土体原位测试(岩土测试技术)
第九章岩土原位测试技术

②计算重塑土的抗剪强度
重塑土剪损时百分表 最大读数(0.01mm)
cu' KC(Rc Rg )
③计算土的灵敏度
St
cu cu'
④绘制抗剪强度与试验 深度的关系曲线
⑤绘制抗剪强度与回转角的关系曲线
(2)电测式十字板剪切试验 ①计算原状土的抗剪强度
电测十字板传感器的率定系数
(4)其他
灵敏度——判断土的成因、结构性、并了解扰动因素 (如打桩、活荷载变化剧烈等)对软土强度的影响;
抗剪强度与深度的关系曲线——判断土的固结性质; 不排水抗剪强度——确定软土路基的临界高度。
四、动力触探
• 动力触探(DPT):利用一定的锤击能量, 将一定规格的探头打入土中,根据贯入的 难易程度来判定土的性质。
• 原位测试:在现场基本保持地基土的天然 结构、天然含水量、天然应力状态的情况 下测定地基土的物理-力学性质指标的试验 方法。
一、静力荷载试验
1. 常规法静力荷载试验
求得的地基土承载力特 征值和变形模量综合反 映了承压板下1.5~2.0倍 承压板宽度(或直径) 范围内地基土的强度和 变形特性。
实验设备: (1)加荷稳定系统; (2)反力系统; (3)量测系统。
(2)采用应变法时,可获得荷载-沉降关系 曲线(p-s曲线)。
• 资料的应用: (1)根据试验资料绘制p-s曲线,确定地基土
的承载力特征值,其方法与静力荷载试验相 同; (2)确定土的不排水变形模量Eu:
pD Eu 0.33 s
(3)确定排水变形模量E0:
pD E0 0.42 s100
(4)计算不排水抗剪强度
贯入到预定试验深度处; (2)用回转部分的卡盘卡住钻杆,至少静置
岩土工程地质勘察中的原位测试技术分析

岩土工程地质勘察中的原位测试技术分析摘要:近年来,我国的很多项目实施中,都对于岩土工程地质勘察提出了越来越高的工作要求,虽然在技术日渐发展的今天,岩土工程地质勘察中可选择的技术越来越多,但各种勘察技术都有各自的适用条件。
根据当下的岩土工程地质勘察技术的应用现状,原位测试技术的应用范围十分广,在这一技术下,有关岩土工程勘察人员就可以详细了解关于现场的岩土信息。
因此,本文详细分析了岩土工程地质勘察中原位测试技术的基本类型和关键技术,以为提高岩土工程地质勘察的水平提供参考。
关键词:岩土工程;地质勘察;原位测试;技术分析引言相比于传统方式下的现场取样并移交至试验室进行检验的方式而言,葭位测试的操作更为简单,其可以在岩土的原始位置展开,且带来的检测效车较为良好,可以避免检测结果受到环境因素的影响。
在当前行业技木持续发展的背景下,原位测试技木也取得了进步的发展,在岩土工程勘察工作中发挥出的作用越发明显,能够为推动岩土工程事业的全面发展起到定作用,因此,有必要做进步探讨,深化其应用水平。
1、原位测试技术的概述原位测试技术是岩土工程地质勘察作业中的重要技术,这一技术可以在工程现场直接进行测试,且不会对土层造成影响。
实际应用中,可以从封闭性测试样品中获得更加全面的测试数据,进而有效判断相应岩土土体结构情况。
原位测试技术最大的特点是能够有效保障原状土体结构的完整性。
在具体应用过程中,有几种常用的原位测试方法,包括圆锥动力触探试验、标准贯入试验、静力触探试验、十字板剪切试验及载荷试验等。
相关工程人员应结合勘察现场实际与设计要求,选择合适的测试方法,同时,还要充分考虑到现场地质条件,仔细分析岩土层相关情况,才能选择最合适的原位测试方法,进而实现对岩土层相关参数数值与地基承载力的有效估算。
2原位测试技术的特点2.1原位测试技术的应用优势岩土工程地质勘察过程中,原位测试技术有着显著的应用优势,具体体现为原位测试技术能够减少采样环节,可以在工程现场直接进行岩土层测试,减少了待测样本对测试结果的影响,并有效提升了工作效率。
岩土工程地质勘察中的原位测试技术分析

岩土工程地质勘察中的原位测试技术分析摘要:传统岩土工程地质勘察工作中,一般采用现场取样然后送至试验室进行检验的方式,相比之下,原位测试方式更加便捷,可以在岩土原本的位置进行相应的检验工作,相应的检测效率更高,且能够有效避免环境因素对检测结果的影响。
当前,岩土工程地质勘察中原位测试技术水平不断提升,在相应的测试工作中的应用也更加广泛,有效促进了岩土工程事业的进一步发展。
本文对原位测试在岩土工程地质勘察中的应用进行了分析,以供参考。
关键词:岩土工程;地质勘察;原位测试技术1岩土工程地质勘察中原位测试技术应用的重要性原位测试技术是指在岩土工程领域中,通过对现场土体或岩体性质进行直接观测和测试的一种技术手段。
能够提供实际场地情况下的岩土参数和性质的数据,为工程设计和施工提供准确的基础数据和依据。
岩土工程地质勘察中,原位测试技术是一项非常重要的工作内容。
其应用的重要性主要体现在以下几个方面:(1)提供实地工程材料特性。
原位测试技术可以直接在现场对地层进行测试,获取实地土体和岩体的工程性质参数。
例如,通过钻孔轻型动力触探、静力触探等测试,可以获得土壤的质地、密实度、压缩模量、抗剪强度等信息,岩石的强度、岩性等信息。
这些参数对地质勘察、土石方工程设计、基础工程设计等具有重要指导意义。
(2)评估地下水情况。
原位测试技术可以评估地下水位和水文地质特征。
例如,通过水位测量、渗透性试验等原位测试技术,可以确定地下水位的高程、水位变化规律以及周边地下水的渗流特性,从而为排水设计、土石方工程设计等提供依据。
(3)判定地质灾害风险。
原位测试技术可以预测岩土工程中的地质灾害风险,如滑坡、地震液化等。
例如,通过钻孔回弹仪测试、地震剪切波传播速度测试等技术,可以估测土壤和岩石的抗震性能,为地震设计和地质灾害防治提供依据。
(4)监测工程变形和稳定性。
原位测试技术可以实时监测岩土工程的变形和稳定性。
例如,通过沉降仪、应变计等原位测试技术,可以实时、连续地监测土体和岩体的变形和变形速度,及时发现并采取相应措施,保证工程的稳定性和安全性。
岩土工程原位测试

岩土工程原位测试岩土工程原位测试是岩土工程领域中常用的一种测试方法,主要用于研究土体和岩石的力学性质,包括密度、强度、变形等方面。
原位测试可分为静态和动态两种,常用的测试方法包括压缩试验、剪切试验、钻孔取心和动力触探等。
1. 压缩试验压缩试验是岩土工程中最常用的一种试验方法,主要用于研究土体和岩石在静态荷载作用下的应变和应力关系,以及其力学性质。
压缩试验一般采用圆柱形或立方体样品,常见的试验设备包括固定底板试验机和振动底板试验机两种。
固定底板试验机的测试原理是将试样放在机器的底板上,通过上下移动试验头,施加垂直向下的载荷,以产生压缩变形。
振动底板试验机是一种新型试验方法,通过在底板上施加振动载荷以促进试样的变形。
2. 剪切试验剪切试验主要用于研究土体和岩石的剪切性能,可分为单轴剪切试验和三轴剪切试验两种。
单轴剪切试验是将试样置于试验机的水平底板上,施加垂直向下的压力,同时在试样的表面产生水平力,使试样进行剪切。
三轴剪切试验是利用三个气室将试样完全包裹,分别施加三个方向的应力,以研究土体和岩石在三个方向上的切向应力和法向应力。
3. 钻孔取心钻孔取心试验是一种非破坏性的试验,主要用于评估岩土中存在的裂隙、结构和岩石类型。
在取样过程中需要特别注意制取的样品应具有代表性,应取样选择典型的岩土层位。
在岩石钻探中,常使用的钻探机械有手动旋转式钻机、电机转向钻机和系统化泥浆钻机。
对于深层地层和硬质岩体,通常使用钻探机械逐层取心,以便对结构和裂隙进行详细的剖分。
4. 动力触探动力触探试验是一种快速、简单且准确的测试方法,可以在不破坏土体的情况下测定岩土体的强度。
试验的原理是将一定质量的重锤从一定高度自由落下,击打位于土层内部的钻杆顶端,并测定沉击钻杆的下沉度以及反弹度,从而评估土层的类型和压缩性质。
动力触探试验设备通常由锤头、钻杆、压力计和数据采集器组成。
触探数据经过处理后,可以用于制作地下剖面图,为地勘、基础工程和岩土工程提供可靠的数据支持。
岩土工程原位测试

岩土工程勘察
载荷试验
三、载荷试验的成果应用
1.地基承载力特征值可由载荷试验确定,方法如下:
(1)拐点法:
适用于有拐点的p-s曲线,在确定地基承载力特征值时,一般取p-s曲线中第 一个拐点py,即比例界限点所对应的荷载值为地基承载力特征值。当拐点不明显 或是无法确定时,可以利用p-△s/△p确定拐点。
(7)当出现下列情况之一时,可终止试验: ①承压板周边的土出现明显侧向挤出,周边岩土出现明显隆起或径向裂缝持续发 展; ②本级荷载的沉降量大于前级荷载沉降量的5倍,荷载与沉降曲线出现明显陡降; ③在某级荷载下24h沉降速率不能达到相对稳定标准; ④总沉降量与承压板直径(或宽度)之比超过0.06。
岩土工程勘察
酚类:
已从熏烟中鉴定出20多种酚类物质,其主要作用为抗 氧化作用、对产品的呈色呈味作用、抗菌防腐作用。
其中,抗氧化作用对烟熏制品最为重要,抗氧化作用 较强的主要是沸点较高的酚类,如2,5-二甲氧基酚,2, 5-二甲氧基-4-甲基酚等。
熏制品特有的风味主要与存在于气相的酚类有关,高 沸点酚类杀菌效果较强,主要对制品表面的细菌有抑制作 用。
岩土工程勘察
岩土工程原位测试
岩土工程中的原位测试常用技术包含如下种类:
(1)载荷试验(平板、螺旋板); (2)静力触探试验; (3)圆锥动力触探试验; (4)标准贯入试验; (5)十字板剪切试验; (6)旁压试验; (7)扁铲侧胀试验 (8)现场剪切试验; (9)波速测试; (10)岩体原位应力测试; (11)激振发测试。
静力触探试验按测量机理分为机械式静力触 探和电测式静力触探;按探头功能分为单桥静力 触探试验、双桥静力触探试验和孔压静力触探试 验。
岩土工程原位测试

岩土工程原位测试岩土工程原位测试是土木工程领域中的一种技术,用于识别和表征地下土层和岩石的物理性质和力学性质。
在现代岩土工程中,原位测试已经成为了一种不可或缺的方法,为设计更安全的地基和地下结构提供了必要的数据和信息。
本文将探讨岩土工程原位测试的一些常见方法和应用。
1. 岩土工程原位测试的常见方法a. 标准贯入试验(SPT)标准贯入试验是一种基础的岩土工程原位试验方法,通过不断地使用一个标准贯入钻头向土层或岩石中插入钻孔来测试其密度和抗拉强度。
在测试过程中,钻孔通常被追加水泥浆或膨润土,以增加试验结果的可靠性和准确性。
b. 土压力计试验(TP)土压力计试验是根据土层内部的压缩或膨胀特性进行的一种原位测试,通过安装土压力计,可以测量土层在不同深度和负荷下的压缩性能,进而对土壤的承载能力和稳定性进行判断。
c. 压缩试验(CR)压缩试验是一种常用的原位测试方法,旨在测试土层或岩石受压应力下的应变变化。
在测试过程中,一个小型压力传感器被嵌入到岩土体中,当施加压力时,传感器将记录下所测量的压力变化和应变变化。
d. 土壤墙试验(SS)土壤墙试验是一种常用的试验方法,可以用来测量土壤内部的强度和抗拉强度。
在测试过程中,一根小型钢柱子被插入到土层中并加以挖掘,以模拟所需的负载并测量土壤的拉伸强度。
2. 岩土工程原位测试的应用a. 地基基础设计在进行地基基础设计时,需要对土壤的性质和强度进行判断,以评估地基的承载力和稳定性。
通过使用岩土工程原位测试方法,可以获得更准确、可靠地土壤参数和岩石物理性质,因此可用于优化地基设计方案。
b. 地下工程在地下工程中,如隧道、地下实验室和地下管道等,如何对土层和岩石的性质进行识别和评估,至关重要。
原位测试可以帮助工程师了解地下基土的物理属性、力学属性和变形特性,并确定选择合适的地基和隧道支护方式。
有助于提高地下工程的安全性和可靠性。
c. 填方工程在大型填土工程中,需要对填土体与基底土层之间的界面剪切强度进行测量和评估,以便更好地控制填土体的变形和稳定性。
岩土工程原位测试pdf

现代岩土工程中的原位测试技术现代岩土工程中的原位测试技术发挥着越来越重要的作用,它可以为工程师提供非常重要的数据,以确保建筑物的稳定性和安全性。
本文将介绍现代岩土工程中常用的原位测试技术,包括静力触探测试、动力触探测试、剪切波速测试和钻孔土样测试等。
首先是静力触探测试,这是一种非常常见的测试技术,在岩土工程中得到广泛应用。
这种测试技术可以帮助工程师确定土壤的密度、强度和可塑性等等因素,以便确定建筑物的基础设计和支撑能力。
静力触探测试通常由机器人进行,它可以沿着井孔或其他结构的边缘移动,用钢筒钻下去,并利用压力杆来测试钻孔中土壤的反应。
整个过程通常需要花费一些时间,但它非常准确和可靠。
接下来是动力触探测试,这种测试技术可以为工程师提供更详细的土壤信息。
动力触探测试通常由一个重锤和一根长杆组成,重锤会不断地敲打杆子,并测试每个敲打所产生的土壤反应。
通过对这些信息的分析,工程师可以确定土壤的强度和可塑性等参数,以便进行基础和支撑设计。
剪切波速测试是一种非常流行的测试技术,它可以帮助工程师确定土壤的弹性模量和剪切模量。
这种测试技术通常是通过排放声波来实现的,通过对波速的精确测量,工程师可以得出土壤质量和强度等重要参数的准确值。
剪切波速测试也可以用于检测地质中的各种层次和对象。
最后是钻孔土样测试,这种测试技术是一种中级级别的种类,通常是通过使用岩土钻具来采样土壤并送回实验室进行化验。
这种测试技术可以为工程师提供详细、准确的土壤数据,并确保工程师在进行基础和支撑设计时能够考虑到所有重要因素。
总的来说,现代岩土工程中的原位测试技术是非常重要和必要的。
通过采用不同的测试技术,工程师可以为建筑物提供更安全、更优质和更经济的支撑和基础设计。
原位测试技术汇总

原位测试技术汇总2022.08.03原位测试是指在地层或土体的原位应力状态和天然含水率保持不变、原生结构不受或少受扰动的条件下,直接或间接地测定岩、土体各种工程特性、参数的试验方法,是岩土工程勘察的重要手段之一。
常用的原位测试方法主要有:载荷试验、静力触探试验、圆锥动力触探、标准贯入试验、十字板剪切试验、旁压试验、扁铲侧胀试验等。
岩土工程勘察时,应根据技术要求和地层条件选用合适的原位测试方法。
因旁压试验及扁铲侧胀试验对地层条件适用性要求相对较高,设备仪器相对复杂,致使其使用受到一定的限制,本文不讨论这两种方法。
1 常用原位测试方法的适用条件1.1 载荷试验载荷试验分平板载荷和螺旋板载荷两种,平板载荷适用于各类土、软质岩和风化岩体,螺旋板载荷适用于深层地基土及地下水位以下的软土、一般粘性土、粉土及砂类土。
深层平板载荷试验深度不应小于5m。
但载荷试验通常历时较长、成本较高,致使其使用频率受到一定影响。
1.2 圆锥动力触探圆锥动力触探分为轻型、重型和超重型三种。
轻型适用于一般粘性土,重型及超重型适用于中砂以上的砂类土及碎石土。
轻型主要用于验槽和地基处理检测,重型在勘察及地基处理检测中大量使用,超重型应用较少,可用于密实的碎石土。
1.3 标准贯入试验标准贯入试验适用于一般粘性土、粉土、砂类土、花岗岩类的风化壳和残积土。
标准贯入试验与圆锥动力触探试验配合使用,可进行各类土质及风化岩的原位测试,且设备轻便、操作简单、经验丰富,使之在当前岩土工程勘察中应用最为普遍。
1.4 静力触探试验静力触探试验适用于软土、粘性土、粉土、砂类土及含少量碎石的土层。
手摇式轻型多用于较大设备难以进入的狭小场地的浅层测试。
全液压传动型除狭小场地外,使用普遍。
1.5 十字板剪切试验十字板剪切试验适用于测定饱和软粘性土的不排水抗剪强度及灵敏度等参数,测试深度不宜大于30m。
由于其贯入设备与静力触探通用,且都用于软土地区,因此二者通常联合使用,并与钻探取样成果结合,大大提高勘察效率,降低勘察成本,丰富成果参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21
a
(3)极限荷载法
• 当P-s曲线上的比例界限点出现后,土很快达到极 限荷载,即比例极限P0与极限荷载PU接近时,按 下式确定地基承载力
fk = PU /Fs,安全系数Fs=2~3
• 当比例极限与极限荷载不接近时,用下式确定地 基承载力
fk
P0
Pu -P0 Fs
安全系数Fs=3~5
22
a
例题:
5
a
ห้องสมุดไป่ตู้
6
a
图片来源:岩土在线,利比亚工地
7
a
• 载荷试验按承压板的形状有平板与螺旋板之分 按用途可分一般载荷和桩载荷
• 我们主要讲的是浅层平板静力载荷测试
8
a
平板静力载荷试验(PLT: plate load test),简称载荷试验,在保持地基土天然状 态下,在一定面积的承压板上向地基土逐级施加荷载,并观测每级荷载下地基土 的变形特性,是模拟建筑物基础工作条件的一种测试方法 。
(2)相对沉降量控制法
• 中、高压缩性土,地基受压破坏形式为局部剪切 破坏或冲剪破坏,P-s曲线无明显拐点。
• 对于一般粘性土、粉土,宜用P-s曲线上沉降量s 与承压板的宽度B之比为0.02所对应的压力为地基 容许承载力。
• 对砂土和新近沉积的粘性土则采用s/B=0.01-0.015 所对应的压力。
土体原位测试
• 土体原位测试是指在工程地质勘察现场,在不扰动或基本 不扰动土层的情况下对土层进行测试,以获得所测土层的 物理力学性质指标及划分土层一种土工勘察技术。
• 土me层th剖od面s):测主试要法包(lo括gg静in力g o触r s探tr、ati动gr力ap触hi探c p、ro扁fil铲ing松胀仪试 验及波速法等。 土层剖面测试法具有可连续进行、快速经济的优点。
13
a
14
a
4. 观测每级荷载下的沉降 观测时间间隔:加荷开始后,第一个30min内, 每10min观测沉降1次;第二个30min内,每 15min观测1次;以后每30min进行一次。
• 稳定的标准:连续4次观测的沉降量,每小时 累计不大于0.1mm,对于软粘土最好观测24h 以上,对于正常固结粘土要8h,对于老粘土、 砂土、砾石等要4h。
• 某场地中进行载荷试验,承压板面积5000cm2,试坑深度 2.5m,其中一个试验点的资料如下表所示,确定该试验点 土层的比例极限、极限荷载及地基土的承载力(取Fs=4) 。
荷载 N/kN
25 50 75 100 125 150 175 200 225 250
承压板沉降
值
5 6 6.9 7.7 10.5 12.5 15 18 25 42
P-s曲线的特征: I段直线段 II段曲线段 III段直线段
18
a
原始曲线的修正
s s0 Cp
• 比例极限之前
• 比例极s限之C后p
s s-s0
19
a
2、确定地基的承载力 (1)强度控制法
比例极限P0(临塑荷载Pcr): 可以作为 粘性土、粉土、砂土、碎石土的承载力。
fk= Pcr
20
a
2
a
土体原位测试的应用
• 土层土类划分; • 求天然地基承载力; • 测定土的物理力学性质指标; • 在桩基勘察中的应用; • 评价砂土和粉土的地震液化; • 求解土的固结系数、渗透系数及不排水抗剪强度等; • 检验压实填土的质量及强夯效果; • 进行浅基础的沉降计算; • 其它。
3
a
土体原位测试方法选用原则
12
1. 承压板 ✓ 要有足够的刚度,面积
一般为1000-5000cm2 2. 加荷装置 ✓ 包括压力源、载荷台架
或反力构架。 ✓ 加荷方式有重物加荷和
油压千斤顶反力加荷 3. 沉降观测装置
a
(二)、试验方法
1. 载荷测试一般在方形坑中 进行
2. 安装设备 3. 分级加荷
加荷原则:第一级为坑底 原有重力,后每级按:中 低压缩性土50kPa,高压 缩性土25kPa,特软土为 10kPa
6. 当需要卸载观测回弹时,每级卸荷量可为加荷量的2 倍,历时1h,每隔15min观测一次。荷载完全卸除后, 继续观测3h。
16
a
第一节 载荷试验
一、概述 二、仪器设备和试验方法 三、测试数据的整理 四、测试精度影响因素 五、测试成果的应用 六、其它类型的载荷试验
17
a
1、绘制压力-沉降量关系曲线
• 专门测试法(specific test methods) :主要包括载荷试验、 旁压试验、标准贯入实验、抽水和注水试验、十字板剪切 试验等。土的专门测试法可得到土层中关键部位土的各种 工程性质指标,精度高,测试成果可直接供设计部门使用。 其精度超过室内试验的成果。
1
a
常用的土体原位测试方法:
• 载荷试验 • 静力触探 • 圆锥动力触探试验 • 标准贯入试验 • 旁压试验 • 十字板剪切试验 • 扁铲侧胀
9
a
• 优点:对地基土不产生扰动,结果最可靠、最具有代表 性,可直接用于工程设计。是确定承载力的最主要方法。
• 缺点:价格昂贵、费时
10
a
第一节 载荷试验
一、概述 二、仪器设备和试验方法 三、测试数据的整理 四、测试精度影响因素 五、测试成果的应用 六、其它类型的载荷试验
11
a
(一)、仪器设备
土体原位测试技术种类较多,都有一定的适用范围,应 根据实际情况加以选用。选用原则:
• 根据工程要求,如所要求测试的指标及其精度等; • 根据地基条件,如地基土的种类及所要勘探与测试的
深度; • 根据现有测试设备与人员的技术水平; • 根据工程规模与经费。
4
a
第一节 载荷试验
一、概述 二、仪器设备和试验方法 三、测试数据的整理 四、测试精度影响因素 五、测试成果的应用 六、其它类型的载荷试验
15
a
5. 尽可能使最终荷载达到地基土的极限承载力,以评 价承载力的安全度。 结束试验的标准:当下述情况出现时即可停止实验
• a) 承压板周围的土体出现裂缝或隆起,沉降的很快; • b)在荷载不变的情况下,沉降速率加速发展或接近
一个常数。压力——沉降曲线出现明显拐点; • c) 总沉降量超过承压板宽度(或直径)的1/10。
S/mm
注:当荷载增至250kN后,变形速度加快,加荷后30min,变形值为 42mm,于是停止试验。
23
a
第一节 载荷试验
一、概述 二、仪器设备和试验方法 三、测试数据的整理 四、测试精度影响因素 五、测试成果的应用 六、其它类型的载荷试验