高等数学电子教案:10-2

合集下载

高等数学电子教案:10-5

高等数学电子教案:10-5
一、基本概念
观察以下曲面的侧 (假设曲面是光滑的)
曲面分上侧和下侧
曲面分内侧和外侧
曲面的分类: 1.双侧曲面; 2.单侧曲面.

型 双 侧
n


典型单侧曲面: 莫比乌斯带
播放
曲面法向量的指向决定曲面的侧.
决定了侧的曲面称为有向曲面.
曲面的投影问题: 在有向曲面Σ上取一小块
曲面 S, S在xoy面上的投影(S)xy为
n
R( x,
y,
z)dxdy
lim
0
i 1
R( i
,i
,
i
)( Si
) xy
被积函数
积分曲面
类似可定义
n
P(
x,
y,
z)dydz
lim0i 1P ( i,i,
i
)( Si
)
yz
n
Q( x,
y, z)dzdx
lim
0
i
1
Q(
i
,
i
,
i
)(
Si
)
zx
存在条件: 当P( x, y, z),Q( x, y, z), R( x, y, z)在有向光滑曲 面Σ上连续时,对坐标的曲面积分存在. 组合形式:
P( x, y, z)dydz Q( x, y, z)dzdx R( x, y, z)dxdy
物理意义:
P( x, y, z)dydz Q( x, y, z)dzdx R( x, y, z)dxdy
性质:
1. Pdydz Qdzdx Rdxdy 1 2
Pdydz Qdzdx Rdxdy Pdydz Qdzdx Rdxdy
Dxy

高等数学教案word版

高等数学教案word版

高等数学教案word版篇一:高等数学上册教案篇二:《高等数学》教案《高等数学》授课教案第一讲高等数学学习介绍、函数了解新数学认识观,掌握基本初等函数的图像及性质;熟练复合函数的分解。

函数概念、性质(分段函数)—基本初等函数—初等函数—例子(定义域、函数的分解与复合、分段函数的图像)授课提要:前言:本讲首先是《高等数学》的学习介绍,其次是对中学学过的函数进行复习总结(函数本质上是指变量间相依关系的数学模型,是事物普遍联系的定量反映。

高等数学主要以函数作为研究对象,因此必须对函数的概念、图像及性质有深刻的理解)。

一、新教程序言1、为什么要重视数学学习(1)文化基础——数学是一种文化,它的准确性、严格性、应用广泛性,是现代社会文明的重要思维特征,是促进社会物质文明和精神文明的重要力量;(2)开发大脑——数学是思维训练的体操,对于训练和开发我们的大脑(左脑)有全面的作用;(3)知识技术——数学知识是学习自然科学和社会科学的基础,是我们生活和工作的一种能力和技术;(4)智慧开发——数学学习的目的是培养人的思维能力,这种能力为人的一生提供持续发展的动力。

2、对数学的新认识(1)新数学观——数学是一门特殊的科学,它为自然科学和社会科学提供思想和方法,是推动人类进步的重要力量;(2)新数学教育观——数学教育(学习)的目的:数学精神和数学思想方法,培养人的科学文化素质,包括发展人的思维能力和创新能力。

(3)新数学素质教育观——数学教育(学习)的意义:通过“数学素质”而培养人的“一般素质”。

[见教材“序言”]二、函数概念1、函数定义:变量间的一种对应关系(单值对应)。

(用变化的观点定义函数),记:y?f(x)(说明表达式的含义)(1)定义域:自变量的取值集合(D)。

(2)值域:函数值的集合,即{yy?f(x),x?D}。

例1、求函数y?ln(1?x2)的定义域?2、函数的图像:设函数y?f(x)的定义域为D,则点集{(x,y)y?f(x),x?D} 就构成函数的图像。

高等数学电子教案第二章第8讲-两个重要极限二课时教案首页

高等数学电子教案第二章第8讲-两个重要极限二课时教案首页
在极限 中只要(x)是无穷小就有
这是因为令u(x)则u0于是
((x)0)
二、第二重要极限: =e4根据数列收敛准则可以证明极限 存在
设 现证明数列{xn}是单调有界的
按牛顿二项公式有
比较xnxn1的展开式可以看出除前两项外xn的每一项都小于xn1的对应项并且xn1还多了最后一项其值大于0因此
《高等数学》课程课时教案
课题名称
第八讲两个重要极限(二)
课次
8
授课日期
10.20(1、2)
10.21(1、2)
10.21(3、4)
10.24(3、4)
授课班级
14热电1
14化工
14化设
14煤化
授课地点
14热电1
14化工
14化设
14煤化
教学目标

教学要求
1.会用第二重要极限求极限。
2.理解第二重要极限的推广形式。
例1求 10min
解:
例2求 8min
解:令 则 当 时, 所以有
例3求 6min
解:
例4求 10min
解:令
解得 当 时,
例5求 6min
解令tx则x时t于是

总结:1、 5min
2、 ((x)0)
课后作业
P36:45 46 47.
教学反思
重点难点

解决办法
重点:第二重要极限的应用。
解决办法:通过典型例题讲解,学生有针对性的做典型习题。
难点:第二重要极限形式的推广。
解决办法:用对比法推广第二重要极限。
教学设计
引课:上节我们学了第一重要极限,今天我们再学用第二重要极限求极限
的方法。5min

2024年度-高等数学(高职)教案

2024年度-高等数学(高职)教案

08
多元函数微积分学初步
38
多元函数概念及其性质
多元函数定义
设D为一个非空的n元有序数 组的集合,f为某一确定的对 应规则。若对于每一个有序 数组(x1,x2,…,xn)∈D,通过 对应规则f,都有唯一确定的 实数y与之对应,则称对应规 则f为定义在D上的n元函数。
多元函数的性质
包括有界性、单调性、周期 性、连续性等。
应用
在近似计算、函数性质研究、微分方程求解等方面有广泛应用。
26
07
空间解析几何与向量代数
27
空间直角坐标系和向量概念
02
01
03
空间直角坐标系的概念和性质 定义空间直角坐标系 阐述坐标轴、坐标平面和坐标原点的概念
28
空间直角坐标系和向量概念
01
介绍右手坐标系和左手坐标系的区别和应用
02
向量的概念和性质
函数的分类
03
根据函数的性质,可以将函数分为基本初等函数、初等函数和
非初等函数等类型。
8
极限概念及运算法则
极限的定义
极限是描述函数在某一点或无穷远处的变化趋势的重要工具。
极限的性质
包括唯一性、有界性、保号性等,这些性质是求解极限问题的基 础。
极限的运算法则
包括四则运算法则、复合函数的极限运算法则、洛必达法则等, 这些法则是求解复杂极限问题的有效手段。
高等数学(高职)教案
1

CONTENCT

• 课程介绍与教学目标 • 函数、极限与连续 • 导数与微分 • 积分学 • 微分方程初步 • 无穷级数初步 • 空间解析几何与向量代数 • 多元函数微积分学初步
2
01
课程介绍与教学目标

高等数学电子教案(下).doc

高等数学电子教案(下).doc

《高等数学》
授课教案
2008 ~2009 学年第二学期
教师姓名:李石涛
授课对象:1.化学工程与工艺0801-0803,应用化学0801,0802
2.高分子材料工程0801,0802;环境工程0801,0802 授课学时: 128/64
选用教材《高等数学》史俊贤主编
大连理工大学出版社2006/2
基础部数学教研室
沈阳工业大学教案
沈阳工业大学教案
沈阳工业大学教案
沈阳工业大学教案
沈阳工业大学教案
沈阳工业大学教案
沈阳工业大学教案
沈阳工业大学教案
沈阳工业大学教案
沈阳工业大学教案
沈阳工业大学教案
沈阳工业大学教案
第 6 周授课日期 09.3.27
沈阳工业大学教案
沈阳工业大学教案
沈阳工业大学教案
沈阳工业大学教案
沈阳工业大学教案
沈阳工业大学教案
第 9 周授课日期 09.4.17
沈阳工业大学教案
沈阳工业大学教案
沈阳工业大学教案
沈阳工业大学教案
第 11 周授课日期 09.5.1
沈阳工业大学教案
沈阳工业大学教案
沈阳工业大学教案
第 13 周授课日期 09.5.13
沈阳工业大学教案
沈阳工业大学教案
沈阳工业大学教案
第 14 周授课日期 09.5.22
沈阳工业大学教案
沈阳工业大学教案
沈阳工业大学教案
沈阳工业大学教案
第 18 周授课日期 09.6.17。

高等数学电子教案:10-3(1)

高等数学电子教案:10-3(1)

CBE
CAE
d
x 1( y)
Q( x, y)dy Q( x, y)dy
CBE
EAC
c
LQ( x, y)dy
o
同理可证
D
P y
dxdy
L
P
(
x
,
y
)dx
E D
C
x 2( y)
x
两式相加得
D
(
Q x
P y
)dxdy
L
Pdx
Qdy
证明(2)
L3 D3
若区域D 由按段光
滑的闭曲线围成.如图,
将D 分成三个既是X 型又是 L1 D1
x
D {( x, y)1( x) y 2( x),a x b}
D {( x, y)1( y) x 2( y),c y d }
Q dxdy
d
dy
2 ( y) Qdx
D x
c
1 ( y) x
d
c
Q(
2
(
y),
y)dy
d
c
Q(
1(
y),
y)dy
y
Q( x, y)dy Q( x, y)dy
四、小结
1.连通区域的概念;
2.二重积分与曲线积分的关系
D
(Q x
P y
)dxdy
L
Pdx
Qdy
——格林公式;
3. 格林公式的应用.
思考题
y
若区域 如图为
复连通域,试描述格
D
C
G
林公式中曲线积分中LE的方向。源自oAFBx
D
Q x
P y
dxdy
L

高等数学电子教案(大专版)

高等数学电子教案(大专版)

高等数学电子教案(大专版)《高等数学》教案第一讲函数与极限1.函数的定义设有两个变量x ,y 。

对任意的x ∈D ,存在一定规律f ,使得y 有唯一确定的值与之对应,则y 叫x 的函数。

记作y=f(x),x ∈D 。

其中x 叫自变量,y 叫因变量。

函数两要素:对应法则、定义域,而函数的值域一般称为派生要素。

例1:设f(x+1)=2x 2+3x-1,求f(x).解:设x+1=t 得x=t-1,则f(t)=2(t-1)2+3(t-1)-1=2t 2-t-2∴f(x)=2x 2 – x – 2定义域:使函数有意义的自变量的集合。

因此,求函数定义域需注意以下几点:①分母不等于0 ②偶次根式被开方数大于或等于0 ③对数的真数大于0例2 求函数y=6—2x -x +arcsin712x -的定义域. 解:要使函数有定义,即有:1|712|062≤-≥--x x x ? 4323≤≤--≤≥x x x 或?4323≤≤-≤≤-x x 或于是,所求函数的定义域是:[-3,-2]Y [3,4].例3 判断以下函数是否是同一函数,为什么?(1)y=lnx 2与y=2lnx (2)ω=u 与y=x解(1)中两函数的定义域不同,因此不是相同的函数. (2)中两函数的对应法则和定义域均相同,因此是同一函数. 2. 初等函数(1)基本初等函数常数函数:y=c(c 为常数) 幂函数:y=μx (μ为常数)指数函数:y=xa (a>0,a ≠1,a 为常数) 对数函数:y=x a log (a>0,a ≠1,a 为常数)三角函数:y=sinx y=cosx y=tanx y=cotx y=secx y=cscx 反三角函数:y=arcsinx y=arccosx y=arctanx y=arccotx(2)复合函数设),(u f y =其)(x u ?=中,且)(x ?的值全部或部分落在)(u f 的定义域内,则称)]([x f y ?=为x 的复合函数,而u 称为中间变量.例4:若y=u ,u = sinx ,则其复合而成的函数为y=x sin ,要求u 必须≥0,∴sinx ≥0,x ∈[2k π,π+2k π]例5:分析下列复合函数的结构(1)y=2cotx (2)y=1sin 2+x e解:(1)y=u ,u=cosv ,v=2x(2)y=ue ,u=sinv ,v=t ,t=x 2+1例6:设f(x)=2x g(x)=x 2 求f[g(x)] g[f(x)]解:f[g(x)]=f(x 2)=(x 2)2=4x g[f(x)]=g(2x )=22x3. 极限(1)定义函数y=f(x),当自变量x 无限接近于某个目标时(一个数x 0,或+∞或—∞),因变量y 无限接近于一个确定的常数A ,则称函数f(x)以A 为极限。

高等数学电子教案(大专版)(2024)

高等数学电子教案(大专版)(2024)

02
函数与极限
2024/1/28
8
函数概念及性质
2024/1/28
函数定义
设$x$和$y$是两个变量,$D$是一个数集。如果存在一种对应法则$f$,使得对于$D$中 的每一个数$x$,按照某种对应法则$f$,在数集$M$中都有唯一确定的数$y$与之对应, 则称$f$为从$D$到$M$的一个函数,记作$y = f(x), x in D$。
向量的坐标表示法
详细讲解向量的坐标表示法,包括向量在空间直角 坐标系中的表示方法、向量的模和方向余弦的坐标 计算公式等。
向量的运算与坐标计算
介绍向量的加法、减法、数乘和点积、叉积 等运算在坐标计算中的实现方法,以及这些 运算的几何意义和性质。
2024/1/28
30
平面与直线方程
2024/1/28
平面的方程
导数的定义
导数描述了函数在某一点处的切线斜 率,反映了函数值随自变量变化的快 慢程度。
导数的几何意义
导数在几何上表示曲线在某一点处的 切线斜率,即函数图像在该点的倾斜 程度。
13
导数的计算法则
基本初等函数的导数公式
包括常数函数、幂函数、指数函数、对数函数 、三角函数等的基本导数公式。
导数的四则运算法则
2024/1/28
全微分的定义
如果函数$z=f(x,y)$在点$(x,y)$的全 增量$Delta z=f(x+Delta x,y+Delta y)-f(x,y)$可以表示为$Delta z=ADelta x+BDelta y+o(rho)$,其 中$A$和$B$不依赖于$Delta x$和 $Delta y$而仅与$x$和$y$有关, $rho=(Delta x^2+Delta y^2)^{frac{1}{2}}$,则称函数 $z=f(x,y)$在点$(x,y)$处可微,而 $ADelta x+BDelta y$称为函数 $z=f(x,y)$在点$(x,y)$处的全微分。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

n
P(i ,i )xi的极限存在, 则称此极限为函
i 1
数 P( x, y)在有向曲线弧L上对坐标 x的曲线
积分(或称第二类曲线积分), 记作
n
L
P(
x,
y)dx
lim
0
i 1
P ( i
,i
)xi
.
n
类似地定义
Q(
L
x,
y)dy
lim
0i 1Q(i Nhomakorabea,i
)yi
.
其中P( x, y), Q( x, y)叫做被积函数, L叫积分弧段.

(1)
L
:
x
y
a cos a sin
,
从 0 变到 ,
原式 a2 sin2 (asin )d 0
有向曲线元;
At为向量 A 在向量t上的投影.
例1 计算 xydx,其中L为抛物线 y2 x上从 L
A(1,1)到B(1,1)的一段弧.
B(1,1)
解 (1) 化为对x的定积分,y x.
y2 x
xydx xydx xydx
L
AO
OB
0
1
A(1,1)
1 x( x)dx 0 x xdx
空间有向曲线弧 Pdx Qdy Rdz.
n
P( x,
y, z)dx
lim
0
i 1
P(i ,i
,
i
)xi
.
n
Q( x,
y,
z)dy
lim
0
i 1
Q(i
, i
,i
)yi
.
n
R(
x,
y,
z)dz
lim
0
i 1
R(i
, i
,i
)zi
.
5.性质
(1) 如果把 L分成 L1和 L2 , 则
且L P( x, y)dx Q( x, y)dy
{P[ (t), (t)](t) Q[ (t), (t)] (t)}dt
特殊情形
(1) L : y y( x) x起点为a,终点为b.

b
Pdx Qdy {P[ x, y( x)] Q[ x, y( x)]y( x)}dx.
L
a
(2) L : x x( y) y起点为c,终点为d .
i 1
n
[P(i ,i ) xi Q(i ,i ) yi ].
i 1
n
取极限
W
lim
0
i 1
[ P ( i
,i
)
xi
Q( i
,i
)
yi
].
精确值
二、对坐标的曲线积分的概念
1.定义 设L为 xoy面内从点A到点B的一条有 向光滑曲线弧, 函数 P( x, y), Q( x, y)在 L 上有界. 用L上的点M1( x1, y1 ), M2( x2 , y2 ), , Mn1( xn1, yn1 )把 L分成n个有向小弧段 Mi1Mi (i 1,2,, n; M0 A, Mn B). 设xi xi xi1, yi yi yi1, 点(i ,i )为 Mi1Mi 上任意取定的点. 如果当各小弧段 长度的最大值 0时,
定理 设P( x, y),Q( x, y)在曲线弧L上有定义且连
续,
L的参数方程为 xy
( t ), ( t ),
当参数t单调地由变
到时,点M ( x, y)从L的起点A沿L运动到终点B,
(t), (t)在以及为端点的闭区间上具有一阶连
续导数,且 2 (t) 2 (t) 0,则曲线积分
L P( x, y)dx Q( x, y)dy存在,
2.存在条件: 当P( x, y), Q( x, y)在光滑曲线弧L 上连续时, 第二类曲线积分存在.
3.组合形式
L P( x, y)dx LQ( x, y)dy
L P( x, y)dx Q( x, y)dy LF ds.
其中 F Pi Qj , ds dxi dyj .
4.推广
上点( x, y, z)处的切线向量的方向角为, , ,
则 Pdx Qdy Rdz (P cos Q cos Rcos )ds
可用向量表示
其中 A {P, Q,
A
R},
t
ds
A
dr
t {cos , cos
,
At ds, cos },
上点( x, y, z)处的单位切向量
dr t ds {dx, dy, dz}
Mi1Mi (xi )i (yi ) j .

F ( i
,i
)
P(i
,i
)i
Q(i
,i
)
y j,
Wi F (i ,i ) Mi1Mi ,
F (i ,i )
B
M i Mn1
L yi
Mi1 xi
M2
A M1
即 Wi P(i ,i )xi Q(i ,i )yi .o
x
n
求和 W Wi
近似值
(4) 两类曲线积分之间的联系:
设有向平面曲线弧为L:
x y
(t) ,
(t)
L上点( x, y)处的切线向量的方向角为, ,
则L Pdx Qdy L(P cos Q cos)ds
其中cos
(t)
,cos
(t)
,
2(t) 2(t)
2(t) 2(t)
(可以推广到空间曲线上 )
L Pdx Qdy L1 Pdx Qdy L2 Pdx Qdy.
(2) 设 L是有向曲线弧,L是与L方向相反的 有向曲线弧, 则
L P( x, y)dx Q( x, y)dy L P( x, y)dx Q( x, y)dy
即对坐标的曲线积分与曲线的方向有关.
三、对坐标的曲线积分的计算
2
13
x 2dx
4.
0
5
(2) 化为对y的定积分,
x y2,
y从 1到1.
xydx xydx
L
AB
1 y2 y( y2 )dy 1
2 1 y4dy 4 .
1
5
B(1,1) y2 x
A(1,1)
例2 计算 y2dx, 其中L为 L
(1) 半径为 a、圆心为原点、按逆时针方向绕行 的上半圆周; (2) 从点 A(a,0) 沿 x 轴到点 B(a,0) 的直线段.
一、问题的提出 y
B
实例: 变力沿曲线所作的功
L : A B,
Myii Mn1
L Mi1xi M2
A M1
F(x, y) P(x, y)i Q(x, y) j o
x
常力所作的功 W F AB.
分割 A M0 , M1( x1 , y1 ),, Mn1( xn1 , yn1 ), Mn B.

d
Pdx Qdy {P[x( y), y]x( y) Q[x( y), y]}dy.
L
c
x (t)
(3) 推广
:
y
(t
),
t起点 ,终点 .
z (t)
Pdx Qdy Rdz
{
P[
(t
),
(t
),
(t
)]
(t
)
Q[ (t), (t), (t)] (t)
R[ (t), (t), (t)] (t)}dt
相关文档
最新文档