南京市中考数学模拟测试卷含答案
江苏省南京市中考数学模拟试卷五套及答案.doc

江苏省南京市中考数学模拟试卷(1)一、选择题(本大题共6小题,每小题2分,共12分)1.下列数中,与﹣2的和为0的数是()A.2 B.﹣2 C.21D.21-2.下列调查中,适宜采用普查方式的是()A.了解一批圆珠笔的寿命B.了解全国九年级学生身高的现状C.检查一枚用于发射卫星的运载火箭的各零部件D.考察人们保护海洋的意识3.从下列不等式中选择一个与12x+≥组成不等式组,使该不等式组的解集为1x≥,那么这个不等式可以是()A.1x>-B.2x>C.1x<-D.2x<4.如图是小刘做的一个风筝支架示意图,已知BC∥PQ,:2:5AB AP=,AQ=20cm,则CQ的长是()A.8 cm B.12 cm C.30 cm D.50 cm5.如图,在五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于()A.90°B.180°C.210° D.270°(第4题)(第5题)(第6题)6.如图,已知点A,B的坐标分别为(-4,0)和(2,0),在直线y=21-x+2上取一点C,若△ABC是直角三角形,则满足条件的点C有()A.1个B.2个C.3个D.4个二、填空题(本大题共10小题,每小题2分,共20分)7.计算:(3a3)2=.8.“十二五”期间,我国将新建保障性住房36 000 000套,用于解决中低收入和新参加工作的大学生住房的需求,把36 000 000用科学记数法表示应是.9.分解因式:ab2-a = .10.已知a,b是一元二次方程220x x--=的两根,则a b+=.11.计算:﹣=.12.已知扇形的圆心角为45°,半径长为12 cm,则该扇形的弧长为cm.13.如图,这是一个长方体的主视图和俯视图,由图示数据(单元:cm)可以得出该长方体的体积是cm3.14.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1,反比例函数3yx=的图像经过A,B两点,则菱形对ABCD的面积为.15.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点.若⊙O的半径为7,则GE+FH的最大值为.16.如图,在ABC∆中,CA CB=,90C∠=︒,点D是BC的中点,将ABC∆沿着直线EF折叠,使点A与点D重合,折痕交AB于点E,交AC于点F,那么sin BED∠的值为.三、解答题(本大题共11小题,共88分)17.(6分)计算:(13)0+27 +| -3 |.18.(6分)2112x xxx x⎛⎫++÷-⎪⎝⎭,再从1、0、2中选一个你所喜欢的数代入求值。
2023年江苏省南京市中考数学真题模拟试卷附解析

2023年江苏省南京市中考数学真题模拟试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.口ABCD 的周长为36 cm ,AB=BC=2cm ,则AD ,CD 的长度分别为( ) A .12 cm ,6 cmB .8 cm ,10 cmC .6 cm ,12 cmD .10 cm ,8 cm2. 利用因式分解计算2009200822-,则结果是( ) A .2B .1C .20082D .-1 3.经过任意三点中的两点共可以画出的直线条数是( )A .一条或三条B .三条C .两条D .一条4.长方形的周长是36(cm ),长是宽的2倍,设长为x (cm ),则下列方程正确的是( ) A .x+2 x =36B .1362x x +=C .2(x +2x )=36D .12()362x x +=5.下列各个变形正确的是( ) A .由 7x=4x-3,移项,得 7x-4x=3B .由 3(2x-1)=1+ 2(x-3),去括号,得6x-1 =1+2x-3C .由 2(2x-1)-3(x-3)= 1,去括号,得4x-2-3x-9= 1D .由 2(x+1)=x+8,去括号,移项,合并,得x=66.两个有理数和的绝对值与这两个数绝对值的和相等,那么这两个数( ) A .都是正数B. 两数同号或有一个数为 0 C .都是负数 D .无法确定二、填空题7.如图,有6张牌,从中任意抽取两张,点数和是奇数的概率是________.8.在Rt △ABC 中,已知∠C=90°,若∠A=30°3,则∠B=______, b=______,c=______.9.一次函数21y x =-+的图象,经过抛物线21(0)y x mx m =++≠的顶点,则 m= . 10.如图,在矩形ABCD 中,M 是BC 的中点,且MA ⊥MD .•若矩形ABCD•的周长为48cm ,•则矩形ABCD 的面积为 cm 2.11.在平面直角坐标系中.点A(x-l ,2-x)在第四象限,则实数x 的取值范围是 . 12.如图,方格纸上有A 、B 两点.若以B 为原点,建立平面直角坐标系,则点A 的坐标为(6,3);若以A 为原点建立平面直角坐标系,则点B 的坐标为 .13.请举出一个主视图和俯视图相同,但是左视图不同的几何体: . 14.如图,AB ∥CD ,EG 平分∠BEF.∠2 = 60°, 则∠1= .15.x= 时,分式)1)(3(3+--x x x 的值是0.16.观察下列各式: (x-1(x+1)=x 2-1 (x-1)(x 2+x+1)=x 3-1 (x-1)(x 3+x 2+x+1)=x 4-1根据规律可得(x-1)(x n-1+……+x+1)= (其中n 为正整数). 17.填空:(1)已知5n a =,则3n a = ; (2)已知530()x a a =,则x = ;(3)若2434()()x y m m m ==,则x= ,y= .18.观察下面的等式,①111122⨯=-;②222233⨯=-;③333344⨯=-;④444455⨯=-……第n个等式可表示为 .19.图中有线段 条,分别是线段 、 、 、 、 、 .图中共有射线 条.20.宁波市2008年初中毕业生学业考试各科的满分值如下:科目 语文 数学 英语 科学 社政 体育 满分值1201201101508030若把表中各科满分值按比例绘成扇形统计图,则表示数学科学的扇形的圆心角应是 度(结果保留3个有效数字).21.如图,∠A+∠B+∠C+∠D+∠E+∠F 的度数为 .三、解答题22.Rt △ABC 中,∠C=90°,cosB=32,求a:b:c 等于多少?23.如图,一次函数y kx b =+的图象与反比例函数my x=的图象相交于 A .B 两点, (1)利用图中条件,求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的取值范围.24.如图所示,在梯形ABCD 中,AD ∥BC ,AB=DC ,∠D=120°.对角线CA 平分∠BCD ,且梯形的周长为20,求AC 的长及梯形的面积.25.给出下面三种边长相等的正多边形:要求选取其中的至少两种正多边形,使这几种正多边形能围绕一个顶点镶嵌成不留空隙的平面图形,请画出两种不同镶嵌方法的示意图.26. 按由大到小的顺序排列下列各数: 1332312721752 1117523273223>>>27.如图,点E 、D 分别是等边△ABC 中以C 点为顶点的一边延长线和另一边反向延长线上的点,且BE=CD ,DB 的延长线交AE 于F . (1)请说明△ABE ≌△BCD 的理由; (2)求∠AFB 的度数.28.若a ,b 互为相反数,求3223a a b ab b +++的值.29.25(精确到0.001 ).30.8箱苹果,以每箱5千克为准,称重记录如下:(超过记为正数,单位:千克) 1.5, -1,3,0, 0.5, -1.5,2, -0.5321CA BEDF这8箱苹果的总重量是多少?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.A4.D5.D6.B二、填空题7.88.1560°,12,389.一410.1282x >12.(-6,-3)13.答案不唯一,如横放的圆柱14.60°15.-316.1-n x 17.(1)125;(2)6;(3)8,618.11n nn n n n ⨯=-++19. 6;线段CO 、CA 、CB 、OA 、OB 、AB ;820.70.821.360°三、解答题 22.3:5:2.23.(1)由题意得,m=2×3=6. ∴6y x=,∴当 x=-1 时,n=-6. ∴23|6k b k b =+⎧⎨-=-+⎩,∴24k b =⎧⎨=-⎩,∴24y x =-(2)当 x<—1 或 0<x<3 时,一次函数的值大于反比例函数的值24.AC=S 梯形略26.>>>.(1)略;(2)60°28.29.12,-=≈12)10.178 30.44千克。
2024届江苏省南京市鼓楼区鼓楼实验中学中考数学全真模拟试题含解析

2024届江苏省南京市鼓楼区鼓楼实验中学中考数学全真模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.等腰三角形两边长分别是2 cm 和5 cm ,则这个三角形周长是( )A .9 cmB .12 cmC .9 cm 或12 cmD .14 cm2.如果数据x 1,x 2,…,x n 的方差是3,则另一组数据2x 1,2x 2,…,2x n 的方差是( )A .3B .6C .12D .53.某青年排球队12名队员年龄情况如下: 年龄18 19 20 21 22 人数 1 4 3 2 2则这12名队员年龄的众数、中位数分别是( )A .20,19B .19,19C .19,20.5D .19,204.下列标志中,可以看作是轴对称图形的是( )A .B .C .D .5.下列四个图形中,是中心对称图形但不是轴对称图形的是( )A .B .C .D .6.如果关于x 的方程220x x c ++=没有实数根,那么c 在2、1、0、3-中取值是( )A .2;B .1;C .0;D .3-.7.下列运算中,计算结果正确的是( )A .a 2•a 3=a 6B .a 2+a 3=a 5C .(a 2)3=a 6D .a 12÷a 6=a 2 8.如图,在Rt △ABC 中,∠ACB=90°,∠A=30°,D ,E ,F 分别为AB ,AC ,AD 的中点,若BC=2,则EF 的长度为( )A.B.1 C.D.9.用配方法解方程x2﹣4x+1=0,配方后所得的方程是()A.(x﹣2)2=3 B.(x+2)2=3 C.(x﹣2)2=﹣3 D.(x+2)2=﹣310.如图,在Rt△ABC中,∠B=90°,∠A=30°,以点A为圆心,BC长为半径画弧交AB于点D,分别以点A、D 为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠EAD的余弦值是()A.312B.36C.33D.3211.某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x件衬衫,则所列方程为()A.10000x﹣10=14700(140)0x+B.10000x+10=14700(140)0x+C.10000(140)0x-﹣10=14700xD.10000(140)0x-+10=14700x12.如图,已知△ABC,△DCE,△FEG,△HGI是4个全等的等腰三角形,底边BC,CE,EG,GI在同一直线上,且AB=2,BC=1.连接AI,交FG于点Q,则QI=()A.1 B 61C66D.43二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,一艘海轮位于灯塔P 的北偏东方向60°,距离灯塔为4海里的点A 处,如果海轮沿正南方向航行到灯塔的正东位置,海轮航行的距离AB 长_____海里.14.为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买_____个.15.分解因式2242xy xy x ++=___________16.如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所示尺寸(单位:mm ),计算出这个立体图形的表面积.17.已知:如图,△ABC 内接于⊙O ,且半径OC ⊥AB ,点D 在半径OB 的延长线上,且∠A=∠BCD=30°,AC=2,则由BC ,线段CD 和线段BD 所围成图形的阴影部分的面积为__.18.在ABC 中,A ∠:B ∠:C ∠=1:2:3,CD AB ⊥于点D ,若AB 10=,则BD =______三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)对于平面直角坐标系xOy 中的点P 和直线m ,给出如下定义:若存在一点P ,使得点P 到直线m 的距离等于1,则称P 为直线m 的平行点.(1)当直线m 的表达式为y =x 时,①在点()11,1P ,(22P ,322P ⎛ ⎝⎭中,直线m 的平行点是______; ②⊙O 10,点Q 在⊙O 上,若点Q 为直线m 的平行点,求点Q 的坐标.(2)点A 的坐标为(n ,0),⊙A 半径等于1,若⊙A 上存在直线3y x =的平行点,直接写出n 的取值范围.20.(6分)如图所示,点C为线段OB的中点,D为线段OA上一点.连结AC、BD交于点P.(问题引入)(1)如图1,若点P为AC的中点,求ADDO的值.温馨提示:过点C作CE∥AO交BD于点E.(探索研究)(2)如图2,点D为OA上的任意一点(不与点A、O重合),求证:PD AD PB AO=.(问题解决)(3)如图2,若AO=BO,AO⊥BO,14ADAO=,求tan∠BPC的值.21.(6分)西安汇聚了很多人们耳熟能详的陕西美食.李华和王涛同时去选美食,李华准备在“肉夹馍(A)、羊肉泡馍(B)、麻酱凉皮(C)、(biang)面(D)”这四种美食中选择一种,王涛准备在“秘制凉皮(E)、肉丸胡辣汤(F)、葫芦鸡(G)、水晶凉皮(H)”这四种美食中选择一种.(1)求李华选择的美食是羊肉泡馍的概率;(2)请用画树状图或列表的方法,求李华和王涛选择的美食都是凉皮的概率.22.(8分)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.(I)如图①,若BC为⊙O的直径,求BD、CD的长;(II)如图②,若∠CAB=60°,求BD、BC的长.23.(8分)如图,∠A=∠D,∠B=∠E,AF=DC.求证:BC=EF.24.(10分)如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.求证:△ABM ∽△EFA ;若AB=12,BM=5,求DE 的长.25.(10分)如图,方格纸中每个小正方形的边长均为1,线段AB 的两个端点均在小正方形的顶点上.在图中画出以线段AB 为一边的矩形ABCD (不是正方形),且点C 和点D 均在小正方形的顶点上;在图中画出以线段AB 为一腰,底边长为22的等腰三角形ABE ,点E 在小正方形的顶点上,连接CE ,请直接写出线段CE 的长.26.(12分)如图,在△ABC 中,∠C=90°.作∠BAC 的平分线AD ,交BC 于D ;若AB=10cm ,CD=4cm ,求△ABD 的面积.27.(12分)先化简,再求值:222221412()x x x x x x x x-+-+÷-+,且x 为满足﹣3<x <2的整数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、B【解题分析】当腰长是2 cm 时,因为2+2<5,不符合三角形的三边关系,排除;当腰长是5 cm 时,因为5+5>2,符合三角形三边关系,此时周长是12 cm .故选B .2、C【解题分析】【分析】根据题意,数据x 1,x 2,…,x n 的平均数设为a ,则数据2x 1,2x 2,…,2x n 的平均数为2a ,再根据方差公式进行计算:()()()()222221231n S x x x x x x x x n ⎡⎤=-+-+-++-⎣⎦即可得到答案. 【题目详解】根据题意,数据x 1,x 2,…,x n 的平均数设为a ,则数据2x 1,2x 2,…,2x n 的平均数为2a , 根据方差公式:()()()()222221231n S x a x a x a x a n ⎡⎤=-+-+-++-⎣⎦=3, 则()()()()22222123122222222n S x a x a x a x a n ⎡⎤=-+-+-++-⎣⎦ =()()()()222212314444n x a x a x a x a n ⎡⎤-+-+-++-⎣⎦ =4×()()()()22221231n x a x a x a x a n ⎡⎤-+-+-++-⎣⎦ =4×3=12,故选C .【题目点拨】本题主要考查了方差公式的运用,关键是根据题意得到平均数的变化,再正确运用方差公式进行计算即可.3、D【解题分析】先计算出这个队共有1+4+3+2+2=12人,然后根据众数与中位数的定义求解.【题目详解】这个队共有1+4+3+2+2=12人,这个队队员年龄的众数为19,中位数为20202+=1. 故选D .【题目点拨】本题考查了众数:在一组数据中出现次数最多的数叫这组数据的众数.也考查了中位数的定义.4、D【解题分析】根据轴对称图形与中心对称图形的概念求解.【题目详解】解:A 、不是轴对称图形,是中心对称图形,不符合题意;B 、不是轴对称图形,是中心对称图形,不符合题意;C 、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,符合题意.故选D.【题目点拨】本题考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.5、D【解题分析】根据轴对称图形与中心对称图形的概念判断即可.【题目详解】A、是轴对称图形,不是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,是中心对称图形.故选D.【题目点拨】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6、A【解题分析】分析:由方程根的情况,根据根的判别式可求得c的取值范围,则可求得答案.详解:∵关于x的方程x1+1x+c=0没有实数根,∴△<0,即11﹣4c<0,解得:c>1,∴c在1、1、0、﹣3中取值是1.故选A.点睛:本题主要考查了根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.7、C【解题分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相减;同底数幂相除,底数不变指数相减对各选项分析判断即可得解.【题目详解】A、a2•a3=a2+3=a5,故本选项错误;B、a2+a3不能进行运算,故本选项错误;C 、(a 2)3=a 2×3=a 6,故本选项正确;D 、a 12÷a 6=a 12﹣6=a 6,故本选项错误.故选:C .【题目点拨】本题考查了同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算法则是解题的关键.8、B【解题分析】根据题意求出AB 的值,由D 是AB 中点求出CD 的值,再由题意可得出EF 是△ACD 的中位线即可求出.【题目详解】∠ACB=90°,∠A=30°,BC=AB.BC=2, AB=2BC=22=4,D 是AB 的中点, CD=AB= 4=2.E,F 分别为AC,AD 的中点,EF 是△ACD 的中位线. EF=CD= 2=1.故答案选B.【题目点拨】本题考查的知识点是三角形中位线定理,解题的关键是熟练的掌握三角形中位线定理.9、A【解题分析】方程变形后,配方得到结果,即可做出判断.【题目详解】方程2410x x +=﹣,变形得:241x x =﹣﹣,配方得:24414x x +=+﹣﹣,即223x =(﹣),故选A .本题考查的知识点是了解一元二次方程﹣配方法,解题关键是熟练掌握完全平方公式.10、B【解题分析】试题解析:如图所示:设BC=x,∵在Rt△ABC中,∠B=90°,∠A=30°,∴AC=2BC=2x,AB33,根据题意得:AD=BC=x,AE=3,作EM⊥AD于M,则AM=12AD=12x,在Rt△AEM中,cos∠EAD=13263xAMAE x==;故选B.【题目点拨】本题考查了解直角三角形、含30°角的直角三角形的性质、等腰三角形的性质、三角函数等,通过作辅助线求出AM是解决问题的关键.11、B【解题分析】根据题意表示出衬衫的价格,利用进价的变化得出等式即可.【题目详解】解:设第一批购进x件衬衫,则所列方程为:10000x +10=()147001400x+.故选B.此题主要考查了由实际问题抽象出分式方程,正确找出等量关系是解题关键.12、D【解题分析】解:∵△ABC 、△DCE 、△FEG 是三个全等的等腰三角形,∴HI =AB =2,GI =BC =1,BI =2BC =2,∴AB BI =24=12BC AB ,=12,∴AB BI =BC AB .∵∠ABI =∠ABC ,∴△ABI ∽△CBA ,∴AC AI =AB BI.∵AB =AC ,∴AI =BI =2.∵∠ACB =∠FGE ,∴AC ∥FG ,∴QI AI =GI CI =13,∴QI =13AI =43.故选D . 点睛:本题主要考查了平行线分线段定理,以及三角形相似的判定,正确理解AB ∥CD ∥EF ,AC ∥DE ∥FG 是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、1【解题分析】分析:首先由方向角的定义及已知条件得出∠NPA=60°,AP=4海里,∠ABP=90°,再由AB ∥NP ,根据平行线的性质得出∠A=∠NPA=60°.然后解Rt △ABP ,得出AB=AP•cos ∠A=1海里.详解:如图,由题意可知∠NPA=60°,AP=4海里,∠ABP=90°.∵AB ∥NP ,∴∠A=∠NPA=60°.在Rt △ABP 中,∵∠ABP=90°,∠A=60°,AP=4海里,∴AB=AP•cos ∠A=4×cos60°=4×12=1海里.故答案为1.点睛:本题考查了解直角三角形的应用-方向角问题,平行线的性质,三角函数的定义,正确理解方向角的定义是解题的关键.14、1【解题分析】设购买篮球x 个,则购买足球()50x -个,根据总价=单价⨯购买数量结合购买资金不超过3000元,即可得出关于x 的一元一次不等式,解之取其中的最大整数即可.【题目详解】设购买篮球x 个,则购买足球()50x -个,根据题意得:()80x 5050x 3000+-≤, 解得:50x 3≤. x 为整数, x ∴最大值为1.故答案为1. 【题目点拨】本题考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.15、22(1)x y +【解题分析】原式提取公因式,再利用完全平方公式分解即可. 【题目详解】原式=2x (y 2+2y +1)=2x (y +1)2, 故答案为2x (y +1)2 【题目点拨】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 16、100 mm 1 【解题分析】首先根据三视图得到两个长方体的长,宽,高,在分别表示出每个长方体的表面积,最后减去上面的长方体与下面的长方体的接触面积即可. 【题目详解】根据三视图可得:上面的长方体长4mm ,高4mm ,宽1mm , 下面的长方体长8mm ,宽6mm ,高1mm ,∴立体图形的表面积是:4×4×1+4×1×1+4×1+6×1×1+8×1×1+6×8×1-4×1=100(mm 1). 故答案为100 mm 1. 【题目点拨】此题主要考查了由三视图判断几何体以及求几何体的表面积,根据图形看出长方体的长,宽,高是解题的关键.17、﹣23π. 【解题分析】试题分析:根据题意可得:∠O=2∠A=60°,则△OBC 为等边三角形,根据∠BCD=30°可得:∠OCD=90°,OC=AC=2,则CD=OCD122S =⨯=OBC 60423603S ππ⨯==扇形,则23S π=阴影. 18、2.1 【解题分析】先求出△ABC 是∠A 等于30°的直角三角形,再根据30°角所对的直角边等于斜边的一半求解. 【题目详解】解:根据题意,设∠A 、∠B 、∠C 为k 、2k 、3k , 则k+2k+3k=180°, 解得k=30°, 2k=60°, 3k=90°, ∵AB=10, ∴BC=12AB=1, ∵CD ⊥AB , ∴∠BCD=∠A=30°, ∴BD=12BC=2.1. 故答案为2.1. 【题目点拨】本题主要考查含30度角的直角三角形的性质和三角形内角和定理,掌握30°角所对的直角边等于斜边的一半、求出△ABC 是直角三角形是解本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)①2P ,3P ;②,(-,(,(-;(2)33n -≤≤.【解题分析】(1)①根据平行点的定义即可判断;②分两种情形:如图1,当点B 在原点上方时,作OH ⊥AB 于点H ,可知OH=1.如图2,当点B 在原点下方时,同法可求;(2)如图,直线OE 的解析式为y =,设直线BC//OE 交x 轴于C ,作CD ⊥OE 于D. 设⊙A 与直线BC 相切于点F ,想办法求出点A 的坐标,再根据对称性求出左侧点A 的坐标即可解决问题;【题目详解】解:(1)①因为P 2、P 3到直线y =x 的距离为1,所以根据平行点的定义可知,直线m 的平行点是2P ,3P , 故答案为2P ,3P .②解:由题意可知,直线m 的所有平行点组成平行于直线m ,且到直线m 的距离为1的直线. 设该直线与x 轴交于点A ,与y 轴交于点B .如图1,当点B 在原点上方时,作OH ⊥AB 于点H ,可知OH =1.由直线m 的表达式为y =x ,可知∠OAB =∠OBA =45°. 所以2OB =.直线AB 与⊙O 的交点即为满足条件的点Q . 连接1OQ ,作1Q N y ⊥轴于点N ,可知110OQ = 在1Rt OHQ ∆中,可求13HQ =. 所以12BQ =.在1Rt BHQ ∆中,可求12NQ NB = 所以22ON =. 所以点1Q 的坐标为2,22.同理可求点2Q 的坐标为(22,2--.如图2,当点B 在原点下方时,可求点3Q 的坐标为()22,2点4Q 的坐标为()2,22--, 综上所述,点Q 的坐标为()2,22,()22,2--,()22,2,()2,22--.(2)如图,直线OE 的解析式为3y x =,设直线BC ∥OE 交x 轴于C ,作CD ⊥OE 于D .当CD =1时,在Rt △COD 中,∠COD =60°, ∴23sin 60CD OC ==︒, 设⊙A 与直线BC 相切于点F , 在Rt △ACE 中,同法可得23AC =∴33OA =, ∴433n =根据对称性可知,当⊙A 在y 轴左侧时,43n =,观察图象可知满足条件的N的值为:434333n-≤≤.【题目点拨】此题考查一次函数综合题、直线与圆的位置关系、锐角三角函数、解直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造直角三角形解决问题.20、(1)12;(2) 见解析;(3)12【解题分析】(1)过点C作CE∥OA交BD于点E,即可得△BCE∽△BOD,根据相似三角形的性质可得CE BCOD BO=,再证明△ECP≌△DAP,由此即可求得ADDO的值;(2)过点D作DF∥BO交AC于点F,即可得PD DFPB BC=,AD DFAO OC=,由点C为OB的中点可得BC=OC,即可证得PD ADPB AO=;(3)由(2)可知PD ADPB AO==14,设AD=t,则BO=AO=4t,OD=3t,根据勾股定理求得BD=5t,即可得PD=t,PB=4t,所以PD=AD,从而得∠A=∠APD=∠BPC,所以tan∠BPC=tan∠A=12 OCOA=.【题目详解】(1)如图1,过点C作CE∥OA交BD于点E,∴△BCE∽△BOD,∴=,又BC=BO,∴CE=DO.∵CE∥OA,∴∠ECP=∠DAP,又∠EPC=∠DPA,PA=PC,∴△ECP≌△DAP,∴AD=CE=DO,即=;(2)如图2,过点D作DF∥BO交AC于点F,则=,=.∵点C为OB的中点,∴BC=OC,∴=;(3)如图2,∵=,由(2)可知==.设AD=t,则BO=AO=4t,OD=3t,∵AO⊥BO,即∠AOB=90°,∴BD==5t,∴PD=t,PB=4t,∴PD=AD,∴∠A=∠APD=∠BPC,则tan∠BPC=tan∠A==.【题目点拨】本题考查了相似三角形的判定与性质,准确作出辅助线,构造相似三角形是解决本题的关键,也是求解的难点.21、(1)14;(2)见解析.【解题分析】(1)直接根据概率的意义求解即可;(2)列出表格,再找到李华和王涛同时选择的美食都是凉皮的情况数,利用概率公式即可求得答案.【题目详解】解:(1)李华选择的美食是羊肉泡馍的概率为;(2)列表得:E F G HA AE AF AG AHB BE BF BG BHC CE CF CG CHD DE DF DG DH由列表可知共有16种情况,其中李华和王涛选择的美食都是凉皮的结果数为2,所以李华和王涛选择的美食都是凉皮的概率为=.【题目点拨】本题涉及树状图或列表法的相关知识,难度中等,考查了学生的分析能力.用到的知识点为:概率=所求情况数与总情况数之比.22、(1)2(2)BD=5,3【解题分析】(1)利用圆周角定理可以判定△DCB是等腰直角三角形,利用勾股定理即可解决问题;(2)如图②,连接OB,OD.由圆周角定理、角平分线的性质以及等边三角形的判定推知△OBD是等边三角形,则BD=OB=OD=5,再根据垂径定理求出BE即可解决问题.【题目详解】(1)∵BC是⊙O的直径,∴∠CAB=∠BDC=90°.∵AD平分∠CAB,∴DC BD,∴CD=BD.在直角△BDC中,BC=10,CD2+BD2=BC2,∴2,(2)如图②,连接OB,OD,OC,∵AD平分∠CAB,且∠CAB=60°,∴∠DAB=12∠CAB=30°,∴∠DOB=2∠DAB=60°.又∵OB=OD,∴△OBD是等边三角形,∴BD=OB=OD.∵⊙O的直径为10,则OB=5,∴BD=5,∵AD平分∠CAB,∴DC BD,∴OD⊥BC,设垂足为E,∴53,∴3.【题目点拨】本题考查圆周角定理,垂径定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.23、证明见解析.【解题分析】想证明BC=EF,可利用AAS证明△ABC≌△DEF即可.【题目详解】解:∵AF=DC,∴AF+FC=FC+CD,∴AC=FD,在△ABC 和△DEF 中,A DB E AC DF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEF (AAS ) ∴BC =EF . 【题目点拨】本题考查全等三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 24、(1)见解析;(2)4.1 【解题分析】试题分析:(1)由正方形的性质得出AB=AD ,∠B=10°,AD ∥BC ,得出∠AMB=∠EAF ,再由∠B=∠AFE ,即可得出结论;(2)由勾股定理求出AM ,得出AF ,由△ABM ∽△EFA 得出比例式,求出AE ,即可得出DE 的长. 试题解析:(1)∵四边形ABCD 是正方形, ∴AB=AD ,∠B=10°,AD ∥BC , ∴∠AMB=∠EAF , 又∵EF ⊥AM , ∴∠AFE=10°, ∴∠B=∠AFE , ∴△ABM ∽△EFA ;(2)∵∠B=10°,AB=12,BM=5, ∴,AD=12, ∵F 是AM 的中点, ∴AF=12AM=6.5, ∵△ABM ∽△EFA , ∴BM AMAF AE =, 即5136.5AE=, ∴AE=16.1, ∴DE=AE-AD=4.1.考点:1.相似三角形的判定与性质;2.正方形的性质.25、作图见解析;CE=4.【解题分析】分析:利用数形结合的思想解决问题即可.详解:如图所示,矩形ABCD和△ABE即为所求;CE=4.点睛:本题考查作图-应用与设计、等腰三角形的性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会利用思想结合的思想解决问题.26、(1)答案见解析;(2)220cm【解题分析】(1)根据三角形角平分线的定义,即可得到AD;(2)过D作于DE⊥ABE,根据角平分线的性质得到DE=CD=4,由三角形的面积公式即可得到结论.【题目详解】解:(1)如图所示,AD即为所求;(2)如图,过D作DE⊥AB于E,∵AD平分∠BAC,∴DE=CD=4,∴S△ABD=12AB·DE=20cm2.【题目点拨】掌握画角平分线的方法和角平分线的相关定义知识是解答本题的关键.27、-5【解题分析】根据分式的运算法则即可求出答案.【题目详解】原式=[2(1)(1)xx x--+(2)(2)(2)x xx x-++]÷1x=(1xx-+2xx-)•x=x﹣1+x﹣2=2x﹣3由于x≠0且x≠1且x≠﹣2,所以x=﹣1,原式=﹣2﹣3=﹣5【题目点拨】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.。
2024年江苏省南京市模拟中考数学试卷

2024年江苏省南京市模拟中考数学试卷试卷结构-共24个小题,分为选择题、填空题、解答题、几何题、应用题、综合题等,总分150分,考试时间120分钟。
一、选择题(共12题,每题4分,共48分)1. 解不等式组:(x + 2 geq 5) 和(2x - 3 < 7)。
其解集可能是()。
A. (x geq 3)B. (x < 5)C. (x > 3)D. (x leq 5)2. 已知二次方程的根是3和-3,则这个二次方程的表达式可能是()。
A. (x^2 - 9 = 0)B. (x^2 + 6x - 9 = 0)C. (x^2 + 9 = 0)D. (x^2 - 6x + 9 = 0)3. 若一条直线的斜率是2,且通过点(1, 3),则这条直线的表达式可能是()。
A. (y = 2x + 1)B. (y = 2x + 2)C. (y = 2x - 1)D. (y = 2x - 2)4. 若两个数的和是10,积是21,则这两个数可能是()。
A. 3和7B. 4和6C. 2和8D. 1和95. 若抛物线的顶点坐标是(2, -1),则抛物线的表达式可能是()。
A. (y = (x - 2)^2 - 1)B. (y = (x + 2)^2 - 1)C. (y = (x - 2)^2 + 1)D. (y = (x + 2)^2 + 1)6. 若一个矩形的长是10,宽是5,那么这个矩形的对角线长度是()。
A. ( sqrt{125} )B. ( sqrt{150} )C. ( sqrt{125} times 5 )D. ( sqrt{100} times 5 )7. 若某立方体的体积是64立方厘米,那么它的边长可能是()。
A. 4B. 6C. 8D. 108. 若某正方体的体积是125立方厘米,那么它的对角线长度可能是()。
A. 10B. 15C. 12D. 189. 若两个互为倒数的数的积是1,则这两个数的和可能是()。
南京市中考模拟考试数学试卷含答案

南京市中考模拟考试数学试卷含答案中学数学二模模拟试卷一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的)1.四个实数0,-1,,中最小的数是A.0B.-1C.D.2.右图所示是一个圆柱形机械零件,则它的主视图是3.港珠澳大桥是连接香港,珠海和澳门的超大型跨海通道,总长55公里,数据55公里用科学计数法表示为A.米B.米C.米 A.米4.下列图形是中心对称图形但不是轴对称图形的是5.某小组6人在一次中华好诗词比赛中的成绩是85,90,85,95,80,85,则这组数据的众数是A.80B.85C.90D.956.化简+的结果是A. B. C. D.7.如图1,已知a∥b,将一块等腰直角三角板的两个顶点分别放在直线a,b 上,若∠1=23°,则∠2的度数为A.68B.112C.127D.1328.如图2,某数学兴趣小组为了测量树AB的高度,他们在与树的底端B同一水平线上的C处,测得树顶A处的仰角为α,且B,C之间的水平距离为a米,则树高AB为米 C. a •sinα米 D.a •cosα米A.a •tanα米B.α9.下列命题中,是真命题的是A.三角形的内心到三角形的三个顶点的距离相等B.连接对角线相等的四边形各边中点所得的四边形是矩形C.方程的解是x=2D.若 ,10.从A 城到B 城分别有高速铁路与高速公路相通,其中高速铁路全程400km ,高速公路全程480km ,高铁行驶的平均速度比客车在高速公路行驶的平均速度多120km/h,从A 城到B 城乘坐高铁比客车少用4小时,设客车在高速公路行驶 的平均速度为xkm/h,依题意可列方程为 A.B.C.D.11.如图3,一小球从斜坡O 点处抛出,球的抛出路线可以用二次函数刻画,斜坡可以用一次函数刻画,则下列结论错误的是A.当小球到达最高处时,它离斜坡的竖直距离是6mB.当小球落在斜坡上时,它离O 点的水平距离是7mC.小球在运行过程中,它离斜坡的最大竖直距离是6mD.该斜坡的坡度是1:212.如图4,已知四边形ABCD 是边长为4的正方形,E 是CD 上一动点,将△ADE 沿直线AE 折叠后,点D 落在点F 处,DF 的延长线交BC 于点G ,EF 的延长线交BC 于点H ,AE 与DG 交于点O ,连接OC ,则下列结论中:①AE=DG ;②EH=DE+BH ;③OC 的最小值为 ;④当点H 为BC 中点时,∠CFG=45°,其中正确的有 A.1个 B.2个 C.3个 D.4个第二部分(非选择题,共64分)二、填空题(每小题3分,共12分)请把答案填在答题卷相应的表格里 13.分解因式:14.图5是一个可以自由转动的转盘,该转盘被平均分成6个扇形,随机转动该转15.如图6,菱形ABCD 中,AB=6,∠DAB=60°,DE ⊥AB 于E ,DE 交AC 于点F ,则△CEF 的面积是16.如图7,在平面直角坐标系XOY 中,以O 为圆心,半径为 的圆O 与双曲线(x>0)交于点A ,B 两点,若△OAB 的面积为4,则三、解答题(本题共7小题,其中第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,共52分) 17.计算:°18.解不等式组 ( ),并把它的解集在数轴上表示出来。
2024年江苏省南京市中考数学模拟试卷(一)

2024年江苏省南京市中考数学模拟试卷(一)一、单选题1.若式子12x -在实数范围内有意义,则x 的取值范围是( ) A .2x ≥ B .2x > C .2x = D .2x ≠ 2.实数4的算术平方根是( )A .16B .2±C .2D 3.计算()223a a ⋅的结果是( )A .7aB .8aC .10aD .12a4.如图,在数轴上,点A ,B 分别表示实数a ,b .下列算式中,结果一定是负数的是( )A .a b +B .a b -C .⋅a bD .a b ÷5.若关于x 的方程ax 2+bx +c =0的解是x 1=3,x 2=−5,则关于y 的方程a (y +1)2+b (y +1)+c =0的解是( )A .14y =,24y =-B .12y =,26y =-C .14y =,26y =-D .12y =,24y =-6.如图,已知菱形ABCD 与菱形AEFG 全等,菱形AEFG 可以看作是菱形ABCD 经过怎样的图形变化得到?下列结论:①经过1次平移和1次旋转;②经过1次平移和1次翻折;③经过1次旋转,且平面内可以作为旋转中心的点共有3个.其中所有正确结论的序号是( )A .①②B .①③C .②③D .①②③二、填空题7.8的立方根为.8x 的取值范围是.9.方程240x -=的解是.10.若2a b =+,则代数式222a ab b -+的值为.11.如图,矩形ABCD 中,AC 、BD 交于点O ,M 、N 分别为BC 、OC 的中点.若4MN =,则AC 的长为.12.如图,A 、B 、C 、D 为一个外角为40︒的正多边形的顶点.若O 为正多边形的中心,则OAD ∠=.13.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径2r cm =,扇形的圆心角120θ=o ,则该圆锥的母线长l 为cm .14.如图,无人机于空中A 处测得某建筑顶部B 处的仰角为45︒,测得该建筑底部C 处的俯角为17︒.若无人机的飞行高度AD 为62m ,则该建筑的高度BC 为m .(参考数据:sin170.29︒≈,cos170.96︒≈,tan170.31︒≈)15.已知二次函数的图象经过点(2,2)P ,顶点为(0,0)O 将该图象向右平移,当它再次经过点P时,所得抛物线的函数表达式为.16.函数y =x +1的图象与x 轴、y 轴分别交于A 、B 两点,点C 在x 轴上.若△ABC 为等腰三角形,则满足条件的点C 共有个.三、解答题17.计算(10142π-⎛⎫-+- ⎪⎝⎭. 18.解方程组3827x y x y +=⎧⎨-=⎩19.如图,在ABC V 中,,AB AC AD =为ABC V 的角平分线.以点A 圆心,AD 长为半径画弧,与,AB AC 分别交于点,E F ,连接,DE DF .(1)求证:ADE ADF V V ≌;(2)若80BAC ∠=︒,求BDE ∠的度数.20.如图,菱形ABCD 的对角线AC BD 、相交于点,O E 为AD 的中点,4AC =,2OE =.求OD 的长及tan EDO ∠的值.21.为了解本校八年级学生的暑期课外阅读情况,某数学兴趣小组抽取了50名学生进行问卷调查.(1)下面的抽取方法中,应该选择( )A .从八年级随机抽取一个班的50名学生B.从八年级女生中随机抽取50名学生C.从八年级所有学生中随机抽取50名学生(2)对调查数据进行整理,得到下列两幅尚不完整的统计图表:暑期课外阅读情况统计表a__________,补全条形统计图;统计表中的(3)若八年级共有800名学生,估计八年级学生暑期课外阅读数量达到2本及以上的学生人数;(4)根据上述调查情况,写一条你的看法.22.如图,有4张分别印有Q版西游图案的卡片:A唐僧、B孙悟空、C猪八戒、D沙悟净.现将这4张卡片(卡片的形状、大小、质地都相同)放在不透明的盒子中,搅匀后从中任意取出1张卡片,记录后放回、搅匀,再从中任意取出1张卡片求下列事件发生的概率:(1)第一次取出的卡片图案为“B孙悟空”的概率为______;(2)求两次取出的2张卡片中至少有1张图案为“A 唐僧”的概率.23.渔湾是国家“AAAA ”级风景区,图1是景区游览的部分示意图.如图2,小卓从九孔桥A 处出发,沿着坡角为48︒的山坡向上走了92m 到达B 处的三龙潭瀑布,再沿坡角为37︒的山坡向上走了30m 到达C 处的二龙潭瀑布.求小卓从A 处的九孔桥到C 处的二龙潭瀑布上升的高度DC 为多少米?(结果精确到0.1m )(参考数据:sin480.74cos480.67sin370.60cos370.80︒≈︒≈︒≈︒≈,,,)24.如图,在ABC V 中,AB AC =,以AB 为直径的O e 交边AC 于点D ,连接BD ,过点C 作CE AB ∥.(1)请用无刻度的直尺和圆规作图:过点B 作O e 的切线,交CE 于点F ;(不写作法,保留作图痕迹,标明字母)(2)在(1)的条件下,求证:BD BF =.25.目前,我市对市区居民用气户的燃气收费,以户为基础、年为计算周期设定了如下表的三个气量阶梯:(1)一户家庭人口为3人,年用气量为3200m ,则该年此户需缴纳燃气费用为__________元;(2)一户家庭人口不超过4人,年用气量为3m (1200)x x >,该年此户需缴纳燃气费用为y 元,求y 与x 的函数表达式;(3)甲户家庭人口为3人,乙户家庭人口为5人,某年甲户、乙户缴纳的燃气费用均为3855元,求该年乙户比甲户多用多少立方米的燃气?(结果精确到31m )26.在平面直角坐标系中,一个二次函数的图像的顶点坐标是(2,1),与y 轴的交点坐标是(0,5).(1)求该二次函数的表达式;(2)在同一平面直角坐标系中,若该二次函数的图像与一次函数y x n =+(n 为常数)的图像有2个公共点,求n 的取值范围.27.【问题情境 建构函数】(1)如图1,在矩形ABCD 中,4,AB M =是CD 的中点,AE BM ⊥,垂足为E .设,BC x AE y ==,试用含x 的代数式表示y .【由数想形 新知初探】(2)在上述表达式中,y 与x 成函数关系,其图像如图2所示.若x 取任意实数,此时的函数图像是否具有对称性?若有,请说明理由,并在图2上补全函数图像.【数形结合 深度探究】(3)在“x 取任意实数”的条件下,对上述函数继续探究,得出以下结论:①函数值y 随x 的增大而增大;②函数值y 的取值范围是y -<③存在一条直线与该函数图像有四个交点;④在图像上存在四点A B C D 、、、,使得四边形ABCD 是平行四边形.其中正确的是__________.(写出所有正确结论的序号)【抽象回归 拓展总结】(4)若将(1)中的“4AB =”改成“2AB k =”,此时y 关于x 的函数表达式是__________;一般地,当0,k x ≠取任意实数时,类比一次函数、反比例函数、二次函数的研究过程,探究此类函数的相关性质(直接写出3条即可).。
江苏省南京市金陵中学2024届九年级下学期中考模拟数学试卷(含答案)

数学试卷注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.2.答选择题必须用2B 铅笔将答题卷上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卷上的指定位置,在其他位置答题一律无效.3.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卷...相应位置....上)1.南京2023全年GDP 达1.75万亿元,数据1.75万亿用科学记数法表示为A .1.75×1011B .1.75×1012C .1.75×108D .1.75×10132.9的值等于A .±3B .3C .±3D .33.下列计算中,结果正确的是A .a 2+a 4=a 6B .a 2·a 4=a 8C .(a 3)2=a 9D .a 6÷a 2=a 44.数轴上表示a 、b 两数的点分别在原点左、右两侧,下列事件是随机事件的是A .a +b >0B .a -b >0C .a ·b >0D .a ÷b <05.如图,EF 是△ABC 的中位线,BD 平分∠ABC 交EF 于点E ,若AE =3,DF =1,则边BC 的长为A.7B.8C.9D.106.一个大矩形按如图方式分割成九个小矩形,且只有标号为①和②的两个小矩形为正方形,在满足条件的所有分割中,若知道九个小矩形中n 个小矩形的周长,就一定能算出这个大矩形的面积,则n 的最小值是A .3B .4C .5D .6二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡...相应位置....上)7.若代数式5x -2有意义,则实数x 的取值范围是▲________.8.分解因式:2x 2-8=▲________.9.计算12×6-18的结果是▲________.10.命题“对顶角相等”的条件是▲________.(第6题)ABDECF(第5题)11.设x1,x2是关于x的方程x2+4x+m=0的两个根,且x1+x2-x1x2=2,则m=▲________.12.若圆锥的母线长为6,底面半径为2,则其侧面展开图的圆心角为▲________°.13.已知一次函数y=kx+b的图像经过点(1,3)和(-1,2),则k2-b2=▲________.14.如图,在△ABC中,∠ACB=58°,△ABC的内切圆⊙O与AB,AC分别相切于点D,E,连接DE,BO的延长线交DE于点F,则∠BFD=▲________.15.在平面直角坐标系中,点O为原点,点A在第二象限,且OA=5.若反比例函数y=kx的图像经过点A,则k的取值范围是▲________.16.正方形ABCD边长为10,点E在CD上,DE=4,将△ADE沿AE折叠得△AFE,连接BF并延长交CD于点G,则EG=▲________.三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)计算(2-x-1x+1)÷x2+6x+9x2-1.18.(8x+32≥x+1,3+4(x-1)>-9,并把解集在数轴上表示出来.01-4-3-2-1234A BCDEF∙O第14题AB CDEFG(第16题)19.(8分)如图,一块矩形铁皮的长是宽的两倍,四个角各截去一个正方形,制成高是5cm ,容积是500cm 3的无盖长方体容器,求这块铁皮的长和宽.20.(8分)如图,在菱形ABCD 中,E 、F 分别是BC 、DC 的中点.(1)求证:∠AEF =∠AFE ;(2)若△AEF 的面积为6,则菱形ABCD 的面积为▲.21.(8分)甲、乙两人在5次打靶测试中命中的环数如下:甲:8,8,7,8,9;乙:5,9,7,10,9.(1)填写下表:平均数众数中位数方差甲8①80.4乙②9③3.2(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差▲.(填“变大”、“变小”或“不变”)ABC DEF(第20题)(第19题)22.(8分)一只不透明的袋子中装有4个小球,分别标有编号1,2,3,4,这些小球除编号外都相同.(1)搅匀后从中任意摸出1个球,这个球的编号是2的概率为▲________;(2)搅匀后从中任意摸出1个球,记录球的编号后放回、搅匀,再从中任意摸出1个球.求第2次摸到的小球编号与第1次摸到的小球编号相差1的概率是多少?23.(8分)李师傅将容量为60升的货车油箱加满后,从工厂出发运送一批物资到某地.行驶过程中,货车离目的地的路程s (千米)与行驶时间t (小时)的关系如图所示(中途休息、加油的时间不计).当油箱中剩余油量为10升时,货车会自动显示加油提醒.设货车平均耗油量为0.1升/千米,请根据图像解答下列问题:(1)工厂离目的地的路程是▲________千米;(2)求s 关于t 的函数表达式;(3)当货车显示加油提醒后,问行驶时间t 在怎样的范围内货车应进站加油?(第23题)Os (千米)t (小时)488056024.(8分)某景区为给游客提供更好的游览体验,拟在如图①景区内修建观光索道.设计示意图如图②所示,以山脚A 为起点,沿途修建AB 、CD 两段长度相等的观光索道,最终到达山顶D 处,中途设计了一段与AF 平行的观光平台BC 为50m .索道AB 与AF 的夹角为15°,CD 与水平线夹角为45°,A 、B 两处的水平距离AE 为576m ,DF ⊥AF ,垂足为点F .(图中所有点都在同一平面内,点A 、E 、F在同一水平线上)C EA45°15°B FD图②(1)求索道AB 的长(结果精确到1m );(2)求水平距离AF 的长(结果精确到1m ).(参考数据:sin15°≈0.25,cos15°≈0.96,tan15°≈0.26,2≈1.41)25.(8分)如图,四边形ABCD 中,AD ∥BC ,∠ABC =90°,过A 、B 、D 三点的圆交BC 于点F ,交AC于点E .(1)求证:四边形ABFD 为矩形;(2)若AB =5,BC =10,DE =3,求AD 的长.ADEB F C(第25题)26.(8分)已知二次函数y =x 2+mx +n ,其中m ,n 为实数.(1)若该函数的对称轴是直线x =2,则m =▲________;(2)若该函数的图像经过点(m ,9n ),请判断该函数的图像与x 轴的交点个数;(3)该函数的图像经过点(x 1,0),(x 2,0),(1,a ),(5,b ).若x 2-x 1=1时,求a +b 的取值范围.27.(9分)动手操作(1)如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为▲________.(2)已知射线OA ⊥OB ,点M 在OA 上运动,点N 在OB 上运动,满足OM +ON =8.点Q 为线段MN的中点,则点Q 运动路径的长为▲________;解决问题(3)小明在初中数学一册教材中看到这样一段文字和一幅图:“下列是一个寻宝者得到的一幅藏宝图,荒凉的海岛上没有藏匿宝藏的任何标志,只有A 、B 两块天然巨石,寻宝者从其它资料上查到A 、B 两块巨石在平面直角坐标系中的坐标为A (2,1),B (8,2),藏宝地的坐标为(6,6)”.你能在图2的地图中画出藏宝地吗?(请在图2中用尺规作图确定宝藏地,简要说明确定的方法.)图1图2数学参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考.如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7.x ≠28.2(x +2)(x -2)9.3210.两个角是对顶角11.-612.12013.-614.2915.-252≤k <016.127三、解答题(本大题共11小题,共88分)17.(7分)解:原式=(2x +2x +1-x -1x +1)·(x +1)(x -1)(x +3)2·········································2分=x +3x +1·(x +1)(x -1)(x +3)2············································································4分=x -1x +3·····································································································7分18.(8分)解:解不等式①,得x ≤1.………………………………………….2分解不等式②,得x >-2.·································································4分∴原不等式组的解集为-2<x ≤1.·······················································6分作图·····························································································8分19.(8分)解:设铁皮宽度为x cm ,根据题意可得:5(x -10)(2x -10)=500…………………………………………….4分解得:x 1=15,x 2=0(舍去)……………………………………7分答:长30cm ,宽15cm………………………………………………8分20.(8分)(1)证明:∵四边形ABCD 是菱形,∴AB =AD =BC =CD ,∠B =∠D .·································································2分∵E 、F 分别是BC 、DC 的中点,∴BE =12BC ,DF =12CD .∴BE =DF .································································································3分∴△ABE ≌△ADF .······················································································4分∴AE =AF .即∠AEF =∠AFE .·····································································6分(2)16.······································································································8分21.(8分)解:(1)①8;②8;③9.··························································3分(2)因为甲和乙射击成绩的平均数相同,说明他们的水平相当;而甲射击成绩的方差低于乙,所以甲的发挥更加稳定,所以选择甲参加比赛···6分(3)变小.·······················································································8分题号123456答案B D D A B A124-3-2-13-422.(8分)解:(1)14……………………………………2分(2)画树状图如下:…………………………………….6分一共有在16个等可能的结果,其中第2次摸到的小球编号与第1次摸到的小球编号相差1出现了6次,∴P (第2次摸到的小球编号与第1次摸到的小球编号相差1)=38……………………8分23.(8分)解:(1)880………………………………………………2分(2)S =-80t +880……………………………………5分(b 给1分,k 给2分)(3)254<t <152……………………………………………8分(对一边给1分;<或≤均可)24.(8分)解:(1)在Rt △ABE 中,∠AEB =90°,∠A =15°,AE =576m ,∴AB =AEcos A =576cos15°≈600m 即AB 的长约为600m ;………………………………………….3分(2)延长BC 交DF 于G ,∵BC ∥AE ,∴∠CBE =90°,∵DF ⊥AF ,∴∠AFD =90°,∴四边形BEFG 为矩形,……………………………………….5分∴EF =BG ,∠CGD =∠BGF =90°,∵CD =AB =600m ,∠DCG =45°,∴CG =CD •cos ∠DCG =600×cos45°=600×22=3002,……………………….7分∴AF =AE +EF =AE +BG =AE +BC +CG =576+50+3002≈1049(m ),…………….8分即AF 的长为1049m .25.(8分)(1)证明:∵AD ∥BC ,∠ABC =90°∴∠BAD =180°-∠ABC =90°∵四边形ABFD 是圆内接四边形∴∠ADF =180°-∠ABC =90°……………………….3分∴∠ABC=∠BAD=∠ADF =90°∴四边形ABFD 为矩形……………………….4分(2)方法一:解:连接BD,BE∵圆内接四边形ABED∴∠BED =180-∠BAC =90°∴∠BED =∠ABD ,∠BAC =∠BDE ∴△ABC ∽△DEB ∴AB DE =ACBD∴BD =35……………………………7分∴在Rt △ABD 中,AD =BD 2-AB 2=25…………………………8分方法二:连接BD 交AC 于点G ∵在Rt △ABC 中,AB =5,BC =10∴AC =AB 2+BC 2=55∵在同圆中∴∠BAE=∠EDB,∠ABD=∠AED ∴△ABG ∽△DEG ∴AB DE =AG DG =53∵AD ∥BC ∴AC BD =AG DG =53∴BD =35………………………………….7分∴在Rt △ABD 中,AD =BD 2-AB 2=25…………………………………8分方法三:(过程简写)过点D 作DH ⊥AC 于点H 易得△ADH ∽△CBA,可得DH AD =51由△ABD ∽△HED,得BD DE =DHAD=51,得BD=35得AD =25A B DF EC(第25题)GH26.(8分)解:(1)m =-4……………………………….2分(2)解:当y =0时x 2+mx +n=0∴b 2-4ac =m 2-4n∵函数的图像经过点(m ,9n ),将x =m 、y =9n 代入y =x 2+mx +n 得m 2+m 2+n =9n m 2-4n=0即b 2-4ac =0∴x 2+mx +n=0有两个相等的实数根则函数y =x 2+mx +n 的图像与x 轴有一个交点……………………………………5分(3)解:函数的图像经过点(x 1,0),(x 2,0)∴x 1,x 2是x 2+mx +n=0的根∴x 1+x 2=-m ,x 1x 2=n ∵x 2-x 1=1∴(x 1+x 2)2-(x 2-x 1)2=4x 1x 2m 2-1=4n将(1,a ),(5,b )代入y =x 2+mx +n 得a =1+m +n ,b =25+5m +na +b=6m +2n +26=6m +212-m +26=215)6(212++m ∴a +b ≥215……………………………………………………………..8分方法二:根据函数图像水平平移不改变对应点的纵坐标特征由x 2-x 1=1可得函数图像与x 轴两交点距离为1,将函数水平移到以y 轴为对称轴,易得新图像解析式为:y =x 2-41,点(1,a ),(5,b )平移后为(1+2m ,a ),(5+2m,b )代入y =x 2-41得a +b=(1+2m )2+(5+2m )2-21=215)6(212++m 则a +b ≥21527.(9分)答案:(1)(-2,-2)…………………………2分(2)42;………………………………5分(3)如图2,建立平面直角坐标系,作出点A′(2,1)、B′(8,2)、C′(6,6),连接A′B′,B′C′,A′C′,…………………6分在图3中连接AB ,在AB 的上方作∠MAB =∠C′A′B′,∠NBA =∠C′B′A′,AM 与BN 的交点C 即为藏宝地.………9分其它作法参照给分.图2A′B′C′O xy。
南京市中考模拟数学试卷及答案(K12教育文档)

南京市中考模拟数学试卷及答案(word版可编辑修改)南京市中考模拟数学试卷及答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(南京市中考模拟数学试卷及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为南京市中考模拟数学试卷及答案(word版可编辑修改)的全部内容。
南京市中考模拟数学试卷及答案(word 版可编辑修改)2009年中考南京市模拟试卷数 学注意事项:1.答卷前将答卷纸上密封线内的项目填写清楚.2.用钢笔或圆珠笔(蓝色或黑色)直接答在答卷纸上,不能答在试卷上. 下列各题所附的四个选项中,有且只有一个是正确的. 一、选择题(每小题3分,共24分)1.南京梅花山是全国著名的赏梅胜地之一.近年来,梅花山的植梅规模不断扩大,新的品种不断出现,如今的梅花山的梅树约15000株,这个数可用科学记数法表示为 A .41015.0⨯ B .51015.0⨯ C .4105.1⨯ D .31015⨯ 2.右图是某几何体的三种视图,则该几何体是A .正方体B .圆锥体C .圆柱体D .球体3.下列计算中,正确的是A .523a a a =+B .325⋅=a a aC .923)(a a =D .32-=a a a4.在相同条件下重复试验,若事件A 发生的概率是1007,下列陈述中,正确的是A .说明做100次这种试验,事件A 必发生7次B .说明事件A 发生的频率是1007 C .说明反复大量做这种试验,事件A 平均发生大约7次 D .说明做100次这种试验,事件A 可能发生7次 5.如图,正方形桌面ABCD ,面积为2,铺一块桌布EFGH ,点A 、B 、C 、D 分别是EF 、FG 、GH 、HE 的中点,则桌布EFGH 的面积是A .2B .22C .4D .8主视图俯视图左视图(第2题)A DB CF HE (第5题)6.函数y =错误!中自变量x 的取值范围是A .x ≥-1B .x ≤-1C .x >-1D .x <-1 7.实数a ,b 在数轴上对应点的位置如图所示,则下列各式正确的是A .a >bB . a >-bC .-a >bD .-a <-b8.如图,在平面直角坐标系中,⊙M 与y 轴相切于原点O ,平行于x 轴的直线交⊙M 于P ,Q 两点,点P 在点Q 的右方,若点P 的坐标是(-1,2),则点Q 的坐标是A .(-4,2)B .(-4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南京市中考数学模拟测试卷含答案The latest revision on November 22, 20202018年南京市中考数学模拟测试卷九年级数学一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位......置.上)1.计算-3+︱- 5︱的结果是( ▲ ) A. -2B. 2C. -8D. 82.在 “2015高淳国际马拉松赛”中,有来自肯尼亚、韩国、德国等16个国家和地区约10100名马拉松爱好者参加,将10100用科学记数法可表示为( ▲ )A .×103B .×104C .×105D . ×104 3.计算()-a 23的结果是( ▲ )A .a 5B .-a5C .a6D .-a 64.甲、乙、丙、丁四位同学五次数学测验成绩统计如右表所示.如果从这四位同学中,选出一位成绩较好且状态稳定的同学参加全国数学联赛,那么应选(▲)A .甲B .乙C .丙D .丁5.将如图所示的Rt △ABC 绕直角边AB 旋转一周,则所得几何体的主视图为( ▲ ). D .6.如图,矩形ABCD 中,AB =3,BC =4,点P 从A 点出发.按A →B →C 的方向在AB 和BC 上移动.记PA =x ,点D 到直线PA 的距离为y ,则y 关于x 的函数关系的大致图象是( )DACPxy(第6题)(第5题) A B C(第12题)EO A BCD(第14题)A .B .C .D .二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题纸相应位置.......上) 7.4的平方根是 ▲ . 8.函数y =x x -1中自变量x 的取值范围是 ▲ . 9.化简 12+313的结果为 ▲ . 10.同时抛掷两枚材质均匀的硬币,出现“一正一反”的概率为 ▲ . 11.已知反比例函数y =k x的图象经过点A (-3,2),则当x =-2时,y =▲ .12.如图,四边形ABCD 是⊙O 的内接四边形,∠BOD =100°,则∠BCD =▲ °.13.一元二次方程x 2+mx +2m =0(m ≠0)的两个实根分别为x 1,x 2,则x 1+x 2x 1x 2= ▲ . 14.如图,在Rt△OAB 中,∠AOB =45°,AB =2,将Rt△OAB 绕O 点顺时针旋转90°得到Rt△OCD ,则AB 扫过的面积为 ▲ .15.二次函数y =a x 2+bx +c (a ≠0)中的自变量x 表:则a x2+bx +c =0的解为▲ .16.如图,在矩形ABCD 中,AB =5,BC =6,点E 是AD 上一点,把△BAE 沿BE向矩形内部折叠,当点A 的对应点A 1恰落在∠ADC 的平分线上时,DA 1= ▲ .三、解答题 (本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(6分)解不等式组⎩⎪⎨⎪⎧2x -1<5,①3x +12-1≥x ,②并把它的解集在数轴上表示出来.18.(6分)先化简,再求值:a +2a +3÷a 2-4 a 2+3a -1,其中a =12.19.(8分)中考体育测试前,某区教育局为了了解选报引体向上的初三男生的成绩情况,随机抽测了本区部分选报引体向上项目的初三男生的成绩,并将测试得到的成绩绘成了下面两幅不完整的统计图:3个 5个及以上-3 -2 -1 0 1(第17题)请你根据图中的信息,解答下列问题:(1)写出扇形图中a = ▲ %,并补全条形图;(2)在这次抽测中,测试成绩的众数和中位数分别是 ▲ 个 、 ▲ 个.(3)该区体育中考选报引体向上的男生共有1800人,如果体育中考引体向上达6个以上(含6个)得满分,请你估计该区体育中考中选报引体向上的男生能获得满分的有多少名20.(8分)某种电子产品共4件,其中有正品和次品.已知从中任意取出一件,取得的产品为次品的概率为14.(1)该批产品有正品 ▲ 件;(2)如果从中任意取出2件,求取出2件都是正品的概率.21.(8分)如图,□ABCD 中,AC 与BD 相交于点O ,AB =AC ,延长BC 到点E ,使CE =BC ,连接AE ,分别交BD 、CD 于点F 、G . (1) 求证:△ADB ≌△CEA ; (2) 若BD =6,求AF 的长.(第21题)ABODCEF G22.(8分)某班数学兴趣小组为了测量建筑物AB 的高度,他们选取了地面上一点E ,测得DE 的长度为米,并以建筑物CD 的顶端点C 为观测点,测得点A 的仰角为45°,点B 的俯角为37°,点E 的俯角为30°. (1)求建筑物CD 的高度; (2)求建筑物AB 的高度.(参考数据: 3 ≈,sin37°≈53,cos37°≈54,tan37°≈43)23.(8分)某花圃用花盆培育某种花苗,经试验发现每盆花的盈利与每盆花中花苗的株数有如下关系:每盆植入花苗4株时,平均单株盈利5元;以同样的栽培条件,若每盆每增加1株花苗,平均单株盈利就会减少元.要使每盆花的盈利为24元,且尽可能地减少成本,则每盆花应种植花苗多少株24.(9分)已知二次函数y =2x 2+b x -1.(1)求证:无论b 取什么值,二次函数y =2x 2+b x -1图像与x 轴必有两个交点.(2)若两点P (-3,m )和Q (1,m )在该函数图像上.①求b 、m 的值;② 将二次函数图像向上平移多少单位长度后,得到的函数图像与x 轴只有一个公共点ABCDE45° 30°(第22题)37°25.(8分)如图,四边形ABCD 内接于⊙O ,BD 是 ⊙O 的直径,过点A 作AE ⊥CD ,交CD 的延长线于点E ,DA 平分∠BDE .(1)求证:AE 是⊙O 的切线;(2)已知AE =8cm ,CD =12cm ,求⊙O 的半径.26.(10分)从M 地到N 地有一条普通公路,总路程为120km ;有一条高速公路,总路程为126km .甲车和乙车同时从M 地开往N 地,甲车全程走普通公路,乙车先行驶了另一段普通公路,然后再上高速公路.假设两车在普通公路和高速公路上分别保持匀速行驶,其中在普通公路上的行车速度为60km/h ,在高速公路上的行车速度为100km/h .设两车出发x h 时,距N 地的路程为y km ,图中的线段AB 与折线ACD 分别表示甲车与乙车的y 与x 之间的函数关系.(1)填空:a = ▲ ,b = ▲ ;(2)求线段AB 、CD 所表示的y 与x(3)两车在何时间段内离N 过30km27.(9分)如图①,AB 是⊙O 的一条弦,点C 是优弧⌒AmB 上一点.(1)若∠ACB =45°,点P 是⊙O 上一点(不与A 、B 重合),则∠APB = ▲ ;(第26题)AE (第25题)(2)如图②,若点P 是弦AB 与⌒AmB 所围成的弓形区域(不含弦AB 与⌒AmB )内一点.求证:∠APB >∠ACB ;(3)请在图③中直接用阴影部分表示出在弦AB 与⌒AmB 所围成的弓形区域内满足∠ACB <∠APB <2∠ACB 的点P 所在的范围.九年级数学参考答案及评分标准二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上)7. 2 8.x ≠1 9.33 10.1211.312.130° 13.-1214.π 15.x 1=1,x 2=-216.22三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)解不等式①,得x <3. ………2分 解不等式②,得x ≥1. ………4分 所以,不等式组的解集是1≤x <3.………5分mm m(第27题)图①图②图③在数轴上表示正确 ………6分18.(6分)解:a +2a +3÷a 2-4a 2+3a-1=a +2a +3÷(a +2)(a -2) a (a +3)-1 ………2分 =a +2a +3·a (a +3)(a +2)(a -2)-1 =a a -2-a -2a -2 ………4分 =2a -2. ………5分 当a =12时,原式=-43. ………6分1920…………6分结果共有12种情况,且各种情况都是等可能的,其中两次取出的都是正品共6种∴ P(两次取出的都是正品)=6 12=12…………8分21.(8分)∴AF=2.…………8分22.(8分)解:(1) 在Rt△CDE中, tan∠CED=DCDE,…………1分DE=,∠CED=30°,∴tan30°=错误!,…………2分DC≈错误!=5∴建筑物CD的高度约为5米.…………3分(2)过点C作CF⊥AB于点F.在Rt△CBF中, tan∠FCB=BFFC,…………4分BF=DC=5,∠FCB=37°,ABCE45°30°(第22题)37°F∴tan37°=5 FC ≈34,FC ≈ …………6分 在Rt △AFC 中,∵∠ACF =45°,∴AF =CF =.…………7分∴AB =AF +BF ≈ …………8分∴建筑物AB 的高度约为米.23.(本题8分)解:设每盆花在植苗4株的基础上再多植x 株,………1分由题意得:(4+x )(5-=24 ………4分 解得:x 1=2,x 2=4 …………6分因为要尽可能地减少成本,所以x 2=4应舍去 …………7分即x =2, ∴ x +4=6答:每盆花植花苗6株时,每盆花的盈利为24元. …………8分24.(9分)解:(1)因为△=b 2+8≥8>0, …………1分所以,无论b 取何值时,方程2x 2+b x -1=0都有两个不相等的实数根, ……2分所以,无论b 取何值时,二次函数y =2x 2+b x -1图像与x 轴必有两个交点. ……3分(2)①∵点P 、Q 是二次函数y =2x 2+bx -1图像上的两点,且两点纵坐标都为m∴点P 、Q 关于抛物线对称轴对称, ∴抛物线对称轴是直线x =-1. ………4分由-b2×2=-1,解得:b =4. …………5分∴ 当x =1时,m =2×12+4×1-1=5. …………6分②法一:设平移后抛物线的关系式为y =2x 2+4x -1+k . …………7分∵平移后的图像与x 轴仅有一个交点, ∴2x 2+b x -1=0有两个相等的实数根∴△=16+8-8 k =0,解得k =3 …………8分即将二次函数图像向上平移3个单位时,函数图像与x 轴仅有一个公共点.……9分法二:y =2x 2+4x -1=22)1(+x -3, ………7分把y =22)1(+x -3的图象沿y 轴向上平移3个单位后,得到y =22)1(+x 的图象,它的顶点坐标为(-1,0),这个函数图象与x 轴只有一个公共点. ………8分所以,把函数y =2x 2+4x -1的图象沿y 轴向上平移3个单位后,得到的函数图象与x 轴只有一个公共点. ………9分25.(8分)(1)证明:连结OA .∵OA =OD ,∴∠ODA =∠OAD . …………1分∵DA 平分∠BDE , ∴∠ODA =∠EDA .∴∠OAD =∠EDA ,∴EC ∥OA . …………2分∵AE ⊥CD , ∴OA ⊥AE . …………3分 ∵点A 在⊙O 上,∴AE 是⊙O 的切线.………4分(2)过点O 作OF ⊥CD ,垂足为点F .∵∠OAE =∠AED =∠OFD =90°,∴四边形AOFE 是矩形.………5分∴OF =AE =8cm . …………6分又∵OF ⊥CD ,∴DF = 12CD =6cm . …………7分 在Rt △ODF 中, OD =22DF OF +=10cm , 即⊙O 的半径为10cm . ……8分26.(10分)(1),2; …………2分(2)根据题意,可得A (0,120),C ,126).法一:线段AB 所表示的y 与x 之间的函数关系式为y 1=-60x +120.…………4分线段CD 所表示的y 与x 之间的函数关系式为y 2=-100(x -+126.即y 2=-100x +136. …………6分法二:设线段AB 、CD 所表示的y 与x 之间的函数关系式分别为y 1=k 1x +b 1,y 2=k 2x +b 2.根据题意,得B (2,0)、D ,0).将A 、B 的坐标代入关系式可得:⎩⎨⎧b 1=120,2k 1+b 1=0.解得:⎩⎨⎧k 1=-60,b 1=120.即y 1=-60x +120 …………4分将C 、D 的坐标代入关系式可得:错误!解得:错误!即y2=-100x+136 …………6分(3)由题意,当x=时,两车离N地的路程之差是12km,所以当0<x<时,两车离N地的路程之差不可能达到或超过30km.…………7分当≤x<时,由y1-y2≥30,得(-60x+120)-(-100x+136)≥30,解得x≥.即当≤x<时,两车离N地的路程之差达到或超过30km. (8)分当≤x≤2时,由y1≥30,得-60x+120≥30,解得x≤.即当≤x≤时,两车离N地的路程之差达到或超过30km.............9分综上,当≤x≤时,两车离N地的路程之差达到或超过30km. (10)分27.(9分)(1)45°或135°;…………2分(2)证明:延长AP交⊙O于点Q,连接BQ.则∠PQB=∠ACB,…………4分∵∠APB为△PQB的一个外角,∴∠APB>∠PQB,即∠APB>∠ACB;…………6分(3)点P所在的范围如图所示.(⌒AOB外部与⌒AmB的内部围成的范围,不含两条弧上的点)…………9分mOA B CP图②QA BCOm图③。