第三篇(第789章)模型预测控制及其MATLAB实现精品PPT课件

合集下载

模型预测控制ppt

模型预测控制ppt


02 动态矩阵控制
动态矩阵控制以优化确定控制策略,在优化过程中, 同时考虑输出跟踪期望值和控制量变化来选择最优化准
则。往往不希望控制增量 Δ u 变化过于剧烈,这一因
素在优化性能指标中加入软约束予以考虑。
02 动态矩阵控制
02 动态矩阵控制
02 动态矩阵控制
02 动态矩阵控制
02 动态矩阵控制
01预测控制概述
工业过程的特点 多变量高维度复杂系统难以建立精确的数学模型 工业过程的结构、参数以及环境具有不确定性、时变性、 非线性、强耦合,最优控制难以实现
预测控制产生
基于模型的控制,但对模型要求不高 采用滚动优化策略,以局部优化取代全局优化 利用实测信息反馈校正,增强控制的鲁棒性
限时域优化策略。优化过程不是一次离线进行,而是在线反
复进行优化计算,滚动实施,从而使模型失配、时变、干扰 等引起的不确定性能及时得到弥补,提高系统的控制效果。
02滚动优化
03反馈校正
模型失配
实际被控过程存在非线性、时变性、不确定性等原因,使基于模型的预测不可能准确地与实 际被控过程相符
反馈校正
从图中可以看出: 第一根曲线是模型失配时的输出 曲线,其快速性较差,超调量小;
第二根曲线是模型未失配时的输 出曲线,其快速性较好,但超调量 略大。
这验证了预测控制对于模型精度 要求不高的优势,即使模型失配, 也能取得不错的控制效果,
05
总结
总结
模型预测控制
预测控制:不仅利用当前和过去的偏差值,而且还利用预测模 型来预测过程未来的偏差值。以滚动优化确定当前的最优控制 策略,使未来一段时间内被控变量与期望值偏差最小
增大P: 系统的快速性变差,稳定性增强; 减小P: 快速性变好,稳定性变差。

matlab教程ppt(完整版)

matlab教程ppt(完整版)
饼图
展示部分与整体的关系,通过扇形面积或角度表 示占比。
三维图形
01
02
03
04
三维散点图
在三维空间中展示两个变量之 间的关系,通过点的位置展示
数据。
三维曲面图
通过曲面表示两个或多个变量 之间的关系,可以展示数据的
分布和趋势。
三维等高线图
表示三维空间中数据的分布和 变化,通过等高线的形状和密
集程度展示数据。
处理运行过程中出现的错误和 异常情况。
通过优化算法和代码结构,提 高程序的运行效率。
对代码进行重新组织,使其更 易于阅读和维护。
03
MATLAB可视化
绘图基础
散点图
描述两个变量之间的关系,通过点的分布展示数 据。
条形图
比较不同类别的数据大小,通过条形的长度或高 度进行比较。
折线图
展示时间序列数据或多个变量之间的关系,通过 线条的走势呈现数据变化。
控制系统仿真
使用MATLAB进行控制系统仿真 ,模拟系统动态性能。
控制系统优化
对控制系统进行优化设计,如权 重优化、多目标优化等。
THANK YOU
感谢聆听
对图像进行几何变换,如缩放、旋转、平移 等操作。
动画制作
帧动画
通过一系列静态图像的连续播放,形 成动态效果。
路径动画
让对象沿指定路径移动,形成动态效 果。
变形动画
让对象从一个形状逐渐变形为另一个 形状,形成动态效果。
交互式动画
允许用户通过交互操作控制动画的播 放、暂停、回放等操作。
04
MATLAB在科学计算中的应用
对函数进行数值积分和微分, 用于解决定积分和微分方程问 题。
数值优化

matlab教程ppt(完整版)

matlab教程ppt(完整版)
,展示数据和模型结果。
数据处理
应用MATLAB的信号处理和统计 分析函数库,进行数据预处理、
特征提取和模型训练。
机器学习与深度学习
机器学习
介绍MATLAB中的各种机器学习算法,如线性回归、决策 树、支持向量机等,以及如何应用它们进行分类、回归和 聚类。
深度学习
介绍深度学习框架和网络结构,如卷积神经网络(CNN) 、循环神经网络(RNN)等,以及如何使用MATLBiblioteka B进行 训练和部署。感谢观看
THANKS
符号微积分
进行符号微分和积分运算,如极限、导数和 积分。
符号方程求解
使用solve函数求解符号方程。
符号矩阵运算
进行符号矩阵的乘法、转置等运算。
05
MATLAB应用实例
数据分析与可视化
数据分析
使用MATLAB进行数据导入、清 洗、处理和分析,包括描述性统
计、可视化、假设检验等。
可视化
利用MATLAB的图形和可视化工 具,如散点图、柱状图、3D图等
数值求和与求积
演示如何对数值进行求和与求积 操作。
数值计算函数
介绍常用数值计算函数,如sin、 cos、tan等。
方程求解
演示如何求解线性方程和非线性方 程。
03
MATLAB编程基础
控制流
01
02
03
04
顺序结构
按照代码的先后顺序执行,是 最基本的程序结构。
选择结构
通过if语句实现,根据条件判 断执行不同的代码块。
数据分析
数值计算
MATLAB提供了强大的数据分析工具,支 持多种统计分析方法,可以帮助用户进行 数据挖掘和预测分析。
MATLAB可以进行高效的数值计算,支持 多种数值计算方法,包括线性代数、微积 分、微分方程等。

matlab教程ppt(完整版)

matlab教程ppt(完整版)
转置
可以使用`'`运算符对矩阵进行 转置。
矩阵高级运算
01
逆矩阵
可以使用`inv`函数求矩阵的逆矩阵 。
行列式
可以使用`det`函数求矩阵的行列式 。
03
02
特征值和特征向量
可以使用`eig`函数求矩阵的特征值 和特征向量。

可以使用`rank`函数求矩阵的秩。
04
04
matlab绘图功能
绘图基本命令
控制设计
MATLAB提供了控制系统设计和分析 工具箱,可以方便地进行控制系统的 建模、分析和优化。
03
信号处理
MATLAB提供了丰富的信号处理工具 箱,可以进行信号的时域和频域分析 、滤波器设计等操作。
05
04
图像处理
MATLAB提供了图像处理工具箱,可 以进行图像的增强、分割、特征提取 等操作。
02
matlab程序调试技巧分享
01
调试模式
MATLAB提供了调试模式,可以 逐行执行代码,查看变量值,设 置断点等。
日志输出
02
03
错误处理
通过使用fprintf函数,可以在程 序运行过程中输出日志信息,帮 助定位问题。
MATLAB中的错误处理机制可以 帮助我们捕获和处理运行时错误 。
matlab程序优化方法探讨
显示结果
命令执行后,结果将在命令窗口中显示。
保存结果
可以使用`save`命令将结果保存到文件中。
matlab变量定义与赋值
定义变量
使用`varname = value`格式定义变 量,其中`varname`是变量名, `value`是变量的值。
赋值操作
使用`=`运算符将值赋给变量。例如 ,`a = 10`将值10赋给变量a。

模型预测控制MIMOExamplePPT课件

模型预测控制MIMOExamplePPT课件

Amplitude
0.5
0
0
10
20 0
10
20 0
Time (sec)
第22页/共37页
10
20
动态矩阵控制---例子
• 阶跃响应模型 • S=step(model) ? • S=[S(:,:,1),S(:,:,2),S(:,:,3)] ? • S(k,j,i), 时间k,输出j,输入i
第23页/共37页
• [A,B,C,D]=ssdata(sys);
第27页/共37页
动态矩阵控制---例子
• Now simulate closed-loop MPC in Simulink • Tstop=30; % Simulation time • mpc_miso • 解释:t=10,20时加入可测/不可测系统输入的动态特性
• %% • % We also revised the MPC design • MPCobj.Model.Disturbance=.1; % Model for unmeasured
• % measurement noise of frequency 0.1 Hz. We want to inform the MPC object
• % about this so that state estimates can be improved
• omega=2*pi/10; • MPCobj.Model.Noise=0.5*tf(omega^2,[1 0 omega^2]);
pulatedVariables; • ServoMPC.OutputVariables=OutputVar
第15页/共37页
Se r vo m o to r- 参 数 设 置 对 性 能 作用

第三篇(第7,8,9章)模型预测控制及其MATLAB实现

第三篇(第7,8,9章)模型预测控制及其MATLAB实现


0 u(k) y0 (k 1) (7-7)

u(k 1)



y0
(k

2)


yˆ (k

n)
an
an1
anm1

u(k

m
1)

y0
(k

n)

Yˆ [ yˆ(k 1), yˆ(k 2), , yˆ(k n)]T
将式(3-4)写成矩阵形式
( j 1,2, , n)
(7-5)
yˆ(k 1) a1

yˆ (k

2)

a2
a1


yˆ (k

n)
an
an1

u(k) y0 (k 1)

u(k 1)



y0
4
目前提出的模型预测控制算法主要有基于非参数 模型的模型算法控制(MAC)和动态 矩阵控制( DMC),以及基于参数模型的广义预测控制(GPC )和广义预测极点配置控制 (GPP)等。其中,模 型算法控制采用对象的脉冲响应模型,动态矩阵控 制采用对象的阶跃响应模型,这两种模型都具有易 于获得的优点;广义预测控制和广义预测极点配置 控制是预测控制思想与自适应控制的结合,采用 CARIMA模型(受控自回归积分滑动平均模型), 具有参数数目少并能够在线估计的优点,并且广义 预测极点配置控制进一步采用极点配置技术,提高 了预测控制系统的闭环稳定性和鲁输入,预测系统
未来输出值。GPC采用CARIMA模型作为预测模型
,模型CARIMA是"Contrlled Auto-Regressive Integrated

matlab教程ppt(完整版)

matlab教程ppt(完整版)
matlab教程 PPT(完整版)
汇报人:可编辑
2023-12-24
目录
• MATLAB基础 • MATLAB编程 • MATLAB矩阵运算 • MATLAB数值计算 • MATLAB可视化 • MATLAB应用实例
01
CATALOGUE
MATLAB基础
MATLAB简介
MATLAB定义
MATLAB应用领域
菜单栏
包括文件、编辑、查看、主页 、应用程序等菜单项。
命令窗口
用于输入MATLAB命令并显示 结果。
MATLAB主界面
包括命令窗口、当前目录窗口 、工作空间窗口、历史命令窗 口等。
工具栏
包括常用工具栏和自定义工具 栏。
工作空间窗口
显示当前工作区中的变量。
MATLAB基本操作
变量定义
使用变量名和赋值符号(=)定义变 量。
详细描述
直接输入:在 MATLAB中,可以直 接通过输入矩阵的元 素来创建矩阵。例如 ,`A = [1, 2, 3; 4, 5, 6; 7, 8, 9]`。
使用函数创建: MATLAB提供了多种 函数来创建特殊类型 的矩阵,如`eye(n)`创 建n阶单位矩阵, `diag(v)`创建由向量v 的元素构成的对角矩 阵。
使用bar函数绘制柱状图 ,可以自定义柱子的宽
度、颜色和标签。
使用pie函数绘制饼图, 可以自定义饼块的比例
和颜色。
三维绘图
01
02
03
04
三维线图
使用plot3函数绘制三维线图 ,可以展示三维空间中的数据
点。
三维曲面图
使用surf函数绘制三维曲面图 ,可以展示三维空间中的曲面

三维等高线图

第三篇模型预测控制及其MATLAB实现

第三篇模型预测控制及其MATLAB实现

(7-6)
9
为增加系统的动态稳定性和控制输入的可实现性, 以及减少计算量可将 向量减少为 m维(m<n),则式 u (7-6)变为 (7-7) ˆ (k 1) a 0 u (k ) y (k 1) y
y ˆ (k 2) a 2 ˆ y ( k n ) a n
1
a1 a n 1
u (k 1) y (k 2) 0 a n m 1 u (k m 1) y 0 (k n)
0

ˆ [y ˆ (k 1), y ˆ (k 2),, y ˆ (k n)]T Y
p
~
(7-16) 这一修正的引入,也使系统成为一个闭环负反馈系统 , 对提高系统的性能起了很大作用。 由此可见,动态矩阵控制是由预测模型,控制器和校正 器三部分组成的,模型的功能在于预测未来的输出值,控 制器则决定了系统输出的动态特性,而校正器则只有当 预测误差存在时才起作用。
18
ˆ (k i 1) hi 1e(k i ) y 0 (k i ) y (i 1,2, , p 1) y (k p) y ˆ (k p) h p e(k 1) 0
19
这个算法可克服广义最小方差(需要试凑控制量 的加权系数) 、极点配置(对阶的不确定性十分敏感) 等自适应算法中存在的缺点, 近年来, 它在国内外控 制理论界已引起了广泛的重视 ,GPC 法可看成是迄今 所知的自校正控制方法中最为接近具有鲁棒性的一 种。 广义预测控制是一种新的远程预测控制方法,概 括起来具有以下特点 ① 基于CARIMA模型 ② 目标函数中对控制增量加权的考虑 ③ 利用输出的远程预报 ④ 控制时域长度概念的引入 ⑤ 丢番图方程的递推求解
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一般取
w(k j) a j y(k) (1 a j ) yr ( j 1,2,, n)
其中 为柔化系数 0 1 ;y(k)为系统实测输出 值;yr 为系统的给定值。
i 1
i j1
( j 1,2,, n)
(7-4)
上式右端的后二项即为过去输入对输出n步预估,记为
p 1
y0 (k j) ai u(k j i) a p u(k j p) i j1
将式(3-4)写成矩阵形式
( j 1,2,, n)
(7-5)
yˆ(k 1) a1
yˆ(k
(7-3)
yˆ(k j) ai u(k j i) a p u(k j p) ( j 1,2,, n)
i 1
8
由于只有过去的控制输入是已知的,因此在利用动 态模型作预估时有必要把过去的输入对未来的输出贡 献分离出来,上式可写为
j
p 1
yˆ(k j) ai u(k j i) ai u(k j i) a p u(k j p)
6
7.1.1 预测模型
从被控对象的阶跃响应出发,对象动态特性用一系 列动态系数 a1, a2 ,, ap 即单位阶跃响应在采样时刻的值 来描述,p称为模型时域长度,ap是足够接近稳态值的 系数。
图7-1 单位阶跃响应曲线
7
根据线性系统的比例和叠加性质(系数不变原理),若
在某个时刻k-i(k>=i)输入u(k-i),则 u(k i) 对输出y(k)的
第三篇 模型预测控制 及其MATLAB实现
1
第7章 预测控制理论
❖7.1 动态矩阵控制理论 ❖7.2 广义预测控制理论 ❖7.3 预测控制理论分析
2
模型预测控制(Model Predictive Control:MPC) 是20世纪80年代初开始发展起来的一类新型计算机控 制算法。该算法直接产生于工业过程控制的实际应用, 并在与工业应用的紧密结合中不断完善和成熟。模型 预测控制算法由于采用了多步预测、滚动优化和反馈 校正等控制策略,因而具有控制效果好、鲁棒性强、 对模型精确性要求不高的优点。
Y0 [ y0 (k 1), y0 (k 2),, y0 (k n)]T
10
a1
0
A
a2
a1
an
an1
anm1
则(7-7)式可写为
Yˆ AU Y0
(7-8)
式中 矩阵A为n×m维的常数矩阵,由于它完全由系统
的阶跃响应参数所决定, 反映了对象的动态特性,故称
之为动态矩阵。n,m分别称之为最大预测长度和控制
长度。
11
7.1.2 滚动优化 系统的模型预测是根据动态响应系数和控制增量来
决定的,该算法的控制增量是通过使最优化准则
n
m
J [ y(k j) w(k j)]2 ( j)u(k j 1)2
j 1
j 1
(7-9)
的值为最小来确定的, 以使系统在未来n(p>=n>=m)个时
刻的输出值尽可能接近期望值。为简单起见取控制加
3
实际中大量的工业生产过程都具有非线性、不 确定性和时变的特点,要建立精确的解析模型十分 困难,所以经典控制方法如PID控制以及现代控制 理论都难以获得良好的控制效果。而模型预测控制 具有的优点决定了该方法能够有效地用于复杂工业 过程的控制,并且已在石油、化工、冶金、机械等 工业部门的过程控制系统中得到了成功的应用。
贡献为:
y(k
)
ai u(k i) a p u(k i)
1i p i p
(7-1)
若在所有 k i(i 1,2,,k) 时刻同时有输入,则跟据叠加原
理有
p 1
y(k) ai u(k i) a pu(k p) i 1
(7-2)
利用上式容易得到y(k+j的 n步预估(n<p) 为:
p 1
2)
a2
yˆ (k
n)
an
a1
u(k) y0 (k 1) u(k 1) Nhomakorabeay0
(k
2)
an1
a1 u(k n 1)
y0
(k
n)
(7-6)
9
为增加系统的动态稳定性和控制输入的可实现性,
以及减少计算量可将 (7-6)变为
向u 量减少为m维(m<n),则式
yˆ(k 1) a1
权系数 ( j) (常数)
12
若令
W [w(k 1), w(k 2),, w(k n)]T
则式(7-9)可表示为
J (Y W )T (Y W ) U T U
(7-10)
式中 w(k+j)称为期望输出序列值,在预测控制这类算
法中,要求闭环响应沿着一条指定的、平滑的曲线到
达新的稳定值,以提高系统的鲁棒性.
4
目前提出的模型预测控制算法主要有基于非参数 模型的模型算法控制(MAC)和动态 矩阵控制( DMC),以及基于参数模型的广义预测控制(GPC )和广义预测极点配置控制 (GPP)等。其中,模 型算法控制采用对象的脉冲响应模型,动态矩阵控 制采用对象的阶跃响应模型,这两种模型都具有易 于获得的优点;广义预测控制和广义预测极点配置 控制是预测控制思想与自适应控制的结合,采用 CARIMA模型(受控自回归积分滑动平均模型), 具有参数数目少并能够在线估计的优点,并且广义 预测极点配置控制进一步采用极点配置技术,提高 了预测控制系统的闭环稳定性和鲁棒性。 。
yˆ(k
2)
a2
a1
0 u(k) y0 (k 1) (7-7)
u(k 1)
y
0
(k
2)
yˆ (k
n)
an
an1
anm1
u(k
m
1)
y0
(k
n)

Yˆ [ yˆ(k 1), yˆ(k 2),, yˆ(k n)]T
U [u(k), u(k 1),, u(k m 1)]T
5
7. 1 动态矩阵控制理论
动态矩阵控制是一种基于计算机控制的技术,它 是一种增量算法,并基于系统的阶跃响应,它适用 于稳定的线性系统,系统的动态特性中具有纯滞后 或非最小相位特性都不影响该算法的直接应用。由 于它直接以对象的阶跃响应离散系数为模型, 从而避 免了通常的传递函数或状态空间方程模型参数的辩 识,采用多步预估技术从而能有效地解决时延过程 问题,按使预估输出与给定值偏差最小的二次性能 指标实施控制,因此是一种最优控制技术,动态矩 阵控制算法的控制结构主要由预测模型、滚动优化 和误差校正及闭环控制形式构成。
相关文档
最新文档