=42.∴AC=4.在Rt△A'CB'中,∠C=90°,A'C=AC-AA'=4-1=3,A'B'=5.由勾股定理,得A'B'2=A'C2+B'C2.∴B'C2=A'B'2-A'C2=52-32=42.∴B'C=4.∴BB'=B'C-BC=4-3=1(m).故选B.【点睛】本题考查了勾股定理的实际应用,将实际问题转化为勾股定理问题是解题的关键.17.平行四边形ABCD中,对角线AC.BD交于点O(如图),则图中全等三角形的对数为()A. 2B. 3C. 4D. 5【答案】C【解析】【分析】平行四边形的性质是:对边相互平行且相等,对角线互相平分.这样不难得出:AD=BC,AB=CD,AO=CO,DO=BO,再利用“对顶角相等”就很容易找到全等的三角形:△ACD≌△CAB(SSS),△ABD≌△CDB(SSS),△AOD≌△COB(SAS),△AOB≌△COD(SAS).【详解】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC;OD=OB,OA=OC;∵OD=OB,OA=OC,∠AOD=∠BOC;∴△AOD≌△COB(SAS);①同理可得出△AOB≌△COD(SAS);②∵BC=AD,CD=AB,BD=BD;∴△ABD≌△CDB(SSS);③同理可得:△ACD≌△CAB(SSS).④因此本题共有4对全等三角形,故选C.【点睛】本题考查的知识点是平行四边形的性质和全等三角形的判定,解题关键是熟记全等三角形的判定条件.18.已知一个多边形的外角和等于它的内角和,则这多边形是()A. 三角形B. 四边形C. 五边形D. 六边形【答案】B【解析】【分析】根据多边形的内角和公式(n﹣2)•180°与外角和定理列方程求解即可.【详解】解:设这个多边形边数为n,由题意得,(n﹣2)•180°=360°,解得n=4,所以,这个多边形是四边形.故选:B.【点睛】本题考查多边形内角与外角,熟记内角和公式与外角和定理是解题关键.19.下列各式,化简后能与合并的是()A. B. C. D.【答案】C【分析】根据同类二次根式的定义即可求出答案.【详解】解:与是同类二次根式即可合并,由于=2,2与是同类二次根式,∴2与可以合并,故选:C.【点睛】本题考查同类二次根式,解题的关键是正确理解同类二次根式,本题属于基础题型.20.平行四边形不一定具有的性质是()A. 对边平行且相等B. 对角相等C. 对角线相等D. 对角线互相平分【答案】C【解析】【分析】根据平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行,即可得平行四边形的邻角互补,继而即可得出答案.【详解】解:∵平行四边形的对边平行且相等,对角相等,对角线互相平分,∴平行四边形不一定具有的性质是C选项.故选:C.【点睛】本题考查平行四边形的性质:平行四边形的对角相等,对角线互相平分,对边平行,即平行四边形的邻角互补.三、解答题(共36分)21.求使下列各式有意义的字母的取值范围:(1);(2);(3);(4)【答案】(1)x≥﹣5;(2)a≤3;(3)a≥﹣;(4)x≥0【解析】【分析】根据二次根式的被开方数是非负数,得不等式,求解不等式即可.【详解】解:(1)x+5≥0,(2)3﹣a≥0,﹣a≥﹣3,∴a≤3;(3)2a+1≥0,2a≥﹣1,∴a≥﹣;(4)8x≥0,∴x≥0.【点睛】本题考查二次根式有意义的条件,当被开方数是非负数时,二次根式才有意义.22.化简:(1);(2);(3);(4).【答案】(1)20;(2)9;(3)2;(4)4|x|【解析】【分析】先将积的二次根式转化为二次根式的积,再进行化简.【详解】解:(1)= ×=5×4=20;(2)==9;(3)== 2;;(4)= =4|x|.【点睛】本题考查二次根式的运算,正确运用二次根式乘法法则是解题关键.23.计算:(1)++(2)(+5)(3)﹣﹣+(4)(+)(﹣)【答案】(1)3+2;(2)6+10;(3)+2;(4)﹣1【分析】(1)根据二次根式的加法可以解答本题;(2)根据二次根式的乘法和加法可以解答本题;(3)根据二次根式的加减法可以解答本题;(4)根据平方差公式可以解答本题.【详解】解:(1)++=2+2=3+2;(2)(+5)=+5=6+10;(3)﹣﹣+=3-2-2+4=+2;(4)(+)(﹣)=2﹣3=﹣1.【点睛】本题考查二次根式的混合运算,解题关键是明确二次根式混合运算的计算方法.四、综合题(共24分)24.已知:x=﹣2,y=+2,分别求下列代数式的值(1)x2﹣y2(2)x2+2xy+y2【答案】(1)﹣8;(2)20【解析】【分析】根据二次根式的运算以及乘法公式即可求出答案.【详解】解:(1)∵x=﹣2,y=+2,∴x+y=2,x﹣y=﹣4∴原式=(x+y)(x﹣y)=2×(﹣4)=﹣8;(2)原式=(x+y)2=(2)2=20.【点睛】本题考查学生的运算能力,解题关键是熟练运用乘法公式以及二次根式的运算法则,本题属于基础题型.25.设直角三角形的两条直角边长分别为a和b,斜边长为c(1)已知a=12,b=5,求c;(2)已知a=3,c=4,求b;(3)已知c=10,b=9,求a.【答案】(1)13;(2);(3)【解析】【分析】(1)根据c=即可得出结论;(2)根据b=即可得出结论;(3)根据a=即可得出结论.【详解】解:(1)∵直角三角形的两条直角边长分别为a和b,斜边长为c,a=12,b=5,∴c===13;(2)∵直角三角形的两条直角边长分别为a和b,斜边长为c,a=3,c=4,∴b===;(3)∵直角三角形的两条直角边长分别为a和b,斜边长为c,c=10,b=9,∴a===.【点睛】本题考查勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题关键.26.如图,在平行四边形ABCD中,E.F、为对角线BD上的两点,且∠BAE=∠DCF.求证:AE=CF.【答案】证明见解析【解析】【分析】由题意可证△ABE≌△CDF,可得结论.【详解】证明∵四边形ABCD为平行四边形∴AB∥CD,AB=CD∴∠ABD=∠CDB在△ABE与△CDF中∴△ABE≌△CDF(ASA)∴AE=CF【点睛】本题考查平行四边形的性质,全等三角形的判定和性质,熟练运用这些性质是解题题关键.27.如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AD,BC分别相交于点E,F.求证:OE=OF.【答案】证明见解析【解析】【分析】由四边形ABCD是平行四边形,可得OA=OC,AD∥BC,继而可证得△AOE≌△COF(ASA),则可证得结论.【详解】证明:∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠OAE=∠OCF,在△OAE和△OCF中,,∴△AOE≌△COF(ASA),∴OE=OF.【点睛】此题考查了平行四边形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.。

东莞市2020年八年级下学期数学期中考试试卷(I)卷

东莞市2020年八年级下学期数学期中考试试卷(I)卷

东莞市2020年八年级下学期数学期中考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共7题;共14分)1. (2分) (2015九上·宜春期末) 下列汽车标志中,是中心对称图形的有()个.A . 1B . 2C . 3D . 42. (2分)(2020·和平模拟) 下列说法正确的是()A . “三角形任意两边之差小于第三边”是必然事件B . 在连续5次的测试中,两名同学的平均分相同,方差较大的同学成绩更稳定C . 某同学连续10次抛掷质量均匀的硬币,6次正面向上,因此正面向上的概率是60%D . 检测某品牌笔芯的使用寿命,适宜用普查3. (2分) (2019八下·泰兴期中) 为了了解某县七年级9800名学生的视力情况,从中抽查了100名学生的视力,就这个问题来说,下列说法正确的是()A . 9800名学生是总体B . 每个学生是个体C . 100名学生是所抽取的一个样本D . 样本容量是1004. (2分)下面的图形(1)﹣(4),绕着一个点旋转120°后,能与原来的位置重合的是()A . (1),(4)B . (1),(3)C . (1),(2)D . (3),(4)5. (2分)下列命题中,真命题是().A . 对角线相等的四边形是矩形B . 对角线互相垂直的四边形是菱形C . 对角线互相平分的四边形是平行四边形D . 对角线互相垂直平分的四边形是正方形6. (2分)如图,CD是平面镜,光线从A点出发经CD上点E反射照到B点,若入射角为α,AC⊥CD,BD⊥CD,且AC=3,BD=6,CD=12,则tanα值为()A .B .C .D .7. (2分)以下列各组线段为三角形的边,能组成三角形的是()A . 1cm,2cm,4cmB . 3cm,3cm,6cmC . 7cm,7cm,12cmD . 3cm,6cm,10cm二、填空题 (共12题;共12分)8. (1分)“明天的太阳从西方升起”这个事件属于________事件(用“必然”、“不可能”、“不确定”填空).9. (1分) (2017八下·南通期末) 一个袋中装有6个红球,4个黄球,1个白球,每个球除颜色外都相同,任意摸出一球,摸到________球的可能性最大10. (1分) (2019七下·上杭期末) 某校七年级(1)班60名学生在一次单元测试中,优秀人数是20人,在扇形统计图中,表示这部分同学的扇形圆心角是________度.11. (1分)某地区随机抽查了一部分市民进行法律知识测试,测试成绩(得分取整数,每组数据含最小值不含最大值)整理后,得到如图所示的频数分布直方图,写出一条你从图中所获得的信息:________12. (1分)如图,已知△ABC中,AB=AC,AD平分∠BAC,E是AB的中点,若AC=6,则DE的长为________13. (1分) (2019八下·江阴期中) 一个菱形的两条对角线长分别为3cm,4cm,这个菱形的面积S=________.14. (1分) (2019八下·谢家集期中) 已知平行四边形ABCD中,∠A+∠C=200°,则∠B的度数是________.15. (1分)(2020·乐清模拟) 某记者抽样调查了某校一些学生假期用于读书的时间(单位:分钟)后,绘制了频数分布直方图,从左到右的前5个长方形相对应的频率之和为0.8,最后- -组的频数是10,则此次抽样调查的人数为 ________人. (注:横轴上每组数据包含最小值不包含最大值)16. (1分)如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的正弦值为________.17. (1分)(2020八下·哈尔滨月考) 在平面直角坐标系中,A、B、C三点的坐标分别为,以这三点为平行四边形的三个顶点,则第四个顶点不可能在第________象限.18. (1分) (2019八下·满洲里期末) 一轮船以16海里/时的速度从A港向东北方向航行,另一艘船同时以12海里/时的速度从A港向西北方向航行,经过1小时后,它们相距________海里.19. (1分) (2019八上·海港期中) 如图,在方格纸中,以AB为一边做△ABP,使之与△ABC全等,从P1,P2,P3,P4,四个点中,满足条件的点P有________个三、解答题 (共8题;共64分)20. (7分) (2019九上·秀洲月考) 某活动小组为了估计装有5个白球和若干个红球(每个球除颜色外都相同)的袋中红球约有多少个,在不将袋中球倒出来的情况下,分小组进行摸球试验,两人一组,共20组进行摸球试验,另一位学生记录所摸球的颜色,并将球放回袋中摇匀,每一组做400次试验,汇总起来后,摸到红球的次数为6000次。

东莞市2020版八年级下学期数学期中考试试卷B卷

东莞市2020版八年级下学期数学期中考试试卷B卷

东莞市2020版八年级下学期数学期中考试试卷B卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列运动属于平移的是()A . 急刹车时汽车在地面上的滑动B . 投篮时的篮球运动C . 冷水加热过程中小气泡上升成为大气泡D . 随风飘动的树叶在空中的运动2. (2分)如图,在5×5的正方形网格中已有5块被涂成阴影,则在未涂的空格中,任选一格涂成阴影,可使阴影部分为轴对称图形的概率是()A .B .C .D .3. (2分)数x不小于3是指()A . x≤3B . x≥3C . x>3D . x<34. (2分) (2019七下·盐田期中) 三角形的重心是三条()A . 中线的交点B . 角平分线的交点C . 高线的交点D . 垂线的交点5. (2分)在一块平地上,张大爷家屋前9米远处有一颗大树,在一次强风中,这课大树从离地面6米处折断倒下,量得倒下部分的长是10米,大树倒下时能砸到张大爷的房子吗?()A . 一定不会B . 可能会C . 一定会D . 以上答案都不对6. (2分)如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为()A . 30°B . 40°C . 50°D . 60°7. (2分)如果不等式组有解,那么m的取值范围是()A . m >5B . m<5C . m ≥5D . m ≤58. (2分)已知一次函数y=kx+b(k≠0)的图象如图所示,则不等式kx+b>1的解集为()A . x<0B . x>0C . x<2D . x>29. (2分) (2016九上·江北期末) ⊙O内有一点P,过点P的所有弦中,最长的为10,最短的为8,则OP 的长为()A . 6B . 5C . 4D . 310. (2分)(2018·梧州) 如图,在△ABC 中,AB=AC,∠C=70°,△AB′C′与△ABC 关于直线 EF对称,∠CAF=10°,连接BB′,则∠ABB′的度数是()A . 30°B . 35°C . 40°D . 45°二、填空题 (共4题;共4分)11. (1分)不等式的解集是________12. (1分) (2019八上·荣昌期中) 如图,∠BAC=100°,MN、EF分别垂直平分AB、AC,则∠MAE的大小为________13. (1分) (2017七下·云梦期末) 不等式组的解集是,则关于的方程的解为________.14. (1分)如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,有以下结论:①EM=FN;②CD=DN;③∠FAN=∠EAM;④△ACN≌△ABM.其中正确的结论有________个.三、解答题 (共9题;共76分)15. (5分) (2017九上·老河口期中) 如图,已知点D是等腰直角三角形ABC斜边BC上一点(不与点B重合),连接AD,线段AD绕点A逆时针方向旋转90°得到线段AE,连接CE,求∠BCE的度数.16. (10分)(2017·宁德模拟) 已知:不等式≤2+x(1)解该不等式,并把它的解集表示在数轴上;(2)若实数a满足a>2,说明a是否是该不等式的解.17. (10分)如图,三角形ABC的顶点坐标分别为A(2,4)、B(1,1)、C(4,1).BC上的一点P的坐标为P(3,1),将三角形ABC向左平移4个单位,再向上平移1个单位,得到三角形A1B1C1 ,其中点A、B、C、P分别对应点A1、B1、C1、P1 .(1)在图中画出三角形A1B1C1;(2)直接写出点P1的坐标:P1(________,________).18. (5分)如图,已知四边形ABCD为平行四边形,AD=2AB,E为AD的中点,试说明BE与EC的位置关系,并说明理由.19. (10分)(2020·青浦模拟) 某湖边健身步道全长1500米,甲、乙两人同时从同一起点匀速向终点步行.甲先到达终点后立刻返回,在整个步行过程中,甲、乙两人间的距离y(米)与出发的时间x(分)之间的关系如图中OA﹣AB折线所示.(1)用文字语言描述点A的实际意义;(2)求甲、乙两人的速度及两人相遇时x的值.20. (10分) (2019八上·花都期中) 如图1,△ABC中,点D是BC的中点,BE∥AC,过点D的直线EF交BE于点E,交AC于点F.(1)求证:BE=CF(2)如图2,过点D作DG⊥DF交AB于点G,连结GF,请你判断BG+CF与GF的大小关系,并说明理由.21. (5分)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)假如你是本次购买任务的负责人,你认为到哪家商场购买比较合算?22. (6分) (2019七上·马山月考) 甲、乙两站相距480千米,一辆快车从甲站出发,每小时行驶120千米,一辆慢车从乙站出发,每小时行驶80千米.(1)两车同时开出,相向而行,多少小时后两车相遇?(2)两车同时开出,相向而行,多少小时后两车相距100千米?23. (15分)(2017·濮阳模拟) 如图,直线y=﹣x﹣4与抛物线y=ax2+bx+c相交于A,B两点,其中A,B 两点的横坐标分别为﹣1和﹣4,且抛物线过原点.(1)求抛物线的解析式;(2)在坐标轴上是否存在点C,使△ABC为等腰三角形?若存在,求出点C的坐标,若不存在,请说明理由;(3)若点P是线段AB上不与A,B重合的动点,过点P作PE∥OA,与抛物线第三象限的部分交于一点E,过点E作EG⊥x轴于点G,交AB于点F,若S△BGF=3S△EFP ,求的值.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共4题;共4分)11-1、12-1、13-1、14-1、三、解答题 (共9题;共76分)15-1、16-1、16-2、17-1、17-2、18-1、19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021学年广东省东莞市虎门捷胜中学八年级下期中数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列二次根式中,是最简二次根式的是( )A .2B .C .D .2.要使式子2x -有意义,则的取值范围是( )A .x 0>B .x 2≥-C .x 2≥D .x 2≤3.下列运算正确的是( )A .﹣=B .=2C .﹣=D .=2﹣4.有六根细木棒,它们的长度分别是2,4,6,8,10,12(单位:cm ),从中取出三根首尾顺次连接搭成一个直角三角形,则这三根木棒的长度分别为( )A .2,4,8B .4,8,10C .6,8,10D .8,10,125.如图所示:是一段楼梯,高BC 是3m ,斜边AC 是5m ,如果在楼梯上铺地毯,那么至少需要地毯( )A .5mB .6mC .7mD .8m6.如图,在平行四边形ABCD 中,已知∠ODA=90°,AC=10cm ,BD=6cm ,则AD 的长为( )A .4cmB .5cmC .6cmD .8cm7.如果等边三角形的边长为3,那么连接各边中点所成的三角形的周长为( ) A .9 B .6 C .3 D .928.如图,在周长为20cm 的▱ABCD 中,AB ≠AD ,对角线AC 、BD 相交于点O ,OE ⊥BD 交AD 于E ,则△ABE 的周长为( )A.4cm B.6cm C.8cm D.10cm9.在□ABCD中,∠A∶∠B∶∠C∶∠D的值可以是()A.1∶2∶3∶4 B.1∶2∶2∶1C.1∶1∶2∶2 D.2∶1∶2∶110.如图,正方形ABCD的对角线AC是菱形AEFC的一边,则∠FAB等于()A.135°B.45°C.22.5°D.30°二、填空题11.如果▱ABCD的周长为28cm,且AB:BC=2:5,那么AD= cm,CD= cm.12.直角三角形的两条直角边长分别为cm、cm,则这个直角三角形的斜边长为,面积为.13.化简:= ;(x>0,y>0)= .14.已知O是▱ABCD对角线的交点,AC=24cm,BD=38cm,AD=28cm,则△AOD的周长是cm.15.菱形ABCD的周长为36,其相邻两内角的度数比为1:5,则此菱形的面积为.16.如图,将菱形纸片ABCD折迭,使点A恰好落在菱形的对称中心O处,折痕为EF.若菱形ABCD的边长为2 cm,∠A=120°,则EF= cm.三、解答题17.计算:(1)•2•(﹣);(2)•(÷2).18.如图,在△ABC中,AD⊥BC,垂足为D,∠B=60°,∠C=45°.(1)求∠BAC的度数。

(2)若AC=2,求AD的长。

19.已知菱形ABCD中,对角线AC和BD相交于点O,∠BAD=120°,求∠ABD的度数.20.先化简,再求值,其中a=,b=.21.如图,一次“台风”过后,一根旗杆被台风从高出地面5米处吹断,倒下的旗杆的顶端落在离旗杆底部12米处,那么这根旗杆被吹断裂前至少有多高?22.如图所示,在△ABC中,∠ABC=90°,BD平分∠ABC,DE⊥BC,DF⊥AB.求证:四边形BEDF是正方形.23.如图,在矩形ABCD中,E、F分别是边AB、CD的中点,连接AF,CE(1)求证:△BEC≌△DFA;(2)求证:四边形AECF是平行四边形.24.如图,在△ABC中,AB=BC,D、E、F分别是BC、AC、AB边上的中点.(1)求证:四边形BDEF是菱形;(2)若AB=12cm,求菱形BDEF的周长.参考答案1.A【解析】试题分析:最简二次根式的特点:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.解:A、2是最简二次根式,故A正确;B、12=4×3,的被开放数中含有能够开方的因数,不是最简二次根式,故B错误;C、被开方数含分母,不是最简二次根式,故C错误;D、=,被开方数中含有能开得尽方的因式,故D错误.故选:A.点评:本题主要考查的是最简二次根式的定义,掌握最简二次根式的特点是解题的关键.2.D【详解】根据二次根式被开方数必须是非负数的条件,要使2x-在有意义,必须-≥⇒≤.2x0x2故选D.3.C【解析】试题分析:根据二次根式的加减法对各选项进行逐一分析即可.解:A、与不是同类项,不能合并,故本选项错误;B、=,故本选项错误;C、﹣=2﹣=,故本选项正确;D、=﹣2,故本选项错误.故选C.点评:本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.4.C【解析】试题分析:根据勾股定理的逆定理进行分析,从而得到答案.解:由勾股定理的逆定理分析得,只有C中有62+82=102,故选C.点评:本题考查了直角三角形的判定.5.C【解析】楼梯竖面高度之和等于BC的长,横面宽度之和等于AB的长.由于2222534AB AC BC=-=-=,所以至少需要地毯长4+3=7(m).6.A【解析】试题分析:由平行四边形ABCD,根据平行四边形的对角线互相平分,可得OA=OC,OB=OD,又由∠ODA=90°,根据勾股定理,即可求得AD的长.解:∵四边形ABCD是平行四边形,AC=10cm,BD=6cm∴OA=OC=AC=5cm,OB=OD=BD=3cm,∵∠ODA=90°,∴AD==4cm.故选A.点评:此题考查了平行四边形的性质:平行四边形的对角线互相平分,解题时还要注意勾股定理的应用.7.D【详解】解:如图,根据三角形的中位线,由E、F、G分别为AB、AC、BC的中点,得出EF=1 2BC,FG=12AB,EG=12AC,代入求出△EFG的周长是EF+FG+EG=12(AB+BC+AC)=12×(3+3+3)=92.故选D.点睛:本题考查了等边三角形的性质和三角形的中位线定理,解此题关键是求出EF 、FG 、EG 的长,题目比较好,难度适中.8.D【解析】试题分析:根据线段垂直平分线的性质可知BE=DE ,再结合平行四边形的性质即可计算△ABE 的周长.解:根据平行四边形的性质得:OB=OD ,∵EO ⊥BD ,∴EO 为BD 的垂直平分线,根据线段的垂直平分线上的点到两个端点的距离相等得:BE=DE ,∴△ABE 的周长=AB+AE+DE=AB+AD=×20=10cm .故选:D .点评:此题主要考查了平行四边形的性质及全等三角形的判定及性质,还利用了中垂线的判定及性质等,考查面积较广,有一定的综合性.9.C【解析】分析:根据平行四边形的性质得到∠A=∠C ,∠B=∠D ,∠B+∠C=180°,∠A+∠D=180°,根据以上结论即可选出答案.详解:如图,∵四边形ABCD 是平行四边形,∴∠A=∠C ,∠B=∠D ,∴:::A B C D ∠∠∠∠ 的值可以是1:2:1:2.故选C .点睛:本题主要考查对平行四边形的性质的理解和掌握,能根据平行四边形的性质进行判断是解此题的关键,题目比较典型,难度适中.10.C【分析】根据正方形、菱形的性质解答即可.【详解】∵AC 是正方形的对角线,∴∠BAC=12×90°=45°,∵AF 是菱形AEFC 的对角线,∴∠FAB=12∠BAC=12×45°=22.5°. 故选C.【点睛】本题考查了正方形、菱形的性质,熟知正方形、菱形的一条对角线平分一组对角的性质是解决问题的关键.11.4,10.【解析】试题分析:由▱ABCD 的周长为28cm ,根据平行四边形的性质,即可求得AB+BC=14cm ,又由AB :BC=2:5,即可求得答案.解:∵▱ABCD 的周长为28cm ,∴AB+BC=14cm ,∵AB :BC=2:5,∴CD=AB=×14=4(cm ),AD=BC=×14=10(cm ).故答案为:4,10.点评:此题考查了平行四边形的性质.此题比较简单,注意掌握平行四边形的对边相等的性质的应用是解此题的关键.12.2cm ,cm 2【解析】试题分析:此题直接利用勾股定理及三角形的面积解答即可.解:由勾股定理得,直角三角形的斜边长==2cm ;直角三角形的面积=×=cm2.故填2cm,cm2.点评:此题主要考查勾股定理及三角形的面积.13.;3xy【解析】试题分析:分子、分母同时乘以,即可化简;利用积的算术平方根的性质即可化简.解:==;∵x>0,y>0,∴==3xy.故答案为;3xy.点评:本题考查了二次根式的性质与化简,一般地,化简二次根式的步骤:①把被开方数分解因式;②利用积的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2.同时考查了分母有理化,分母有理化常常是乘二次根式本身(分母只有一项)或与原分母组成平方差公式.14.59【解析】试题分析:根据平行四边形的性质可知,平行四边形的对角线互相平分,所以OA,OD可求出,AD已知,所以三角形的周长可求解.解:∵四边形ABCD是平行四边形∴OA=AC=12cm,OD=BD=19cm∵AD=28cm∴△AOD的周长=OA+OD+AD=12+19+28=59cm故答案为59.点评:在应用平行四边形的性质解题时,要根据具体问题,有选择的使用,避免混淆性质,以致错用性质.15.40.5【解析】试题分析:根据相邻两内角的度数比为1:5,可求出一个30°角,根据周长为36,求出菱形的边长,根据直角三角形里30°角的性质求出高,从而求出面积.解:作AE⊥BC于E点,∵其相邻两内角的度数比为1:5,∴∠B=180°×=30°,∵菱形ABCD的周长为36,∴AB=BC=×36=9.∴AE=×9=.∴菱形的面积为:BC•AE=9×=40.5.故答案为:40.5.点评:本题考查菱形的性质,菱形的邻角互补,四边相等.163【详解】如图,连接AO交EF于点P,由菱形和折叠对称的性质,知四边形AEOF是菱形,且AP=OP.∵点A恰好落在菱形的对称中心O处,∴AE=BE.∵AB=2,∠A=120°,∴Rt△AEF中,AE=1,∠AEP=30°.∴EP=3 2.∴EF317.(1)﹣4;(2).【解析】试题分析:(1)直接利用二次根式的乘法运算法则求出即可;(2)首先除法化成乘法,进而利用二次根式乘法运算法则求出即可.解:(1)•2•(﹣)=2×(﹣)=﹣=﹣4;(2)•(÷2)=×××=.点评:此题主要考查了二次根式的乘除运算,熟练掌握运算法则是解题关键.18.(1)∠BAC=75°(2)2【解析】试题分析:(1)根据三角形内角和定理,即可推出∠BAC的度数;(2)由题意可知AD=DC,根据勾股定理,即可推出AD的长度.(1)∠BAC=180°-60°-45°=75°;(2)∵AD⊥BC,∴△ADC是直角三角形,∵∠C=45°,∴∠DAC=45°,∴AD=DC,∵AC=2,考点:本题主要考查勾股定理、三角形内角和定理点评:解答本题的关键是根据三角形内角和定理推出AD=DC.19.30°【解析】试题分析:根据已知及菱形的性质:邻角互补,可求得∠ABC的度数;进而依据菱形的对角线平分一组对角,可得到∠ABD的度数.解:∵四边形ABCD是菱形,∠BAD=120°,∴∠ABC=60°.(菱形的邻角互补)∵菱形的每条对角线平分一组对角,∴∠ABD=∠ABC=30°.点评:此题主要考查菱形的性质的理解及运用.20..【解析】试题分析:先根据分式混合运算的法则把原式进行化简,再把a、b的值代入进行计算即可.试题解析:原式=(a+b)(a−b)ab(a−b)÷(a+b)22ab=a+b ab ⋅2ab (a+b)2=2a+b,当a=√3−√11,b=√3+√11时,a+b=√3−√11+√3+√11=2√3,所以原式=2√3=√33.点睛:本题考查了分式的化简求值:先把各分式的分子或分母因式分解,再进行分式的乘除运算,然后进行分式的加减运算得到最简分式或整式,再把满足条件的字母的值代入计算得到对应的分式的值;有括号先算括号.也考查了二次根式的计算.21.18米【解析】试题分析:先根据勾股定理求出BC的长,再由旗杆高度=AB+BC解答即可.解:∵旗杆剩余部分、折断部分与地面正好构成直角三角形,∴BC==13m,∴旗杆的高=AB+BC=13+5=18m.答:这根旗杆被吹断裂前有18米高.点评:本题考查的是勾股定理在实际生活中的应用,解答此题的关键是从题中抽象出勾股定理这一数学模型,再根据勾股定理进行解答.22.见解析【解析】试题分析:由题意知,四边形BEDF是矩形,只要证明有一组邻边相等即可得到,四边形BEDF 是正方形.证明:∵∠ABC=90°,DE⊥BC,DF⊥AB,∴∠BFD=∠BED=∠ABC=90°.∴四边形BEDF为矩形.又∵BD平分∠ABC,DE⊥BC,DF⊥AB,∴DF=DE.∴矩形BEDF为正方形.点评:本题是考查正方形的判别方法,判别一个四边形为正方形主要根据正方形的概念,途经有两种:①先说明它是矩形,再说明有一组邻边相等;②先说明它是菱形,再说明它有一个角为直角.23.(1)证明见解析,(2)证明见解析【解析】【分析】(1)根据E、F分别是边AB、CD的中点,可得出BE=DF,继而利用SAS可判断△BEC≌△DFA. (2)由(1)的结论,可得CE=AF,继而可判断四边形AECF是平行四边形.【详解】证明:(1)∵四边形ABCD是矩形,∴AB=CD,AD=BC. 又∵E、F分别是边AB、CD的中点,∴BE=DF.∵在△BEC和△DFA中,BC DA {B D BE DF=∠=∠=,∴△BEC≌△DFA(SAS).(2)由(1)△BEC≌△DFA,∴CE=AF,∵E、F分别是边AB、CD的中点,∴AE=CF∴四边形AECF是平行四边形.【点睛】本题考查三角形全等的证明,矩形的性质和平行四边形的判定.24.(1)见解析(2)24cm【解析】试题分析:(1)可根据菱形的定义“一组邻边相等的平行四边形是菱形”,先证明四边形BFED是平行四边形,然后再证明四边形的邻边相等即可.(2)F是AB的中点,有了AB的长也就求出了菱形的边长BF的长,那么菱形BDEF的周长也就能求出了.(1)证明:∵D、E、F分别是BC、AC、AB的中点,∴DE∥AB,EF∥BC,∴四边形BDEF是平行四边形,又∵DE=AB,EF=BC,且AB=BC,∴DE=EF,∴四边形BDEF是菱形;(2)解:∵AB=12cm,F为AB中点,∴BF=6cm,∴菱形BDEF的周长为6×4=24cm.点评:本题的关键是判断四边形BDEF是菱形.菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义;②四边相等;③对角线互相垂直平分.。

相关文档
最新文档