第六届全国大学生数学竞赛预赛试题及参考答案(非数学类)
2017年数学竞赛预赛(非数学类)试题评分标准及参考答案 .doc

2017年数学竞赛预赛(非数学类)试题评分标准及参考答案一 1. 已知可导函数满足, 则()f x解: 在方程两边求导得'()c o s +()s i n f x x f x x =,'()+()tan sec f x f x x x =.从而tan tan ()sec xdx xdx f x e xe dx c -⎛⎫⎰⎰=+ ⎪⎝⎭⎰l n c o sl n c o s211==cos cos cos x x ee dx c x dx c x x --⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰ ()=c o s t a n =s i n c o sx x c x cx ++ 由于(0)1f =,故()sin cos f x x x =+。
2.求()n n n +∞→22sin lim π解 由于 ()=+n n 22sin π()ππn n n -+22sin=2sin 1⎛⎫→。
3. 设(,)w f u v =具有二阶连续偏导数,且==+u x cy v x cy -,,其中c 为非零常数。
则21xx yy w w c-=_________。
解: 12+x w f f =,1112222xx w f f f =++,21()y w c f f =-,()()()22111122122111222=2yy w cf f c cf cf cf cf c f f f y∂=-=--+-+∂。
所以1221=4xx yy w w f c-。
4. 设()f x 有二阶导数连续,且(0)'(0)0,"(0)6f f f ===,则24(s i n )l i m x f xx →=______解:21()(0)'(0)"()2f x f f x f x ξ=++,所以241(sin )"()sin 2f x f x ξ=。
这样244400(sin )"()sin lim=lim 32x x f x f xx x ξ→→=。
全国大学生数学竞赛(非数学类)大纲及历年预赛试卷

余弦函数,以及它们的和与积 7. 欧拉(Euler)方程. 8. 微分方程的简单应用 五、向量代数和空间解析几何 1. 向量的概念、向量的线性运算、向量的数量积和向量积、向量的混合积. 2. 两向量垂直、平行的条件、两向量的夹角. 3. 向量的坐标表达式及其运算、单位向量、方向数与方向余弦. 4. 曲面方程和空间曲线方程的概念、平面方程、直线方程. 5. 平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件、点到平面和
f ( y) x2[1 f ( y)]3
1 x2 (1 f ( y))
f ( y) [1 f ( y)]2 x2[1 f ( y)]3
解法 2 方程 xe f (y) ey ln 29 取对数,得 f ( y) ln x y ln ln 29
(1)
方程(1)的两边对 x 求导,得 f ( y) y 1 y x
4.设函数 y y(x) 由方程 xe f ( y) ey ln 29 确定,其中 f 具有二阶导数,且 f 1 ,
则
d2 y dx 2
________________.
解法 1 方程 xe f ( y) ey ln 29 的两边对 x 求导,得
e f ( y) xf ( y) ye f ( y) e y y ln 29
即
[ 1 f ( y) y]xe f ( y) ye y ln 29 x
因 e y ln 29 xe f ( y) 0 ,故 1 f ( y) y y,即 y
1
,因此
x
x(1 f ( y))
d2 y dx 2
y
1 x2 (1 f
( y))
f ( y) y x[1 f ( y)]2
点到直线的距离. 6. 球面、母线平行于坐标轴的柱面、旋转轴为坐标轴的旋转曲面的方程、常用的二次
全国大学生数学竞赛试题解答及评分标准非数学类

全国高校生竞赛历年试题名师精讲〔非数学类〕〔2021——2021〕第五届全国高校生数学竞赛预赛试卷〔非数学类〕一、 解答以下各题〔每题6分共24分,要求写出重要步骤〕(lim 1sin nn →∞+.解 因为()sin sin 2n π==……〔2分〕;原式lim 1exp lim ln 1sin nn n n →∞→∞⎡⎤⎛⎫⎛⎫=+=+⎢⎥ ⎢⎥⎝⎝⎣⎦exp ⎛= ⎝0sin xdx x+∞⎰不是肯定收敛的 解 记()1sin n n nx a dx xππ+=⎰,只要证明0n n a ∞=∑发散即可。
……………………〔2分〕因为()()()()10112sin sin 111n n n a x dx xdx n n n ππππππ+≥==+++⎰⎰。
…………〔2分〕 而()021n n π∞=+∑发散,故由比较判别法nn a∞=∑发散。
……………………………………〔2分〕()y y x =由323322x x y y +-=确定,求()y x 的极值。
解 方程两边对x 求导,得22236360x xy x y y y ''++-= ………………〔1分〕 故()2222x x y y y x+'=-,令0y '=,得()200x x y x +=⇒=或2x y =-………〔2分〕将2x y =-代入所给方程得2,1x y =-=,将0x =代入所给方程得0,1x y ==-,…………………………………〔2分〕又()()()()()2222222222422x xy y y x x x y yy x y yx''++--+-''=-()()()0,1,02,1,0200220010,1020x y y x y y y y ''====-==+---''''==-<=>-, 故()01y =-为极大值,()21y -=为微小值。
全国大学生数学竞赛试题解答及评分标准(非数学类)

全国大学生竞赛历年试题名师精讲(非数学类) (2009——2013)第五届全国大学生数学竞赛预赛试卷而0n ∞=将0x =代入所给方程得0,1x y ==-,…………………………………(2分) 又()()()()()2222222222422x xy y y x x x y yy x y yx''++--+-''=-()()()0,1,02,1,0200220010,1020x y y x y y y y ''====-==+---''''==-<=>-,故()01y=-为极大值,()21y-=为极小值。
…………………………(3分)4.过曲线)0y x=≥上的点A作切线,使该切线与曲线及x轴所围成的平面图形的面积为34,求点A的坐标。
解设切点A的坐标为(t,曲线过A点的切线方程为y=令0y=,由切线方程得切线与x轴交点的横坐标为2x t=-。
从而作图可知,所求平面图形的面积3321tS t t t=---==⇒=⎤,解====1n⎛⎫⎪⎝⎭收ff'()()()()()200011lim lim lim02202x x xf x f x f x ffx x x→→→'''-''===-…………………(3分)所以()211lim021nfnfn→∞⎛⎫⎪⎝⎭''=⎛⎫⎪⎝⎭……………………………(2分)由于级数211n n ∞=∑收敛,从而由比较判别法的极限形式11n f n ∞=⎛⎫⎪⎝⎭∑四、(满分12分)设()()(),0f x f x a x b ππ'≤≥>≤≤,证明()sin baf x ⎰解因为()()0f x a x b π'≥>≤≤,所以()f x 在[],a b 上严格单调增,从而有反函设A =又(f x(0πϕ'≤⎰五、(面积分(I ∑=⎰⎰值。
全国大学生数学竞赛(非数学类)大纲及历年预赛试卷

(*) 2 0 (1 2t 2 t 4 )dt 1
2
1 0
(1 2t 2
t 4 )dt
2t
2 t3 3
1 5
t
5
1 0
16 15
2.设 f (x) 是连续函数,且满足 f (x) 3x2
2
f (x)dx 2 , 则 f (x) ____________.
0
解 令 A 2 f (x)dx ,则 f (x) 3x2 A 2 , 0
n
x0
n
故
A lim ex e2x enx n e
x0
n
x
e lim ex e2x enx n
x0
nx
e lim ex 2e2x nenx e 1 2 n n 1 e
x0
n
n
2
因此
lim ( ex
e2x
e
nx
)
e x
eA
n1e
e 2
x0
n
解法 2 因
(x0 , y0 ) 处 的 法 向 量 为 (zx (x0 , y0 ), z y (x0 , y0 ),1) , 故 (zx (x0 , y0 ), z y (x0 , y0 ),1) 与
(2,2,1) 平行,因此,由 zx x , z y 2 y 知 2 zx (x0 , y0 ) x0 ,2 z y (x0 , y0 ) 2 y0 ,
y(1
f ( y))
因此
—4—
y
f ( y) [1 f ( y)]2 x2[1 f ( y)]3
二、(5
分)求极限 lim ( ex
e2x
e nx
e
)x
历届全国大学生高等数学竞赛真题及答案非数学类

前三届高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。
)2009年 第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫ ⎝⎛-=, v u u v u u u y x y x x yy x D D d d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=1021000d 1)ln (1ln d )d ln 1d 1ln (u uu u u u u u u u v v uuv u u u u u ⎰-=12d 1u uu (*) 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,⎰+--=0142d )21(2(*)tt t⎰+-=1042d )21(2t t t 1516513221053=⎥⎦⎤⎢⎣⎡+-=t t t2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.解: 令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A 。
因此3103)(2-=x x f 。
3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 解: 因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。
全国大学生高等数学竞赛真题及答案(非数学类)-无答案

2009年 第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 4.设函数)(x y y =由方程29ln )(y y f e xe =确定,其中f 具有二阶导数,且1≠'f ,则=22d d x y________________. 二、(5分)求极限xenx x x x ne e e )(lim 20+++→ ,其中n 是给定的正整数.三、(15分)设函数)(x f 连续,⎰=10d )()(t xt f x g ,且A xx f x =→)(lim,A 为常数,求)(x g '并讨论)(x g '在0=x 处的连续性.四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证:(1)⎰⎰-=---Lx y Lx yx ye y xe x ye y xed d d d sin sin sin sin ;(2)2sin sin 25d d π⎰≥--Ly yx ye y xe .五、(10分)已知xx e xe y 21+=,x x e xe y -+=2,xx x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.六、(10分)设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形的面积为31.试确定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积最小.七、(15分)已知)(x u n 满足),2,1()()(1 =+='-n e x x u x u x n n n, 且neu n =)1(, 求函数项级数∑∞=1)(n nx u之和.八、(10分)求-→1x 时, 与∑∞=02n n x等价的无穷大量.2010年 第二届全国大学生数学竞赛预赛试卷一、(25分,每小题5分) (1)设22(1)(1)(1),nn x a a a =+++其中||1,a <求lim .n n x →∞(2)求21lim 1x x x e x -→∞⎛⎫+ ⎪⎝⎭。
历届全国大学生数学竞赛真题及答案非数学类

高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。
)2009年第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分,共20分)1.计算____________,其中区域由直线与两坐标轴所围成三角形区域.解: 令,则,,(*)令,则,,,2.设是连续函数,且满足, 则____________.解: 令,则,,解得。
因此。
3.曲面平行平面的切平面方程是__________.解: 因平面的法向量为,而曲面在处的法向量为,故与平行,因此,由,知,即,又,于是曲面在处的切平面方程是,即曲面平行平面的切平面方程是。
4.设函数由方程确定,其中具有二阶导数,且,则________________.解: 方程的两边对求导,得因,故,即,因此二、(5分)求极限,其中是给定的正整数.解 :因故因此三、(15分)设函数连续,,且,为常数,求并讨论在处的连续性.解 : 由和函数连续知,因,故,因此,当时,,故当时,,这表明在处连续.四、(15分)已知平面区域,为的正向边界,试证:(1);(2).证 :因被积函数的偏导数连续在上连续,故由格林公式知(1)而关于和是对称的,即知因此(2)因故由知即五、(10分)已知,,是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.解设,,是二阶常系数线性非齐次微分方程的三个解,则和都是二阶常系数线性齐次微分方程的解,因此的特征多项式是,而的特征多项式是因此二阶常系数线性齐次微分方程为,由和,知,二阶常系数线性非齐次微分方程为六、(10分)设抛物线过原点.当时,,又已知该抛物线与轴及直线所围图形的面积为.试确定,使此图形绕轴旋转一周而成的旋转体的体积最小.解因抛物线过原点,故,于是即而此图形绕轴旋转一周而成的旋转体的体积即令,得即因此,,.七、(15分)已知满足, 且, 求函数项级数之和.解,即由一阶线性非齐次微分方程公式知即因此由知,,于是下面求级数的和:令则即由一阶线性非齐次微分方程公式知令,得,因此级数的和八、(10分)求时, 与等价的无穷大量.解令,则因当,时,,故在上严格单调减。