状元之路-初中数学培优-图形的运动专项训练题含详细答案

合集下载

八上数学《第12章.全等三角形》状元培优单元测试题(人教版版附答案)

八上数学《第12章.全等三角形》状元培优单元测试题(人教版版附答案)

2019-2020学年八上数学《12.全等三角形》状元培优单元测试题(人教版版附答案)一、选择题1、如图所示,△ABC与△DEF是全等三角形,即△ABC≌△DEF,那么图中相等的线段有( ).A.1组 B.2组 C.3组 D.4组2、如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下哪个条件仍不能判定△ABE ≌△ACD( )A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD3、如图,OC平分∠MON,P为OC上一点,PA⊥OM,PB⊥ON,垂足分别为A、B,连接AB,得到以下结论:(1)PA=PB;(2)OA=OB;(3)OP与AB互相垂直平分;(4)OP平分∠APB,正确的个数是()A.1 B.2 C.3 D.44、如图所示,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,下列不正确的等式是().A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE5、下列说法正确的是()A.全等三角形是指形状相同大小相等的三角形 B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形 D.所有的等边三角形都是全等三角形6、如图,已知,,与交于点,于点,于点,那么图中全等的三角形有()A.5对B.6对C.7对D.8对7、如图,在下列条件中,不能判断△ABD≌△BAC的条件是()A.∠BAD=∠ABC,∠ABD=∠BAC B.AD=BC,BD=ACC.BD=AC,∠BAD=∠ABC D.∠D=∠C,∠BAD=∠ABC8、小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是()A.角的内部到角的两边的距离相等的点在角的平分线上 B.角平分线上的点到这个角两边的距离相等C.三角形三条角平分线的交点到三条边的距离相等 D.以上均不正确9、如图是两个全等三角形,则∠1=()A.62° B.72° C.76° D.66°10、如图,OA=OB,OC=OD,∠O=50°,∠D=35°,则∠OAC等于( )A.65° B.95° C.45° D.100°11、数学课上,小明进行了如下的尺规作图(如图所示):(1)在△AOB(OA<OB)边OA、OB上分别截取OD、OE,使得OD=OE;(2)分别以点D、E为圆心,以大于DE为半径作弧,两弧交于△AOB内的一点C;(3)作射线OC交AB边于点P.那么小明所求作的线段OP是△AOB的()A.一条中线 B.一条高 C.一条角平分线D.不确定12、已知:如图,AB=AD,∠1=∠2,以下条件中,不能推出△ABC≌△ADE的是()A.AE=AC B.∠B=∠D C.BC=DE D.∠C=∠E二、填空题13、如图,在等腰△ABC中,∠ABC=90°,D为底边AC中点,过D点作DE⊥DF,交AB于E,交BC于F.若AE=12,FC=5,EF长为.14、如图,已知,,,则.15、如图,点P为△ABC三条角平分线的交点,PD⊥AB,PE⊥BC,PF⊥AC,则PD____________PF.16、如图,∠C=90°,∠1=∠2,若BC=10,BD=6,则点D到AB的距离为________ .17、如图所示,在平行四边形ABCD中,分别以AB.AD为边作等边△ABE和等边△ADF,分别连接CE.CF和EF,则下列结论中一定成立的是________ (把所有正确结论的序号都填在横线上).①△CDF≌△EBC;②△CEF是等边三角形;③∠CDF=∠EAF;④EF⊥CD.三、简答题18、如图,在△ADF和△BCE中,AF=BE,AC=BD,∠A=∠B,∠B=32°,∠F=28°,BC=5cm,CD=1cm.求:(1)∠1的度数;(2)AC的长.19、如图,在平面直角坐标系中A.B坐标分别为(2,0),(-1,3),若△OAC与△OAB全等,(1)试尽可能多的写出点C的坐标;(2)在⑴的结果中请找出与(1,0)成中心对称的两个点。

沪教版七年级上册数学第十一章 图形的运动含答案(全优)

沪教版七年级上册数学第十一章 图形的运动含答案(全优)

沪教版七年级上册数学第十一章图形的运动含答案一、单选题(共15题,共计45分)1、如图将一矩形纸片对折后再对折,然后沿图中的虚线剪下,得到①和②两部分,将①展开后得到的平面图形一定是()A.平行四边形B.矩形C.菱形D.正方形2、如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为()cm2.A.4B.8C.12D.163、如图,在中,AB=AC,分别以点A、B为圆心,以适当的长为半径作弧,两弧分别交于E,F,作直线EF,D为BC的中点,M为直线EF上任意一点.若BC=4,面积为10,则BM+MD长度的最小值为()A. B.3 C.4 D.54、将点A(﹣2,﹣3)向右平移3个单位长度得到点B,则点B所处的象限是()A.第一象限B.第二象限C.第三象限D.第四象限5、如图,在矩形ABCD中,AB=8,BC=12,点E是BC的中点,连接AE,将△ABE 沿AE折叠,点B落在点F处,连接FC,则tan∠ECF = ()A. B. C. D.6、如图,函数y=的图象所在坐标系的原点是()A.点MB.点NC.点PD.点Q7、如图,在平面直角坐标系中,A(﹣3,2)、B(﹣1,0)、C(﹣1,3),将△ABC向右平移4个单位,再向下平移3个单位,得到△A1B1C1,点A、B、C的对应点分别A1、B1、C1,则点A1的坐标为()A.(3,﹣3)B.(1,﹣1)C.(3,0)D.(2,﹣1)8、如图,在平面直角坐标系中,点A(-2,4),B(4,2),在x轴上取一点P,使点P到点A和点B的距离之和最小,则点P的坐标是()A.(-2,0)B.(4,0)C.(2,0)D.(0,0)9、将抛物线y=﹣3x2平移,得到抛物线y=﹣3 (x﹣1)2﹣2,下列平移方式中,正确的是()A.先向左平移1个单位,再向上平移2个单位B.先向左平移1个单位,再向下平移2个单位C.先向右平移1个单位,再向上平移2个单位 D.先向右平移1个单位,再向下平移2个单位10、在平面直角坐标系中,点(4,-5)关于x轴对称点的坐标为()A.(4,5)B.(-4,-5)C.(-4,5)D.(5,4)11、下列图形不能通过其中一个四边形平移得到的是( )A. B. C. D.12、如图,将边长为3的等边△ABC沿着平移,则BC′的长为()A. ;B.2 ;C.3 ;D.4 .13、如图,在一张长方形纸条上画一条截线AB,将纸条沿截线AB折叠,则△ABC一定是()A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形14、如图,在正方形ABCD中,点E,F将对角线AC三等分,且AC=12,点P在正方形的边上,则满足PE+PF=9的点P的个数是()A.0B.4C.6D.815、如图所示,如果把△ABC的顶点A先向下平移3格,再向左平移1格到达A'点,连接A'B,则线段A'B与线段AC的关系是 ( )A.垂直B.相等C.平分D.平分且垂直二、填空题(共10题,共计30分)16、矩形纸片ABCD中,AD=10cm,AB=4cm,按如图方式折叠,使点D与点B重合,折叠为EF,则DE=________cm.17、如图,在△ABC中,AB=AC=5,BC=6,点M是BC上一点,且BM=4,点P是边AB上一动点,连接PM,将△BPM沿PM翻折得到△DPM,点D与点B对应,连接AD,则AD的最小值为________.18、如图,△ABC中,点A的坐标为(0,-2),点C的坐标为(2,1),点B 的坐标为(3,-1),要使△ACD与△ACB全等,那么符合条件的点D有________个.19、如图,把∠AOB沿着直线MN平移一定的距离,得到∠CPD,若∠AOM=40°,∠DPN=40°,则∠AOB=________.20、如图,△ABC中,∠B=90°,AB=6,将△ABC平移至△DEF的位置,若四边形DGCF的面积为15,且DG=4,则CF=________.21、如图,将▱ABCD沿对角线AC折叠,使点B落在点B'处.若∠1=∠2=44°,则∠B的大小为________度.22、现将宽为2cm的长方形纸条折叠成如图2所示的丝带形状,那么折痕PQ的长是________ .23、把长方形沿对角线折叠,得到如图所示的图形,已知,则________.24、如图,在△ABC中,AB=AC,AD是BC边上的高,点E、F是AD的三等分点,若△ABC的面积为12 ,则图中阴影部分的面积是________25、如图所示,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF,若∠EFC′=120°,那么∠ABE的度数为________。

六年级数学小升初专项测评卷(二十一)图形的运动(解析版)

六年级数学小升初专项测评卷(二十一)图形的运动(解析版)

小升初专项培优测评卷(二十一)参考答案与试题解析一.填一填(共11小题)1.(2019•楚州区)在等腰三角形、平行四边形、长方形、正方形、梯形、圆这些图形中,一定是轴对称图形的有个.【分析】根据轴对称图形的特点和性质,沿对称轴把图形对折两边的图形完全重合,每组对应点到对称轴的距离相等;因此等腰三角形是对称图形它只有1条对称轴;长方形是轴对称图形它有2条对称轴;圆是轴对称图形它有无数条对称轴;直角三角形、平行四边形不是轴对称图形,梯形中只有等腰梯形是轴对称图形;由此解答.【解答】解:等腰三角形是对称图形它只有1条对称轴;平行四边形不是轴对称图形;长方形是轴对称图形它有2条对称轴;正方形是轴对称图形;梯形中只有等腰梯形是轴对称图形;圆是轴对称图形它有无数条对称轴;平行四边形不是轴对称图形,梯形中只有等腰梯形是轴对称图形;因此一定是轴对称图形的有4个.故答案为:4.【点评】此题主要考查轴对称图形的特点和性质,根据其特点和性质解决有关问题.2.(2019•亳州模拟)正方形有条对称轴,等边三角形有条对称轴,圆有条对称轴.【分析】正方形有4条对称轴,即过对边中点的直线和对角线所在的直线;等边三角形有3条对称轴,即三边上的高所在的直线;圆有无数条对称轴,即每条直径所在的直线.【解答】解:正方形有4条对称轴,等边三角形有3条对称轴,圆有无数条对称轴.故答案为:4,3,无数.【点评】此题是考查确定轴对称图形的对称轴的位置及条数,根据各图形的特征及对称轴的意义即可判定.3.(2019•铜仁地区模拟)在括号里填上“平移”或“旋转”.【分析】根据题意,结合图形,根据旋转或平移的定义,分别判断、解答即可.【解答】解:如图所示:【点评】本题考查平移、旋转的性质.平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等;旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.4.(2019•鄞州区)一个三角形底是18cm ,高9cm ,把它按1:3缩小后得到的三角形的面积是 . 【分析】一个三角形底是18cm ,高9cm ,按1:3缩小,就是把这个三角形的底和高都缩小3倍,所以缩小后的长方形的底是1836÷=厘米,高是933÷=厘米,再根据底乘高除以可求出缩小后三角形的面积. 【解答】解:(183)(93)2÷⨯÷÷ 632=⨯÷ 9=(平方厘米)答:把它按1:3缩小后得到的三角形的面积是 9平方厘米. 故答案为:9平方厘米.【点评】本题是考查图形的放大与缩小及三角形面积的计算.注意:放大或缩小后的图形与原图形状不变,就是对应角的度数不变.一个图形扩大或缩小n 倍,它的面积将扩大或缩小2n 倍.5.(2019•鼓楼区)一个半径是4厘米的圆,按2:1的比放大后,放大后的圆的面积是 ;如果按 的比缩小后,圆的面积是3.14平方厘米.【分析】(1)半径确定圆的半径大小,根据题干,放大后的圆的半径为:248⨯=厘米,利用圆的面积公式即可解答.(2)根据圆的面积公式求出原来圆的面积,再求出原来的圆的面积与缩小后的圆的面积之比,面积之比等于半径平方之比,据此即可解答问题. 【解答】解:(1)248⨯=(厘米) 23.148200.96⨯=(平方厘米)答:放大后的圆的面积是200.96平方厘米.(2)23.14:(3.144)1:16⨯= 因为221:41:16=,答:按1:4的比缩小后,圆的面积是3.14平方厘米. 故答案为:200.96平方厘米;1:4.【点评】此题考查了图形的放大与缩小的性质以及圆的面积公式的应用,关键是明确放大与缩小后的面积之比等于半半径的平方比.6.(2019•于都县)指针从“2”绕点O顺时针旋转60︒到“”;指针从“7”绕点O顺时针旋转︒到“10”.【分析】指针从12绕点O顺时针旋转一周是360︒,每相邻两个数之间的夹角是3601230︒÷=︒,从“2”绕点O顺时针旋转60︒,正好是走了两个数的夹角,所以224+=,到4;指针从“7”绕点O顺时针旋转到”10“,走了3个数的夹角,是33090⨯︒=︒,所以从”7到“10”绕点O顺时针旋转90︒.【解答】解:3601230︒÷=︒,︒÷︒=,60302+=,224-=,1073︒⨯=︒,30390所以指针从“2”绕点O顺时针旋转60︒到“4”;指针从“7”绕点O顺时针旋转90︒到“10”.故答案为:4,90.【点评】此题考查了周角是360︒及对图形旋转知识的灵活运用,要靠平时把知识积累牢,用活.7.(2019•中山市)如图所示是围棋棋盘的一部分,在这个44⨯的方格图形中已经放置了5枚棋子,若要将它变为上下左右都对称的图形,则最少还要在棋盘上摆放枚棋子.【分析】根据轴对称图形的特点和性质,轴对称图形沿对称轴对折对称轴两边的图形完全重合.由此作出图即可得出结论.【解答】解:如图:由图可知,最少还要在棋盘上摆放16511-=枚棋子;故答案为:11.【点评】此题主要考查轴对称图形的特点,轴对称图形沿对称轴对折对称轴两边的图形完全重合.8.(2019•新都区)如图的钟面是从镜子里看到的,实际钟面上的时刻是.【分析】镜面对称的特点是:上下前后方向一致,左右方向相反;图中镜子里看到的时间是6:40,由镜面对称左右方向相反特点,镜中时针在6与7之间,实际是在5与6之间,是5时,镜中分针指刻度8,实际中是指刻度4,即20分;据此解答.【解答】解:因为镜中时针在6与7之间,实际是在5与6之间,是5时,镜中分针指着刻度8,实际中是指刻度4,即20分,所以实际钟面上的时刻是5:20.故答案为:5:20.【点评】此题主要明白镜面对称的特点是:上下前后方向一致,左右方向相反.9.(2019•历城区模拟)图中多边形的周长是厘米.【分析】要求多边形的周长是多少,只要把各边相加即可;通过图可知,把上边的折线部分分成两部分,横的为一部分,相加正好是5厘米;竖着的部分相加是2厘米;于是多边形的周长即2个2厘米加上2个5厘米.【解答】解:(52)2+⨯,14=(厘米);答:图中多边形的周长是14厘米.故答案为:14.【点评】此题只要把多边形进行划分,然后整合相加,即可发现规律.从而得出答案.10.(2019•长沙)把如图所示的方格中的图形向右平移格就可以与图形重合;如果每小格表示1平分厘米,图形的面积是平面厘米.【分析】(1)根据平移的特征、两个图形的相对位置及对应部分间的距离即可确定阴影图形平移的方向和距离;(2)再把这个图形的左边弓形部分切割、平移,即可组成一个边长为3厘米的正方形,根据正方形的面积计算公式“2=”即可求出它的面积.S a【解答】解:(1)答:把如图所示的方格中的图形向右平移5格就可以与图形重合.(2)如图,⨯=(平方厘米)339答:图形的面积是9平面厘米.故答案为:5,9.【点评】此题主要是考查平移的特征、平移的实际应用.(2)通过把这个图形进行切割、平移,计算其面积就比较容易了.11.(2019秋•宜宾期中)看图填空.(1)图(1)中□由位置A向平移格到位置B.(2)图(2)中国由位置C向平移格再向平移格到位置D.(3)图(3)中的图1绕点O顺时针方向旋转︒到图2;图4绕点O时针方向旋转90︒到图3;图3绕点O时针方向旋转180︒到图1.【分析】(1)、(2)根据两图的位置关系及对应部分之间的距离(格数),即可确定平移的方向和距离(格数).(3)根据旋转的特征,一个图形绕某点按一定的度数旋转一定的度数,某点的位置不动,其余各部分均绕此点按相同方向旋转相同的度数,根据两图的位置关系,即可确定旋转的度数及方向.【解答】解:(1)图(1)中□由位置A向右平移5格到位置B.(2)图(2)中国由位置C向下(右)平移4(1)格再向右(下)平移1(4)格到位置D.(3)图(3)中的图1绕点O顺时针方向旋转90︒到图2;图4绕点O逆时针方向旋转90︒到图3;图3绕点O顺(或逆)时针方向旋转180︒到图1.故答案为:右,5;下(或右),4(或1),右(或下),1(或4);90,逆,顺或逆).【点评】此题主要是考查图形平移的特征、旋转的特征.图形平移有三要素:即原位置、平移方向、平移距离.图形旋转有四要素:即原位置、旋转中心、旋转方向、旋转角.二.判一判(共6小题)12.(2019秋•綦江区期末)把图形放大或缩小后,图形的大小发生了变化,但形状不变.(判断对错)【分析】一个图形扩大或缩小后,边与边的比不会发生变化,所以它的形状不会发生变化.只是面积大小发生了变化.或者说把一个图形扩大或缩小,是按一定的比例放大或缩小的,它的形状不会发生变化;据此解答即可.【解答】解:图形按一定的比例放大或缩小,图形的形状不变,大小发生了变化,图形的面积也随之发生了变化;所以原题说法正确;故答案为:√.【点评】本题考查了图形的放大与缩小,我们所说的图形的放大与缩小,是按一定比例放大或缩小的,其形状不变,只是面积的大小变了.13.(2019春•大东区期末)淘气举左手时,镜子中的淘气举右手.√.(判断对错)【分析】根据镜面对称的特征,镜中的景物与实际景物上下前后方向一致,左右方向相反,大小不变,且关于镜面对称.【解答】解:如图淘气举左手时,镜子中的淘气举右手.原题的说法是正确的.【点评】根据镜面对称的特征,镜中的景物与实际景物上下前后方向一致,左右方向相反,大小不变,且关于镜面对称.14.(2019秋•新华区期末)两个圆组成的图形一定是轴对称图形.√(判断对错)【分析】两个圆无论半径相等,还是不相等,无论是相交、相切或相离、还是内含,组成的图形都是轴对称图形,只对称轴的条数多少而已,最多是两个圆组成环形,有无数条对称轴,最少有一条对称轴.【解答】解:两个圆组成的图形一定是轴对称图形原题说法正确.故答案为:√.【点评】无论两个圆的大小如何,位置关系怎样,所组成的图形一定是轴对称图形.15.(2019秋•定州市期末)商场中观光电梯的运动是旋转现象,风力发电时风车的转动属于平移现象.⨯(判断对错)【分析】平移是物体运动时,物体上任意两点间,从一点到另一点的方向与距离都不变的运动;旋转是物体运动时,每一个点离同一个点(可以在物体外)的距离不变的运动,称为绕这个点的转动,这个点称为物体的转动中心.所以,它并不一定是绕某个轴的.根据平移与旋转定义判断即可.【解答】解:商场中观光电梯的运动是平移现象,风力发电时风车的转动属于旋转现象,故原题说法错误;故答案为:⨯.【点评】此题是考查对平移与旋转的理解及在实际当中的运用.16.(2019春•禅城区期末)钟面上的分针从“12”走到“3”按顺时针方向旋转了90︒.√(判断对错)【分析】利用钟表表盘的特征解答.表盘共被分成12个大格,每一大格所对角的度数为30︒;从12走到3经过了3个大格,即转了30390︒⨯=︒.【解答】解:根据分析可得,︒⨯=︒30390即钟面上的分针从“12”走到“3”按顺时针方向旋转了90︒;所以原题说法正确.故答案为:√.【点评】本题考查钟表时针与分针的夹角.在钟表问题中,利用起点时间时针和分针的位置关系建立角的图形即可解答.17.(2019•安定区)直角三角形绕其中一条边旋转一周后得到的图形一定是圆锥.⨯(判断对错)【分析】直角三形绕其中一条直角边旋转一周后得到的图形一定是一个圆锥(旋转直角边为圆锥的高,另一直角边为底面半径);如果绕斜边旋转一周,得到的是有公共底面的两个圆锥组合体.【解答】解:直角三角形绕其中一条边旋转一周后得到的图形一定是圆锥是错误的,只有绕其中一直角边旋转一周后得到的图形才一定是圆锥.故答案为:⨯.【点评】以直角三角形的一直角边为轴旋转一周,将得到一个以旋转直角边为高,另一直角边为底面半径的圆锥.是培养学生的空间想象能力.三.选一选(共8小题)18.(2019•郴州模拟)想一想,下列哪一组都是旋转现象()A.拉抽屉,电风扇转动B.转动转盘,风车转动C.时针转动,电梯升降【分析】根据平移、旋转的特征可知,平移是将一个图形上的所有点都按照某个方向作相同距离的移动,旋转把一个图形绕着某一点转动一个角度的图形变换.【解答】解:A、推拉窗子是窗子的位置是平移移动,电风扇转动,是旋转现象;B、转动转盘,风车转动,它们的运动属于旋转现象;C、时针转动是旋转现象,电梯升降是平移现象;故选:B.【点评】本题主要考查平移和旋转的意义,对平移与旋转理解及在实际生活当中的运用.19.(2019秋•如东县期末)下面9个交通标志图案中,有()个图形是轴对称图形.A.4B.5C.6D.7【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;依次进行判断即可.【解答】解:根据轴对称图形的意义可知:是轴对称图形;故选:A.【点评】此题考查了轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.20.(2019秋•永州期末)下列平面图形中,对称轴数量最多的是()A.圆B.半圆C.正方形D.长方形【分析】根据轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.据此作答.【解答】解:A、圆有无数条对称轴;B、半圆有1条对称轴C、正方形有4条对称轴;D、长方形有2条对称轴;故选:A.【点评】考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.同时要熟记一些常见图形的对称轴条数.21.(2019春•深圳期中)将一张纸对折后剪去3个圆(如图),展开后是()A.B.C.【分析】由于该图是把一张纸对折后剪出的,剪出的图形是轴对称图形,折痕就是剪成的图形的对称轴,据此解答.【解答】解:将一张纸对折后剪去3个圆(如图),展开后是.故选:B.【点评】此题不难,图形是轴对称图形,对称轴左边的图形要与该图的左边部分相吻合.22.(2019•雨花区)小明从镜子里看到镜子对面的电子钟的像如图所示,实际时间是()A.21:00B.10:21C.10:51D.12:01【分析】利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【解答】解:根据镜面对称的性质,题中所显示的时刻应该与12:01成轴对称,所以此时实际时刻为10:51,故选:C.【点评】本题考查镜面对称的原理与性质.解决此类题应认真观察,注意技巧.23.(2019秋•扬州期末)把长方形绕0点顺时针旋转90︒后,得到的图形是()A.B.C.D.【分析】根据旋转的特征,长方形绕点O顺时针旋转90︒后,点O的位置不动,其余各部分均绕此点按相同方向旋转相同的度数,即可画出旋转后的图形.【解答】解:如图,把长方形绕0点顺时针旋转90︒后,得到的图形是.故选:B.【点评】经过旋转,图形上的每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.(旋转前后两个图形的对应线段相等、对应角相等.)24.(2019春•方城县期中)把一个正方形的各边按1:3缩小后,现在的图形和原来图形的面积比是() A.1:3B.3:1C.1:9【分析】把一个正方形的边长按1:3的比例缩小,就是把这个正方形边长缩小到原来的13,缩小后的正方形的面积将缩小到原来的19,如果把原来的正方形的边长看作1,它的面积是111⨯=,缩小后后的正方形的面积是111(1)(1)339⨯⨯⨯=,据此解答.【解答】解:一个正方形的边长缩小到原来的13,它的面积会缩小到原来的111(1)(1)339⨯⨯⨯=.因此现在的图形和原来图形的面积比是1:9.故选:C.【点评】本题主要是考查图形的放大与缩小.一个正方形的边长扩大或缩小n倍,它的面积将会扩大或缩小2n倍.25.(2019•山西模拟)如图沿逆时针方向转了90︒以后的图形是()A.B.C.D.【分析】紧扣图形翻转和旋转的定义,将这个图形分别推理变形,即可得出答案,进行选择.【解答】解根据旋转的定义可得,将翻转后的图形按逆时针方向旋转90︒得到的图形是:故选:A.【点评】此题考查了利用翻转和旋转的定义将简单图形进行变形的方法.四.操作题(共4小题)26.(2019春•赣州期末)(1)画出平行四边形绕O点顺时针旋转90︒后的图形.(2)画出图2的轴对称图形.【分析】(1)根据旋转的特征,平行四边形绕点O顺时针旋转90︒后,点O的位置不动,其余各部分均绕该点按相同方向旋转相同的度数即可画出旋转后的图形.(2)根据轴对称图形的特征,对称点到对称轴的距离相等,对称点的连线垂直于对称轴,在对称轴的右边画出左图的关键对称点,连结涂色即可.【解答】解:(1)画出平行四边形绕O点顺时针旋转90︒后的图形.(2)画出图2的轴对称图形.【点评】图形旋转要注意四要素:原位置、旋转中心、旋转方向、旋转角;求作一个几何图形关于某条直线对称的图形,可以转化为求作这个图形上的特征点关于这条直线对称的点.后依次连结各特征点即可.27.(2019•萧山区模拟)操作题(1)画出图①的另一半,使它成为一个轴对称图形.(2)画出将图②绕A点顺时针旋转90︒后的图形.(3)图中圆的圆心位置用数对表示是(3,).画出将圆先向右平移7格再向下平移2格后的图形.画出将圆按3:1的比放大后的图形,放大后面积与原来面积之比是.【分析】(1)依据轴对称图形的概念及特征,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,以及对称点到对称轴的距离相等;找出对称点,即可作出对称图形的另一半;(2)根据图形旋转的方法,先把与点A相连的两条边绕点A顺时针旋转90︒后,再把第三条边连接起来,即可得出旋转后的图形;(3)根据用数对表示位置的方法,第一个数字表示列,第二个数字表示行即可用数对表示出圆心的位置;再根据平移的特点:将圆先向右平移7格再向下平移2格后的图形,作图即可;将图形按3:1放大后,根据圆的面积公式可知:其面积比就是圆的半径的平方比,是223:1,即9:1,解答即可.【解答】解:(1)、(2)作图如下:(3)由图可知,图中圆的圆心位置用数对表示是(3,3).将圆心先向右平移7格再向下平移2格的圆如上图:最后将圆按3:1放大后画出来,放大后面积与原来面积的比是23:19:1=.故答案为;3,3,9:1【点评】本题考查的知识点有:作轴对称图形、作旋转后的图形、用数对表示点的位置、图形的放大与缩小的意义等.作对称对称图形、旋转后的图形关键是确定对称点(对应点)的位置;图形的放大与缩小的倍数是把对应边放大或缩小的倍数,面积是这个倍数的平方倍.28.(2019•惠山区)(1)把长方形按1:3的比缩小,画出缩小后的图形.(2)把缩小后的长方形平移,与图中的圆组成一个轴对称图形.(3)把三角形绕A点按逆时针方向连续旋转3次,每次都旋转90︒,画出最后的图形.【分析】(1)根据图形放大与缩小的意义,如果把一个长方形按1:3缩小,缩小后的边长是缩小前边长的13,那么现在的长和宽分别是:632÷=格,331÷=格,据此画图即可;(2)根据轴对称图形的定义,只要把长方形向右平移2.5格,即可与圆组成轴对称图形,据此即可画出它们的对称轴;(3)根据旋转图形的特征,三角形绕点A逆时针旋转90︒,点A的位置不动,其余各点(边)均绕点A逆时针旋转90︒,即可画出三角形绕A点逆时针旋转90︒的图形,连续旋转三次90︒即可.【解答】解:作图如下:【点评】此题主要考查数对表示位置、方向与距离表示位置的方法以及利用平移、旋转、放大与缩小的方法进行图形变换的方法.29.(2019•河南模拟)如图(1)按2:1的比画出三角形变化后的图形.(2)按1:3的比画出圆变化后的图形,并与原来的圆组成轴对称图形.(3)按2:1的比画出平行四边形变化后的图形,【分析】(1)根据图形放大与缩小的意义,把这个直角三角形的两直角边均放大到原来的2倍,所得到的图形就是原图形按2:1放大后的图形(直角三角形两直角边即可确定其形状).(2)这个圆的直径是6格,根据图形放大与缩小的意义,按1:3缩小后的图形是直径为2格原圆.缩小后的圆与原圆无论是相切、相交、相离、内含等都会组成一个轴对称图形,过两圆圆心的直线就是它的对称轴.(3)根据图形放大与缩小的意义,把这个平行四边形的各边均放大到原来的2倍,对应角大小不变,所得到的图形就是原图形按2:1放大后的图形.【解答】解:(1)按2:1的比画出三角形变化后的图形(图中红色部分).(2)按1:3的比画出圆变化后的图形,并与原来的圆组成轴对称图形(图中绿色部分).(3)按2:1的比画出平行四边形变化后的图形(图中蓝色部分、红色虚线为对称轴).【点评】图形放大或缩小后,只是大小变了,形状不变.即图形放大或缩小后与原图对应边成比例,对应角大小不变.。

人教版八年级数学培优题精选18例(含答案)

人教版八年级数学培优题精选18例(含答案)

A、1.5B、2C、2.25D、2.5爬到点 B ,如果它运动的路径是最短,则 AC 的长度是多少?少?车是否超速?例题6、对实数 a , b ,定义新运算☆如下: a ☆ b =八年级数学培优题精选18例(含答案)例题7、计算八年级数学培优题精选18例(含答案)例题9、点 A(3x + 2y , -2)关于 y 轴的对称点为 B(-1 ,2x + 4y), 则点 M (x , y)关于 x 轴的对称点的坐标为多少?答案:(1,1)。

例题10、如图所示,在平面直角坐标系中有 A , B 两点:八年级数学培优题精选18例(含答案)(1)写出 A , B 两点的坐标;(2)若线段 AB 各顶点的横坐标不变,纵坐标都乘以 -1 ,请你在同一坐标系中描出对应的点 A1 ,B1 ,并连接 A1B1 ,所得的线段 A1B1 与线段 AB 有怎样的位置关系?(3)在(2)的基础上,纵坐标不变,横坐标都乘以 -1 ,请你在同一坐标系中描出对应的点 A2,B2 ,并连接这两个点,所得的线段 A2B2 与线段 AB 有怎样的位置关系?解:(1)点 A 的坐标为(1,2),点 B 的坐标为(3,1);(2)如图所示,线段 A1B1 与线段 AB 关于 x 轴对称;(3)如图所示,线段 A2B2 与线段 AB 关于原点对称。

例题11、甲乙两人赛跑,所跑路程与时间的关系如图所示。

根据图像得到如下四个信息,其中错误的是(C )八年级数学培优题精选18例(含答案)A、这是一次 1500 m 赛跑B、甲、乙两人中先到达终点的是乙C、甲、乙同时起跑D、甲在这次赛跑中的速度为 5 m/s例题12、如图,BE 是∠ABD 的角平分线,CF 是∠ACD 的角平分线,BE 与CF 交于点 G ,∠BDC = 140°,∠BGC = 110°,则∠A 的度数为(C)八年级数学培优题精选18例(含答案)A、70°B、75°C、80°D、85°例题13、如图所示,已知 AB∥DE ,一个弯形管道 ABCDE 的拐角∠EDC = 140°,∠CBA = 150°,则∠C = ?八年级数学培优题精选18例(含答案)答案:∠C = 70°。

初中数学图形的平移,对称与旋转的专项训练及解析答案(1)

初中数学图形的平移,对称与旋转的专项训练及解析答案(1)

初中数学图形的平移,对称与旋转的专项训练及解析答案(1)一、选择题1.如图,将线段AB 绕点O 顺时针旋转90°得到线段''A B 那么()2, 5A -的对应点'A 的坐标是 ( )A .()5,2B .()2,5C .()2,5-D .()5,2-【答案】A【解析】【分析】 根据旋转的性质和点A (-2,5)可以求得点A′的坐标.【详解】作AD ⊥x 轴于点D ,作A′D′⊥x 轴于点D′,则OD=A′D′,AD=OD′,OA=OA′,△OAD ≌△A ′OD ′(SSS ),∵A (-2,5),∴OD=2,AD=5,∴点A′的坐标为(5,2),故选:A .【点睛】此题考查坐标与图形变化-旋转,解题的关键是明确题意,找出所求问题需要的条件.2.如图,△ABC 绕点A 逆时针旋转使得点C 落在BC 边上的点F 处,则以下结论:①AC =AF ;②∠FAB =∠EAB ;③EF =BC ;④∠EAB =∠FAC .其中正确的结论有( )A .4个B .3个C .2个D .1个【答案】B【解析】【分析】 根据旋转的性质,旋转前后对应线段相等、对应角相等即可解答.【详解】由旋转可知△ABC ≌△AEF ,∴AC=AF ,EF=BC ,①③正确,∠EAF=∠BAC ,即∠EAB+∠BAF=∠BAF+∠FAC ,∴∠EAB=∠FAC ,④正确,②错误,综上所述,①③④正确.故选B.【点睛】本题考查了旋转的性质,属于简单题,熟悉旋转的性质,利用旋转的性质找到对应角之间的关系是解题关键.3.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是( )A .主视图B .左视图C .俯视图D .主视图和左视图【答案】C【解析】 【分析】根据所得到的主视图、俯视图、左视图结合中心对称图形的定义进行判断即可.【详解】观察几何体,可得三视图如图所示:可知俯视图是中心对称图形,故选C.【点睛】本题考查了三视图、中心对称图形,正确得到三视图是解决问题的关键.4.如图,在ABC ∆中,5AB =,3AC =,4BC =,将ABC ∆绕一逆时针方向旋转40︒得到ADE∆,点B经过的路径为弧BD,则图中阴影部分的面积为( )A.1463π-B.33π+C.3338π-D.259π【答案】D【解析】【分析】由旋转的性质可得△ACB≌△AED,∠DAB=40°,可得AD=AB=5,S△ACB=S△AED,根据图形可得S阴影=S△AED+S扇形ADB-S△ACB=S扇形ADB,再根据扇形面积公式可求阴影部分面积.【详解】∵将△ABC绕A逆时针方向旋转40°得到△ADE,∴△ACB≌△AED,∠DAB=40°,∴AD=AB=5,S△ACB=S△AED,∵S阴影=S△AED+S扇形ADB-S△ACB=S扇形ADB,∴S阴影=4025360π⨯=259π,故选D.【点睛】本题考查了旋转的性质,扇形面积公式,熟练掌握旋转的性质:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.5.下列“数字图形”中,既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个【答案】B【解析】【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断即可求解.【详解】解:第一个图形不是轴对称图形,是中心对称图形;第二、三个图形是轴对称图形,也是中心对称图形,第四个图形不是轴对称图形,不是中心对称图形;故选:B.【点睛】此题考查中心对称图形,轴对称图形,解题关键在于对概念的掌握6.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.【答案】D【解析】【分析】根据平移只改变图形的位置,不改变图形的形状和大小,逐项进行分析即可得.【详解】A、不能通过平移得到,故不符合题意;B、不能通过平移得到,故不符合题意;C、不能通过平移得到,故不符合题意;D、能够通过平移得到,故符合题意,故选D.【点睛】本题考查了图形的平移,熟知图形的平移只改变图形的位置,而不改变图形的形状和大小是解题的关键.Y的顶点O,A,C的坐标分别为(0,0),(4,0),(1,3),则顶点B 7.如图,若OABC的坐标为()A.(4,1)B.(5,3)C.(4,3)D.(5,4)【答案】B【解析】【分析】根据平行四边形的性质,以及点的平移性质,即可求出点B的坐标.【详解】解:∵四边形OABC是平行四边形,∴OC∥AB,OA∥BC,∴点B的纵坐标为3,∵点O向右平移1个单位,向上平移3个单位得到点C,∴点A向右平移1个单位,向上平移3个单位得到点B,∴点B的坐标为:(5,3);故选:B.【点睛】本题考查了平行四边形的性质,点坐标平移的性质,解题的关键是熟练掌握平行四边形的性质进行解题.8.下列图形中,不是中心对称图形的是()A.平行四边形B.圆C.等边三角形D.正六边形【答案】C【解析】【分析】根据中心对称图形的定义依次判断各项即可解答.【详解】选项A、平行四边形是中心对称图形;选项B、圆是中心对称图形;选项C、等边三角形不是中心对称图形;选项D、正六边形是中心对称图形;故选C.【点睛】本题考查了中心对称图形的判定,熟知中心对称图形的定义是解决问题的关键.a a>,那么9.在平面直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加正数(1)所得的图案与原来图案相比()A.形状不变,大小扩大到原来的a倍B.图案向右平移了a个单位C.图案向上平移了a个单位D.图案向右平移了a个单位,并且向上平移了a个单位【答案】D【解析】【分析】直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加上正数a(a>1),那么所得的图案与原图案相比,图案向右平移了a个单位长度,并且向上平移了a个单位长度.故选D.【点睛】本题考查了坐标系中点、图形的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.10.如图,将ABC V 绕点A 逆时针旋转90︒得到,ADE V 点,B C 的对应点分别为,,1,D E AB =则BD 的长为( )A .1B .2C .2D .22 【答案】B【解析】【分析】 根据旋转的性质得到AD=AB=1,∠BAD=90°,即可根据勾股定理求出BD .【详解】由旋转得到AD=AB=1,∠BAD=90°,∴BD= 22AB AD +=2211+=2,故选:B .【点睛】此题考查了旋转的性质,勾股定理,找到直角是解题的关键.11.在下列图形中是轴对称图形的是( )A .B .C .D .【答案】B【解析】【分析】根据轴对称图形的概念求解.【详解】A.不是轴对称图形,故本选项不符合题意,B.是轴对称图形,故本选项符合题意,C.不是轴对称图形,故本选项不符合题意,D.是不轴对称图形,故本选项不符合题意.故选B.【点睛】本题考查了轴对称的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.12.如图,在R t △ABC 中,∠ACB=90°,∠B=60°,BC=2,∠A ′B ′C ′可以由△ABC 绕点C 顺时针旋转得到,其中点A′与点A 是对应点,点B′与点B 是对应点,连接AB′,且A 、B′、A′在同一条直线上,则AA′的长为( )A .43B .6C .33D .3【答案】B【解析】【分析】【详解】 试题分析:∵在Rt △ABC 中,∠ACB=90°,∠B=60°,BC=2,∴∠CAB=30°,故AB=4,∵△A ′B ′C 可以由△ABC 绕点C 顺时针旋转得到,其中点A′与点A 是对应点,点B′与点B 是对应点,连接AB′,且A 、B′、A′在同一条直线上,∴AB=A ′B ′=4,AC=A′C ,∴∠CAA ′=∠A ′=30°,∴∠ACB ′=∠B ′AC=30°,∴AB ′=B ′C=2,∴AA ′=2+4=6.故选B .考点:1、旋转的性质;2、直角三角形的性质13.如图在平面直角坐标系中,等边三角形OAB 的边长为4,点A 在第二象限内,将OAB ∆沿射线AO 平移,平移后点A '的横坐标为43,则点B '的坐标为( )A .(3,2)-B .(63,3)-C .(6,2)-D .(63,2)-【答案】D【解析】【分析】先根据已知条件求出点A 、B 的坐标,再求出直线OA 的解析式,继而得出点A '的纵坐标,找出点A 平移至点A '的规律,即可求出点B '的坐标.【详解】解:∵三角形OAB 是等边三角形,且边长为4∴(23,2),(0,4)A B - 设直线OA 的解析式为y kx =,将点A 坐标代入,解得:33k =-即直线OA 的解析式为:33y x =- 将点A '的横坐标为43代入解析式可得:4y =-即点A '的坐标为(43,4)-∵点A 向右平移63个单位,向下平移6个单位得到点A '∴B '的坐标为(063,46)(63,2)+-=-.故选:D .【点睛】本题考查的知识点是坐标与图形变化-平移,熟练掌握坐标平面图形平移的规律是解决本题的关键.14.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .【答案】C【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A 、是轴对称图形,不是中心对称的图形,故本选项不符合题意;B 、不是轴对称图形,是中心对称的图形,故本选项不符合题意;C 、既是轴对称图形,又是中心对称的图形,故本选项符合题意;D 、是轴对称图形,不是中心对称的图形,故本选项不符合题意.故选:C .【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.15.如图,将ABC V 沿射线BC 方向平移2 cm 得到DEF V .若ABC V 的周长为13 cm ,则四边形ABFD 的周长为( )A .12 cmB .15 cmC .17 cmD .21 cm【答案】C【解析】【分析】 根据平移的特点得AD=BE=CF=2,将四边形ABFE 的周长分解为AB+BC+DF+AD+CF 的形式,其中AB+BC+DF=AB+BC+AC 为△ABC 的周长.【详解】∵△DEF 是△ABC 向右平移2个单位得到∴AD=CF=BE=2,AC=DF四边形ABFD 的周长为:AB+BC+DF+AD+CF=(AB+BC+AC)+(AD+CF)=13+2+2=17故选:C .【点睛】本题考查平移的性质,需要注意,平移前后的图形是完全相同的,且对应点之间的线段长即为平移距离.16.如图,将△ABC 绕点C (0,1)旋转180°得到△A'B'C ,设点A 的坐标为(,)a b ,则点的坐标为( )A .(,)a b --B .(,1)a b ---C .(,1)a b --+D .(,2)a b --+【答案】D【解析】 试题分析:根据题意,点A 、A′关于点C 对称,设点A 的坐标是(x ,y ),则0122a x b y ++==,,解得2x a y b =-=-+,,∴点A 的坐标是(2)a b --+,.故选D . 考点:坐标与图形变化-旋转.17.如图,点E 是正方形ABCD 的边DC 上一点,把ADE ∆绕点A 顺时针旋转90︒到ABF ∆的位置.若四边形AECF 的面积为20,DE=2,则AE 的长为( )A .4B .25C .6D .26【答案】D【解析】【分析】 利用旋转的性质得出四边形 AECF 的面积等于正方形 ABCD 的面积,进而可求 出正方形的边长,再利用勾股定理得出答案.【详解】ADE ∆Q 绕点A 顺时针旋转90︒到ABF ∆的位置.∴四边形AECF 的面积等于正方形ABCD 的面积等于20,25AD DC ∴==,2DE =Q ,Rt ADE ∴∆中,2226AE AD DE =+=故选:D .【点睛】本题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应 边关系是解题关键.18.我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图1),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形. 图2是等宽的勒洛三角形和圆形滚木的截面图.图1 图2有如下四个结论:①勒洛三角形是中心对称图形②图1中,点A到BC上任意一点的距离都相等③图2中,勒洛三角形的周长与圆的周长相等④使用截面是勒洛三角形的滚木来搬运东西,会发生上下抖动上述结论中,所有正确结论的序号是()A.①②B.②③C.②④D.③④【答案】B【解析】【分析】逐一对选项进行分析即可.【详解】①勒洛三角形不是中心对称图形,故①错误;②图1中,点A到BC上任意一点的距离都相等,故②正确;③图2中,设圆的半径为r∴勒洛三角形的周长=12032180rrππ⨯=g g圆的周长为2rπ∴勒洛三角形的周长与圆的周长相等,故③正确;④使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动,故④错误故选B【点睛】本题主要考查中心对称图形,弧长公式等,掌握中心对称图形和弧长公式是解题的关键. 19.下列所给图形是中心对称图形但不是轴对称图形的是()A.B.C.D.【答案】D【解析】A. 此图形不是中心对称图形,不是轴对称图形,故A选项错误;B. 此图形是中心对称图形,也是轴对称图形,故B选项错误;C. 此图形不是中心对称图形,是轴对称图形,故D选项错误.D. 此图形是中心对称图形,不是轴对称图形,故C选项正确;故选D.20.在下面由冬季奥运会比赛项目图标组成的四个图形中,其中可以看作轴对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.。

初中数学图形的平移,对称与旋转的专项训练解析含答案(1)

初中数学图形的平移,对称与旋转的专项训练解析含答案(1)

初中数学图形的平移,对称与旋转的专项训练解析含答案(1)一、选择题1.如图所示,共有3个方格块,现在要把上面的方格块与下面的两个方格块合成一个长方形的整体,则应将上面的方格块()A.向右平移1格,向下3格B.向右平移1格,向下4格C.向右平移2格,向下4格D.向右平移2格,向下3格【答案】C【解析】分析:找到两个图案的最右边移动到一条直线,最下边移动到一条直线上的距离即可.解答:解:上面的图案的最右边需向右平移2格才能与下面图案的最右边在一条直线上,最下边需向下平移4格才能与下面图案的最下面重合,故选C.2.下列全国各地地铁标志图中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】C【解析】【分析】试题解析:选项A既不是轴对称图形,也不是中心对称图形,故该该选项错误;选项B既不是轴对称图形,也不是中心对称图形,故该选项错误;选项C 既是轴对称图形,也是中心对称图形,故该选项正确;选项D是轴对称图形,但不是中心对称图形,故该选项错误.故选C.【详解】请在此输入详解!3.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(﹣2,1).则点B的对应点的坐标为()A.(5,3)B.(﹣1,﹣2)C.(﹣1,﹣1)D.(0,﹣1)【答案】C【解析】【分析】根据点A、点A的对应点的坐标确定出平移规律,然后根据规律求解点B的对应点的坐标即可.【详解】∵A(1,3)的对应点的坐标为(﹣2,1),∴平移规律为横坐标减3,纵坐标减2,∵点B(2,1)的对应点的坐标为(﹣1,﹣1),故选C.【点睛】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.4.下列说法正确的是()A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B.在成中心对称的两个图形中,连结对称点的线段都被对称中心平分C.在平面直角坐标系中,一点向右平移2个单位,纵坐标加2D.在平移和旋转图形中,对应角相等,对应线段相等且平行【答案】B【解析】【分析】分别利用图形的平移以及中心对称图形的性质和旋转的性质分别判断得出即可.【详解】A、平移不改变图形的形状和大小,旋转也不改变图形的形状和大小,故此选项错误;B、在成中心对称的两个图形中,连结对称点的线段都被对称中心平分,此选项正确;C、在平面直角坐标系中,一点向右平移2个单位,横坐标加2,故此选项错误;D、在平移中,对应角相等,对应线段相等且平行,旋转则对应线段有可能不平行,故此选项错误.故选B.5.下列图形中,不是中心对称图形的是()A.平行四边形B.圆C.等边三角形D.正六边形【答案】C【解析】【分析】根据中心对称图形的定义依次判断各项即可解答.【详解】选项A、平行四边形是中心对称图形;选项B、圆是中心对称图形;选项C、等边三角形不是中心对称图形;选项D、正六边形是中心对称图形;故选C.【点睛】本题考查了中心对称图形的判定,熟知中心对称图形的定义是解决问题的关键.6.下面是同学们利用图形变化的知识设计的一些美丽的图案,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.【答案】A【解析】【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.【详解】A、是中心对称图形,又是轴对称图形,故此选项正确;B、是中心对称图形,不是轴对称图形,故此选项错误;C、不是中心对称图形,是轴对称图形,故此选项错误;D、不是中心对称图形,是轴对称图形,故此选项错误;故选A.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.7.在下列图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】A【解析】【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A、既是轴对称图形,又是中心对称图形,故本选项正确;B、是轴对称图形,不是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D 、是轴对称图形,不是中心对称图形,故本选项错误.故选A .【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.8.如图,将ABC V 绕点A 逆时针旋转110o ,得到ADE V ,若点D 在线段BC 的延长线上,则ADE ∠的大小为( )A .55oB .50oC .45oD .35o【答案】D【解析】【分析】根据旋转的性质可得AB AD =,BAD 110∠=o ,ADE ABC ∠∠=,根据等腰三角形的性质可得ABC ADE 35∠∠==o .【详解】如图,连接CD ,Q 将ABC V 绕点A 逆时针旋转110o ,得到ADE V ,AB AD ∴=,BAD 110∠=o ,ADE ABC ∠∠=,∴∠ABC=∠ADB=(180°-∠BAD )÷2=35°,∴∠ADE=ABC 35∠=o ,故选D .【点睛】本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是解本题的关键.9.如图,P 是等边三角形ABC 内一点,将线段AP 绕点A 顺时针旋转60︒得到线段AQ ,连接BQ .若6PA =,8PB =,10PC =,则四边形APBQ 的面积为( )A.2493+B.483+C.243+D.48183+【答案】A【解析】【分析】连结PQ,先根据等边三角形的性质和旋转的性质证明△APQ为等边三角形,则P Q=AP=6,再证明△APC≌△AQB,可得PC=QB=10,然后利用勾股定理的逆定理证明△PBQ为直角三角形,再根据三角形面积公式求出面积,最后利用S四边形APBQ=S△BPQ+S△APQ即可解答.【详解】解:如图,连结PQ,∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∵线段AP绕点A顺时针旋转60°得到线段AQ,∴AP=PQ=6,∠PAQ=60°,∴△APQ为等边三角形,∴PQ=AP=6,∵∠CAP+∠BAP=60°,∠BAP+∠BAQ=60°,∴∠CAP=∠BAQ,∵在△APC和△ABQ中,AC=AB,∠CAP=∠BAQ,AP=AQ∴△APC≌△AQB,∴PC=QB=10,在△BPQ中, PB2=82=64,PQ2=62=36,BQ2=102=100,∴PB2+PQ2=BQ2,∴△PBQ为直角三角形,∴∠BPQ=90°,∴S四边形APBQ=S△BPQ+S△APQ=12×6×8+34×623故答案为A..【点睛】本题考查了旋转的性质和勾股定理的逆定理,掌握旋转的定义、旋转角以及旋转前、后的图形全等是解答本题的关键.10.如图,若将线段AB平移至A1B1,则a+b的值为( )A.﹣3 B.3 C.﹣2 D.0【答案】A【解析】【分析】根据点的平移规律即点A平移到A1得到平移的规律,再按此规律平移B点得到B1,从而得到B1点的坐标,于是可求出a、b的值,然后计算a+b即可.【详解】解:∵点A(0,1)向下平移2个单位,得到点A1(a,﹣1),点B(2,0)向左平移1个单位,得到点B1(1,b),∴线段AB向下平移2个单位,向左平移1个单位得到线段A1B1,∴A1(﹣1,﹣1),B1(1,﹣2),∴a=﹣1,b=﹣2,∴a+b=﹣1﹣2=﹣3.故选:A.【点睛】本题考查了直角坐标系中点的平移规律,解决本题的关键是熟知坐标平移规律上加下减、右加左减.11.下列字母中:H、F、A、O、M、W、Y、E,轴对称图形的个数是()A.5 B.4 C.6 D.7【答案】D【解析】从第一个字母研究,只要能够找到一条对称轴,令这个字母沿这条对称轴折叠后,两边的部分能够互相重合,就是轴对称图形,可以得出:字母H、A、O、M、W、Y、E这七个字母,属于轴对称图形.故选:D.12.如图,将△ABC绕点A顺时针旋转60°得到△ADE,点C的对应点E恰好落在BA的延长线上,DE与BC交于点F,连接BD.下列结论不一定正确的是()A.AD=BD B.AC∥BD C.DF=EF D.∠CBD=∠E【答案】C【解析】【分析】由旋转的性质知∠BAD=∠CAE=60°、AB=AD,△ABC≌△ADE,据此得出△ABD是等边三角形、∠C=∠E,证AC∥BD得∠CBD=∠C,从而得出∠CBD=∠E.【详解】由旋转知∠BAD=∠CAE=60°、AB=AD,△ABC≌△ADE,∴∠C=∠E,△ABD是等边三角形,∠CAD=60°,∴∠D=∠CAD=60°、AD=BD,∴AC∥BD,∴∠CBD=∠C,∴∠CBD=∠E,则A、B、D均正确,故选C.【点睛】本题主要考查旋转的性质,解题的关键是熟练掌握旋转的性质、等边三角形的判定与性质及平行线的判定与性质.13.直角坐标系内,点P(-2,3)关于原点的对称点Q的坐标为()A.(2,-3)B.(2,3)C.(-2,3)D.(-2,-3)【答案】A【解析】试题解析:根据中心对称的性质,得点P(-2,3)关于原点对称点P′的坐标是(2,-3).故选A.点睛:平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y).14.如图所示,把一张矩形纸片对折,折痕为AB ,再把以AB 的中点O 为顶点的平角AOB ∠三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O 为顶点的等腰三角形,那么剪出的等腰三角形全部展开平铺后得到的平面图形一定是( )A .正三角形B .正方形C .正五边形D .正六边形【答案】D【解析】【分析】 对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【详解】由第二个图形可知:∠AOB 被平分成了三个角,每个角为60°,它将成为展开得到图形的中心角,那么所剪出的平面图形是360°÷60°=6边形.故选D .【点睛】本题考查了剪纸问题以及培养学生的动手能力及空间想象能力,此类问题动手操作是解题的关键.15.如图在平面直角坐标系中,等边三角形OAB 的边长为4,点A 在第二象限内,将OAB ∆沿射线AO 平移,平移后点A '的横坐标为43,则点B '的坐标为( )A .(3,2)-B .(63,3)-C .(6,2)-D .(63,2)-【答案】D【解析】【分析】 先根据已知条件求出点A 、B 的坐标,再求出直线OA 的解析式,继而得出点A '的纵坐标,找出点A 平移至点A '的规律,即可求出点B '的坐标.【详解】解:∵三角形OAB 是等边三角形,且边长为4∴(23,2),(0,4)A B -设直线OA 的解析式为y kx =,将点A 坐标代入,解得:33k =- 即直线OA 的解析式为:3y x =- 将点A '的横坐标为43代入解析式可得:4y =-即点A '的坐标为(43,4)-∵点A 向右平移63个单位,向下平移6个单位得到点A '∴B '的坐标为(063,46)(63,2)+-=-.故选:D .【点睛】本题考查的知识点是坐标与图形变化-平移,熟练掌握坐标平面图形平移的规律是解决本题的关键.16.把一副三角板如图(1)放置,其中∠ACB =∠DEC =90°,∠A =45°,∠D =30°,斜边AB =4,CD =5.把三角板DCE 绕着点C 顺时针旋转15°得到△D 1CE 1(如图2),此时AB 与CD 1交于点O ,则线段AD 1的长度为( )A 13B 5C .22D .4【答案】A【解析】 试题分析:由题意易知:∠CAB=45°,∠ACD=30°.若旋转角度为15°,则∠ACO=30°+15°=45°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt △ABC 中,AB=4,则AO=OC=2.在Rt △AOD 1中,OD 1=CD 1-OC=3,由勾股定理得:AD 113故选A.考点: 1.旋转;2.勾股定理.17.如图,正方形OABC 的两边OA 、OC 分别在x 轴、y 轴上,点()5,3D 在边AB 上,以C 为中心,把CDB △旋转90︒,则旋转后点D 的对应点'D 的坐标是( )A .()2,10B .()2,0-C .()2,10或()2,0-D .()10, 2或()2,0-【答案】C【解析】【分析】 先根据正方形的性质求出BD 、BC 的长,再分逆时针旋转和顺时针旋转两种情况,然后分别根据旋转的性质求解即可得.【详解】Q 四边形OABC 是正方形,(5,3)D5,3,2,90BC OC AB OA AD BD AB AD B ∴======-=∠=︒由题意,分以下两种情况:(1)如图,把CDB △逆时针旋转90︒,此时旋转后点B 的对应点B '落在y 轴上,旋转后点D 的对应点D ¢落在第一象限由旋转的性质得:2,5,90B D BD B C BC CB D B '''''====∠=∠=︒10OB OC B C ''∴=+=∴点D ¢的坐标为(2,10)(2)如图,把CDB △顺时针旋转90︒,此时旋转后点B 的对应点B ''与原点O 重合,旋转后点D 的对应点D ''落在x 轴负半轴上由旋转的性质得:2,5,90B D BD B C BC CB D B ''''''''''====∠=∠=︒∴点D ''的坐标为(2,0)-综上,旋转后点D 的对应点D ¢的坐标为(2,10)或(2,0)-故选:C .【点睛】本题考查了正方形的性质、旋转的性质等知识点,依据题意,正确分两种情况讨论是解题关键.18.下列图形中,是轴对称图形的是()A.B.C.D.【答案】D【解析】【分析】根据轴对称图形的概念逐一判断即可.【详解】A、B、C都不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,不符合题意;D、是轴对称图形,符合题意.【点睛】本题考查轴对称图形的概念:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.19.在等边三角形ABC中,CD是∠ACB的平分线,过D作DE∥BC交AC于E,若△ABC的边长为a,则△ADE的周长为()A.2a B.4 3 aC.1.5a D.a 【答案】C【解析】解:△ABC是等边三角形,由折叠可知,AD=BD=0.5AB=0.5a,易得△ADE是等边三角形.故周长是1.5a。

【精品】六年级数学下册一课一练-《图形的运动》培优训练题 北师大版(含答案)sc2.88

【精品】六年级数学下册一课一练-《图形的运动》培优训练题  北师大版(含答案)sc2.88

北师大版六年级数学下册《图形的运动》“图形的旋转一”培优训练题一填空题1. 指针顺时针旋转90度,从B点旋转到,指针逆时针旋转90度,从C 点旋转到。

2. 时针从2时到6时,按方向旋转了°.3、钟面上分针从3:15到3:30旋转了度.4、正方形绕对称轴的交点至少旋转度后与原图形重合;长方形绕对称轴的交点至少旋转度后与原图形重合。

5、如图,三角形是以点为中心点旋转的。

二、判断题1. 旋转后图形的形状、大小和位置都改变了。

()2、图形旋转的三要素为:旋转的中心、方向、角度.()3、图形旋转后所对应的一组线段的夹角是90°,说明这个图形旋转了90°。

()4、以直角三角形任意一条直角边为轴旋转一周,可以形成一个圆柱.()5、描述物体的旋转情况时,只需要说明旋转角度和旋转方向.()三、选择题1、把一个图形绕某点顺时针旋转30°,所得的图形与原来的图形相比()A .变大了B .大小不变C .变小了D .无法确定大小是否变化2、把一个图形绕其中一点顺时针旋转(),又回到原来的位置.A .90°B .180°C .360°3、画有图案的卡片经过旋转后可以得到的是()。

A .B .C .D .4、下面()的运动是平移。

A .转动呼拉圈B .摇辘辘C .拨算珠5、教室的打开和关上,门的运动是()。

A .平移B .旋转C .既平移又旋转四、作图题(1)画出三角形ABO向右平移5格后的图形。

(2)画出三角形ABO绕O点顺时针旋转90°后的图形.六、解答题1. 如下图:图形A和图形B是如何得到图形C的?参考答案一填空题1、A点 A点2、顺时钟 1203、904、90 1805、A二、判断题×√√××三、选择题B C C C B四、作图题六、解答题北师大版六年级数学下册《图形的运动》图形的旋转二培优训练题一填空题1. 图1平移后能得到图,旋转后能得到图。

状元之路-初中数学培优-实数专项训练题含详细答案

状元之路-初中数学培优-实数专项训练题含详细答案

实数专练目录(试题都有答案)第一单元:实数第一套:有理数基础巩固专练第二套:有理数提升专练第三套:中考2019有理数试题汇编第四套:数的开方基础专练第五套:数的开方提高专练第六套:中考实数与因式分解综合试题汇编100题第七套:中考实数综合单元针对训练第一套:《有理数》测试题一填空题(每小题4分,共20分):3,0,(-4)2,-|-5|,-(+3.2),1.下列各式-12,3222,0.815的计算结果,是整数的有________________,是4分数的有_________________,是正数的有_________________,是负数的有___________________;2.a的相反数仍是a,则a=______;3.a的绝对值仍是-a,则a为______;4.绝对值不大于2的整数有_______;5.700000用科学记数法表示是_ __,近似数9.105×104精确到_ _位,有___有效数字.二判断正误(每小题3分,共21分):1.0是非负整数………………………………………………………………………()2.若a>b,则|a|>|b|……………………………………………………………() 3.23=32………………………………………………………………………………()4.-73=(-7)×(-7)×(-7)……………………………………………()5.若a是有理数,则a2>0…………………………………………………………( ) 6. 若a是整数时,必有a n≥0(n是非0自然数) …………………………………………( )7. 大于-1且小于0的有理数的立方一定大于原数……………………………………( )三选择题(每小题4分,共24分):1.平方得4的数的是…………………………………………………………………()(A)2 (B)-2 (C)2或-2 (D)不存在2.下列说法错误的是…………………………………………………………………()(A)数轴的三要素是原点,正方向、单位长度(B)数轴上的每一个点都表示一个有理数(C)数轴上右边的点总比左边的点所表示的数大(D)表示负数的点位于原点左侧3.下列运算结果属于负数的是………………………………………………………()(A)-(1-98×7)(B)(1-9)8-17(C )-(1-98)×7 (D )1-(9×7)(-8) 4.一个数的奇次幂是负数,那么这个数是…………………………………………( )(A )正数 (B )负数 (C )非正数 (D )非负数5.若ab =|ab |,必有………………………………………………………………( )(A )ab 不小于0 (B )a ,b 符号不同 (C )ab >0 (D )a <0 ,b <06.-133,-0.2,-0.22三个数之间的大小关系是……………………………( )(A )-133>-0.2>-0.22 (B )-133<-0.2<-0.22(C )-133>-0.22>-0.2 (D )-0.2>-0.22>-133 四 计算(每小题7分,共28分):1.(-85)×(-4)2-0.25×(-5)×(-4)3; 2.-24÷(-232)×2+521×(-61)-0.25;3.4.0)4121(212)2.0(12⨯⎥⎦⎤⎢⎣⎡+--÷-;4.(1876597-+-)×(-18)+1.95×6-1.45×0.4. 五 (本题7分)当321-=a ,322-=b 时,求代数式3(a +b )2-6ab 的值.一、答案:1、-12,0,(-4)2,-|-5|,422; 323,-(+3.2),0.815;323(-4)2,422,0.815; -12,-|-5|,-(+3.2).2、答案:0.解析:应从正数、负数和0 三个方面逐一考虑再作判断.结果应为a =03、答案:负数或0.解析:应从正数、负数和0 三个方面逐一考虑再作判断.结果应为负数.4、答案:0,±1,±2.解析:不大于2的整数包括2,不小于-2的整数包括-2,所以不应丢掉±2.5、答案:7×105;十;4个.解析:700000=7×100000=7×105;9.105×104=9.105×1000=91050,所以是精确到十位;最后的0前的数字5直到左面第一个不是0的数字9,共有4个数字,所以有4个有效数字.二、1、答案:√解析:0既是非负数,也是整数.2、答案:×解析:不仅考虑正数,也要考虑负数和0 .当a=0,b<0 时,或a<0且b<0时,|a|>|b|都不成立.3、答案:×解析:23=2×2×2=8,32=3×3=9,所以23 324、答案:×解析:-73不能理解为-7×3.5、答案:×解析:不能忘记0.当a=0时,a2 ≯0.6、答案:×解析:注意,当a<0时,a的奇次方是负数,如(-3)3 =-27<0.7、答案:√解析:大于-1且小于0的有理数的绝对值都是小于1的正数,它们的乘积的绝对值变小;又,大于-1且小于0的有理数的立方一定是负数,所以大于-1且小于0的有理数的立方一定大于原数.三、1、答案:C.解析:平方得4的数不仅是2,也不仅是-2,所以答2或-2才完整.2、答案:B.解析:虽然每一个有理数都可以用数轴上唯一的一个点来表示,但是数轴上的每一个点不都表示一个有理数.3、答案:B.解析:负数的相反数是正数,所以(A)和(C)是正数;“减去负数等于加上它的相反数(正数)”所以(D)也是正数;只有(B):(1-9)8-17 =-8×8-17 =-64-17 =-81.可知只有(B)正确.4、答案:B.解析:正数的奇次幂是正数,0的奇次幂是0,所以(A)、(C)(D)都不正确.5、答案:A.解析:(B )显然不正确;(C )和(D )虽然都能使ab =|ab |成立,但ab =|ab |成立时,(C )和(D )未必成立,所以(C )和(D )都不成立.6、答案:D .解析: 比较各绝对值的大小.由于133-≈0.23,所以有133->22.0->2.0-,则有-0.2>-0.22>-133. 四、1、答案:-90.解析:注意运算顺序,且0.25 =41. (-85)×(-4)2-0.25×(-5)×(-4)3=(-85)×16-0.25×(-5)×(-64) =(-5)×2-(-16)×(-5)=-10-80=-90.应注意,计算-10-80 时应看作-10 与-80 的和.2、答案:1065. 解析:注意-24=-2×2×2×2 =-16,再统一为分数计算: -24÷(-232)×2+521×(-61)-0.25 =-16÷(-38)×2+211×(-61)-41 =-16×(-83)×2+(-1211)-123 = 12+(-1214)= 12-67 =665. 3、答案:50.解析:注意统一为真分数再按括号规定的顺序计算:4.0)4121(212)2.0(12⨯⎥⎦⎤⎢⎣⎡+--÷- = 52)491(25)51(12⨯⎥⎦⎤⎢⎣⎡+--÷- = 52452525⨯⎥⎦⎤⎢⎣⎡-÷ = ⎥⎦⎤⎢⎣⎡-÷21125 = 2125÷ = 25×2= 50.注意分配律的运用.4、答案:17.12.解析:注意分配律的运用,可以避免通分. (1876597-+-)×(-18)+1.95×6-1.45×0.4 = 14-15+7+11.7-0.58= 6+11.12= 17.12.五、答案:389. 解析:3(a +b )2-6ab= 36)322321(2---(-1)322)(32- = 3(-313)2-6)38)(35(-- = 3×9169-380 = 389.第二套:《有理数》提高测试(100分钟,100分)一、填空题(每小题5分,共20分):1. 绝对值小于4的整数是 ±3,±2,±1,0 ,其中 –3 最小,0,1,2, 3 是非负数, 0 的绝对值最小;2. a - b 的相反数是 b – a ,如果 a ≤b ,那么 | a – b | = b – a ;3. 若a,b,c 在数轴上位置如图所示,那么|a|–|b – c| + |c| = -a + b ;a b 0 c4. 如果 那么,111=--m m m < 0 , 如果a 是有理数,那么a a = ±1 ;5. 如果每个人的工作效率都相同,且a 个人b 天做c 个零件,那么b 个人 做a个零件所需的天数为 c a 2 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档