中考数学一模试卷(含解析)8
2023年河南省郑州市中考数学一模试卷(含解析)

2023年河南省郑州市中考数学一模试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 在东西向的马路上,把出发点记为0,向东与向西意义相反.若把向东走2km记做“+2km”,那么向西走1km应记做( )A. ―2kmB. ―1kmC. 1kmD. +2km2. 星载原子钟是卫星导航系统的“心脏”,对系统定位和授时精度具有决定性作用.“北斗”三号卫星导航系统装载国产高精度星载原子钟,保证“北斗”优于20纳秒的授时精度.1纳=1×10―9秒,那么20纳秒用科学记数法表示为( )A. 2×10―8秒B. 2×10―9秒C. 20×10―9秒D. 2×10―10秒3. 如图1是由6个相同的小正方块组成的几何体,移动其中一个小正方块,变成图2所示的几何体,则移动前后( )A. 主视图改变,俯视图改变B. 主视图不变,俯视图改变C. 主视图不变,俯视图不变D. 主视图改变,俯视图不变4. 把一块等腰直角三角板和一把直尺按如图所示的位置构成,若∠1=25°,则∠2的度数为( )A. 15°B. 20°C. 25°D. 30°5. 下列调查中,最适宜采用普查的是( )A. 调查郑州市中学生每天做作业的时间B. 调查某批次新能源汽车的电池使用寿命C. 调查全市各大超市蔬菜农药残留量D. 调查运载火箭的零部件的质量6. 如图,五线谱由五条等距离的平行横线组成,同一条直线上的三个点A,B,C都在横线上,若线段AB=6,则线段BC的长是( )A. 4B. 3C. 2D. 17. 若关于x的方程x2+ax+1=0有两个相等的实数根,则a值可以是( )A. 2B. 1C. 0D. ―18.如图,在▱ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=2,则△ADE的周长为( )A. 6B. 9C. 12D. 159. 已知点(―3,y1)、(―1,y2)、(1,y3)在下列某一函数图象上,且y3<y1<y2,那么这个函数是( )A. y=3xB. y=3x2C. y=3x D. y=―3x10. 如图,坡角为α的斜坡上有一棵垂直于水平地面的大树AB,当太阳光线与水平线成45°角沿斜坡照下时,在斜坡上的树影BC长为m,则大树AB的高为( )A. m(cosα―sinα)B. m(sinα―cosα)C. m(cosα―tanα)D. msinα―mcosα二、填空题(本大题共5小题,共15.0分)11. 数学具有广泛的应用性.请写出一个将基本事实“两点之间,线段最短”应用于生活的例子: .12. 不等式组―2x <6,x ―2<0的解集是______.13. 甲乙两人参加社会实践活动,随机选择“做社区志愿者”和“做交通引导员”两项中的一项,那么两人同时选择“做社区志愿者”的概率是______.14.如图,矩形ABCD 的边AB 与y 轴平行,顶点A 的坐标为(1,m),C(3,m +6),反比例函数y =k x(x >0)的图象同时经过点B 与点D ,则k的值为______.15. 如图,△ABC 与△BDE 均为等腰直角三角形,点A ,B ,E 在同一直线上,BD ⊥AE ,垂足为点B ,点C 在BD 上,AB =2,BE =5.将△ABC 沿BE 方向平移,当这两个三角形重叠部分的面积等于△ABC 面积的一半时,△ABC 平移的距离为 .三、解答题(本大题共8小题,共75.0分。
2024年江苏省苏州市工业园区中考数学一模试卷(含解析)

2024年江苏省苏州市工业园区中考数学一模试卷一、选择题:本题共8小题,每小题3分,共24分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.−2的倒数是( )A. −2B. −12C. 12D. 22.2024苏州马拉松暨大运河马拉松系列赛(苏州站)于4月14日成功举行,本次赛事吸引了来自世界各地的约25000名选手同台竞技.数据25000用科学记数法可以表示为( )A. 2.5×103B. 0.25×105C. 2.5×104D. 25×1033.下列等式成立的是( )A. a2−b2=(a+b)(a−b)B. a2+b2=(a+b)2C. ax+ay−a=a(x+y)D. a2+a+1=(a+1)24.如图,将长为6的矩形纸片沿虚线折成一个无盖三棱柱,则图中a的值可以是( )A. 1B. 2C. 3D. 45.将一枚飞镖任意投掷到如图所示的菱形镖盘ABCD上,其中点E、F、G、H分别是菱形各边中点.若飞镖落在镖盘上各点的机会相等,则飞镖落在阴影区域的概率为( )A. 13B. 12C. 23D. 346.已知点A(x1,y1)、B(x2,y2)在函数y=−2x+b的图象上,且x1<0<x2,则下列结论一定成立的是( )A. y1+y2<0B. y1+y2>0C. y1<y2D. y1>y27.《九章算术》卷九“勾股”中记载:今有户不知高广,竿不知长短,横之不出四尺,纵之不出二尺,斜之适出,问户斜几何.意思是:一根竿子横放,竿比门宽长出四尺;竖放,竿比门高长出二尺,斜放恰好能出去,则竿长为( )A. 10尺B. 5尺C. 10尺或2尺D. 5尺或4尺8.现定义一种新的距离:对于平面直角坐标系内的点P(a,b)、Q(c,d),将|a−c|+|b−d|称作P、Q两点间的“拐距”,记作G(P,Q),即G(P,Q)=|a−c|+|b−d|.已知点A(0,5),动点B在直线y=x+1上,横坐标为m.当G(A,B)取得最小值时,m应满足的条件是( )A. m=0B. 0<m<4C. 0≤m≤4D. m=4二、填空题:本题共8小题,每小题3分,共24分。
2023年云南省昆明市西山区中考数学一模试卷(含解析)

2023年云南省昆明市西山区中考数学一模试卷一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. 滇池亦称昆明湖、昆明池、滇南泽、滇海,位于昆明市西山区,是云南省面积最大的高原湖泊,也是全国第六大淡水湖,有着“高原明珠”之称.滇池的蓄水量大约为立方米.数字用科学记数法可以表示为( )A. 1.29×109B.C.D.2. 下列图形既是中心对称图形,又是轴对称图形的是( )A. B. C. D.3. 随着科技的进步,微信、支付宝等移动支付方式改变着人们的生活.若小李的余额宝里转入了100元钱,记作“+100”元,则小李骑共享单车花费1.5元,记作元.( )A.−1.5 B. +1.5 C. D.4. 如图,直线c与直线a,b都相交,a//b,若AD平分∠CAB,∠1=50°,则∠2的度数为( )A. 50°B. 65°C. 70°D. 80°5. 如图,已知点P在反比例函数y=k(k≠0)的图象上.由点xP分别向x轴,y轴作垂线段,与坐标轴围成的矩形部分面积为8.则k的值为( )A. 4B. −8C. 8D. −46. 下列运算正确的是( )A. a4⋅a2=a8B. (2a3)2=2a6C. (ab)6÷(ab)2=a4b4D. (a+b)(a−b)=a2+b27. 一列单项式按以下规律排列:x,4x3,9x5,16x7,,……,则第n个单项式是( )A. B. C. D.2nx2n−18. 2023年3月5日−3月13日,全国两会在首都北京召开.为了让学生更好地了解两会,某学校组织了一次关于“全国两会”的知识比赛.在抢答赛初赛中,某班4个小队的成绩统计结果如下表:第1队第2队第3队第4队平均分97979595方差23151523要从4个小队中选出一个小队代表班级参加决赛,应该选哪个队伍参赛比较合理?( )A. 第1队B. 第2队C. 第3队D. 第4队9. 如图是某数学兴趣小组开展的课外探究活动,探究目的:测量小河两岸的距离.探究过程:在河两岸选取相对的两点P、A,在小河边取PA的垂线PB上的一点C,测得PC=50米,,则小河宽PA等于( )A.米 B. 米 C. 米 D. 米10.为加快推动城市生态建设的步伐,形成“城在林中、园在城中、山水相依,林路相随”的生态格局,昆明市政府计划在某公园的一块矩形空地上修建草坪,如图,矩形长为50m,宽为40m,在矩形内的四周修筑同样宽的道路,余下的铺上草坪.要使草坪的面积为,道路的宽度应为多少?设矩形地块四周道路的宽度为x m,根据题意,下列方程正确的是( )A. B.C. D. (50−2x)(40−2x)=182411. 如图,冰淇淋蛋筒下部呈圆锥形,则蛋筒圆锥部分包装纸的面积(接缝忽略不计)是( )A. 27cm2B. 54cm2C. 27πcm2D. 54πcm212.如图,将两条宽度都为1的纸条重叠在一起,使∠ABC=60°,则四边形ABCD的面积为( )A. 3B. 23C. 33D. 233二、填空题(本大题共4小题,共8.0分)13. 因式分解:2a3−8a=______.14. 八边形的内角和等于______ 度.15. 使有意义的x的取值范围是______.16. 如图,在△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为12cm,则△ABC的周长为______ cm.三、解答题(本大题共8小题,共56.0分。
2024年江苏省南通市部分学校中考数学一模试卷及答案解析

2024年江苏省南通市部分学校中考数学一模试卷一、选择题(本大题共10小题,每小题3分,共30分.)1.(3分)下列结果中,是负数的是()A.﹣(﹣2)B.﹣|﹣1|C.3×2D.0×(﹣4)2.(3分)风能是一种清洁能源,我国风能储量很大,仅陆地上风能储量就有253000兆瓦,将数据253000用科学记数法表示为()A.25.3×104B.2.53×104C.2.53×105D.0.253×106 3.(3分)如图是由四个小正方体叠成的一个立体图形,那么它的主视图是()A.B.C.D.4.(3分)下列各图中,可看作轴对称图形的是()A.B.C.D.5.(3分)如图,四边形ABCD的对角线AC,BD相交于点O,OA=OC,且AB∥CD,则添加下列一个条件能判定四边形ABCD是菱形的是()A.AC=BD B.∠ADB=∠CDB C.∠ABC=∠DCB D.AD=BC6.(3分)如图,直线l1∥l2,含有30°的直角三角板的一个顶点C落在l2上,直角边交l1于点D,连接BD,使得BD⊥l2,若∠1=72°,则∠2的度数是()A.48°B.58°C.42°D.18°7.(3分)我国古代数学名著《九章算术》中记载:“粟米之法:粟率五十;粝米三十.今有米在十斗桶中,不知其数.满中添粟而舂之,得米七斗.问故米几何?”意思为:50斗谷子能出30斗米,即出米率为.今有米在容量为10斗的桶中,但不知道数量是多少.再向桶中加满谷子,再舂成米,共得米7斗.问原来有米多少斗?如果设原来有米x 斗,向桶中加谷子y斗,那么可列方程组为()A.B.C.D.8.(3分)若关于x的不等式组有且只有3个整数解,则a的取值范围是()A.﹣1≤a<0B.﹣1<a≤0C.﹣4<a≤﹣3D.﹣4≤a<﹣3 9.(3分)如图,四边形ABCD是边长为2cm的正方形,点E,点F分别为边AD,CD中点,点O为正方形的中心,连接OE,OF,点P从点E出发沿E﹣O﹣F运动,同时点Q 从点B出发沿BC运动,两点运动速度均为1cm/s,当点P运动到点F时,两点同时停止运动,设运动时间为t s,连接BP,PQ,△BPQ的面积为S cm2,下列图象能正确反映出S与t的函数关系的是()A.B.C.D.10.(3分)已知实数a,b满足4a2+b=n,b2+2a=n,b≠2a.其中n为自然数,则n的最小值是()A.4B.5C.6D.7二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题3分,共30分.)11.(3分)代数式在实数范围内有意义,则x的取值范围是.12.(3分)因式分解:2x﹣8x3=.13.(4分)底面圆半径为10cm、高为的圆锥的侧面展开图的面积为cm2.14.(4分)某种型号的小型无人机着陆后滑行的距离S(米)关于滑行的时间t(秒)的函数解析式是S=﹣0.25t2+10t,无人机着陆后滑行秒才能停下来.15.(4分)如图,社小山的东侧炼A处有一个热气球,由于受西风的影响,以30m/min的速度沿与地面成75°角的方向飞行,20min后到达点C处,此时热气球上的人测得小山西侧点B处的俯角为30°,则小山东西两侧A,B两点间的距离为.16.(4分)如图,在矩形ABCD中,AB=3,BC=10,点E在边BC上,DF⊥AE,垂足为F.若DF=6,则线段EF的长为.17.(4分)若a,b是一元二次方程x2﹣5x﹣2=0的两个实数根,则的值为.18.(4分)如图,点A,B在反比例函数y=(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是.三、解答题(本大题共8小题,共90分.解答时应写出文字说明、证明过程或演算步骤)19.(10分)(1)计算:;(2)先化简,再求值:,其中x=3.20.(8分)如图,已知A,D,C,E在同一直线上,BC和DF相交于点O,AD=CE,AB ∥DF,AB=DF.(1)求证:△ABC≌△DFE;(2)连接CF,若∠BCF=54°,∠DFC=20°,求∠DFE的度数.21.(10分)某市今年初中物理、化学实验技能学业水平考查,采用学生抽签方式决定各自的考查内容.规定:每位考生必须在4个物理实验考查内容(用A、B、C、D表示)和4个化学实验考查内容(用E、F、G、H表示)中各抽取一个进行实验技能考查.小刚在看不到签的情况下,从中各随机抽取一个.(1)小刚抽到物理实验A的概率是;(2)用列表法或画树状图法中的一种方法,求小刚抽到物理实验B和化学实验F的概率.22.(10分)青年大学习是共青团中央为组织引导广大青年深入学习宣传贯彻习近平新时代中国特色社会主义思想和党的十九大精神持续引向深人组织的青年学习行动.某校举办了相关知识竞赛(百分制),并分别在七、八年级中各随机抽取20名学生的成绩进行统计、整理与分析,绘制成如图两幅统计图.成绩用x表示,并且分为A、B、C、D、E五个等级,并且分别是:A:50≤x<60;B:60≤x<70;C:70≤x<80;D:80≤x<90;E:90≤x≤100.七、八年级成绩的平均数、中位数众数如下表:平均数中位数众数七年级76m75八年级777678其中,七年级成绩在C等级的数据为77、75、75、78、79、75、73、75;八年级成绩在E等级的有3人.根据以上信息,解答下列问题:(1)扇形统计图中B等级所占圆心角的度数是,表中m的值为;(2)通过以上数据分析,你认为哪个年级对青年大学习知识掌握得更好?请说明理由;(3)请对该校学生“青年大学习”的掌握情况作出合理的评价.23.(12分)如图,AB是⊙O的直径,点C在⊙O上,∠ABC=60°,⊙O的切线CD与AB的延长线相交于点D.(1)求证:BD=BC;(2)若⊙O的半径为6,求图中阴影部分的面积.24.(13分)随着“双减”政策的逐步落实,其中增加中学生体育锻炼时间的政策引发社会的广泛关注,体育用品需求增加,某商店决定购进A、B两种羽毛球拍进行销售,已知每副A种球拍的进价比每副B种球拍贵20元,用2800元购进A种球拍的数量与用2000元购进B种球拍的数量相同.(1)求A、B两种羽毛球拍每副的进价;(2)若该商店决定购进这两种羽毛球拍共100副,考虑市场需求和资金周转,用于购买这100副羽毛球拍的资金不超过5900元,那么该商店最多可购进A种羽毛球拍多少副?(3)若销售A种羽毛球拍每副可获利润25元,B种羽毛球拍每副可获利润20元,在第(2)问条件下,如何进货获利最大?最大利润是多少元?25.(13分)如图1,P是正方形ABCD边BC上一点,线段AE与AD关于直线AP对称,连接EB并延长交直线AP于点F,连接CF.(1)补全图形,求∠AFE的大小;(2)用等式表示线段CF,BE之间的数量关系,并证明;(3)连接CE,G是CE的中点,AB=2,若点P从点B运动到点C,直接写出DG的最大值.26.(14分)定义:若一个函数的图象上存在横、纵坐标之和为零的点,则称该点为这个函数图象的“平衡点”.例如,点(﹣1,1)是函数y=x+2的图象的“平衡点”.(1)在函数①y=﹣x+3,②y=,③y=﹣x2+2x+1,④y=x2+x+7的图象上,存在“平衡点”的函数是;(填序号)(2)设函数y=﹣(x>0)与y=2x+b的图象的“平衡点”分别为点A、B,过点A作AC⊥y轴,垂足为C.当△ABC为等腰三角形时,求b的值;(3)若将函数y=x2+2x的图象绕y轴上一点M旋转180°,M在(0,﹣1)下方,旋转后的图象上恰有1个“平衡点”时,求M的坐标.2024年江苏省南通市部分学校中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.)1.【分析】利用相反数的意义及绝对值的性质化简A、B,再利用乘法法则计算即可得到C、D.【解答】解:∵A、﹣(﹣2)=2,∴A项不符合题意;∵B、﹣|﹣1|=﹣1,∴B项符合题意;∵C、3×2=6,∴C项不符合题意;∵D、0×(﹣4)=0,∴D项不符合题意.故选:B.【点评】本题考查了相反数的意义,绝对值的性质,有理数的乘法法则,掌握绝对值的性质是解题的关键.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:253000=2.53×105.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有3个正方形,第二层中间有1个正方形.故选:C.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意;故选:B.【点评】本题考查了轴对称图形,解题关键是抓住轴对称图形是指将一个图形沿着某条直线折叠,直线两旁的部分能够完全重合.5.【分析】根据菱形的判定方法分别对各个选项进行判定,即可得出结论.【解答】解:∵AB∥CD,∴∠BAO=∠DCO,∠ABO=∠CDO,∵OA=OC,∴△AOB≌△COD(AAS),∴AB=CD,∴四边形ABCD是平行四边形,A、当AC=BD时,四边形ABCD是矩形;故选项A不符合题意;B、∵AB∥CD,∴∠ABD=∠CDB,∵∠ADB=∠CDB,∴∠ADB=∠ABD,∴AD=AB,∴四边形ABCD为菱形,故选项B符合题意;C、∵AB∥CD,∴∠ABC+∠BCD=180°,∵∠ABC=∠DCB∴∠ABC=∠DCB=90°,∴四边形ABCD是矩形;故选项C不符合题意;D、当AD=BC时,不能判定四边形ABCD为菱形;故选项D不符合题意.故选:B.【点评】本题考查了菱形的判定,平行四边形的判定和性质,等腰三角形的判定和性质,熟练掌握菱形的判定定理是解题的关键.6.【分析】根据平行的性质可得∠DEB=∠1=72°,根据三角形的外角的定义可得∠ADC=42°,再根据平角进行计算即可得到答案.【解答】解:如图,设AB与l1相交于点E,∵l1∥l2,∠1=72°,∴∠DEB=∠1=72°,∵∠A+∠ADC=∠DEB=72°,∠A=30°,∴∠ADE=42°,∵∠ADC+∠BDE+∠2=180°,BD⊥l2,∴∠2=48°.故选:A.【点评】本题主要考查了平行线的性质、三角形外角的定义,平角的定义,熟练掌握平行线的性质、三角形外角的定义,平角的定义是解题的关键.7.【分析】根据原来的米+向桶中加的谷子=10,原来的米+桶中的谷子舂成米=7即可得出答案.【解答】解:根据题意得:,故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组,找到等量关系:原来的米+向桶中加的谷子=10,原来的米+桶中的谷子舂成米=7是解题的关键.8.【分析】先解出每个不等式的解集,即可得到不等式组的解集,然后根据不等式组有且只有3个整数解,即可得到a的取值范围.【解答】解:,解不等式①,得:x≤2,解不等式②,得:x>a,∴该不等式组的解集是a<x≤2,∵关于x的不等式组有且只有3个整数解,∴这三个整数解是0,1,2,∴﹣1≤a<0,故选:A.【点评】本题考查一元一次不等式组的整数解,解答本题的关键是明确解一元一次不等式的方法.9.【分析】当0<t≤1时,点P在OE上,当1<t≤2时,点P在OF上,分别求出S与t 的函数关系,即可解答.【解答】解:如图,当0<t≤1时,由题得,PE=BQ=t cm,∵正方向ABCD是边长为2cm,∴P到BC的距离为(2﹣t)cm,∴S=t•(2﹣t)=﹣t2+t,如图,当1<t≤2时,由题得,PF=CQ=(2﹣t)cm,∴四边形CFPQ为矩形,∴PQ=CF=1cm,∴S=t•1=t,故选:D.【点评】本题考查了动点问题的函数图象应用,三角形面积的计算是解题关键.10.【分析】由原式知,(4a2+b)﹣(b2+2a)=0,进一步变形得(2a﹣b)(2a+b﹣)=0,因为b≠2a,所以2a+b﹣=0,得b=﹣2a,代入b2+2a=n得,(﹣2a)+2a=n,配方法求极值.【解答】解:由原式知,(4a2+b)﹣(b2+2a)=0,∴(4a2﹣b2)﹣(2a﹣b)=0∴(2a﹣b)(2a+b)﹣(2a﹣b)=0∴(2a﹣b)(2a+b﹣)=0∵b≠2a∴2a+b﹣=0,∴b=﹣2a,代入b2+2a=n得,(﹣2a)2+2a=n,整理,得n=4a2﹣2a+7=(2a﹣)2+5≥5,∴自然数n的最小值为6故选C.【点评】本题考查等式的基本性质,平方差公式、完全平方公式、配方法求极值;根据式子的具体特征,结合乘法公式对代数式作恒等变形是解题的关键.二、填空题(本大题共8小题,第11~12题每小题3分,第13~18题每小题3分,共30分.)11.【分析】根据二次根式有意义的条件列出不等式,解不等式得到答案.【解答】解:由题意得,x﹣5≥0,解得x≥5,故答案为:x≥5.【点评】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.12.【分析】先提公因式,再利用平方差公式继续分解即可解答.【解答】解:2x﹣8x3=2x(1﹣4x2)=2x(1+2x)(1﹣2x),故答案为:2x(1+2x)(1﹣2x).【点评】本题考查了提公因式法与公式法的综合运用,一定要注意如果多项式的各项含有公因式,必须先提公因式.13.【分析】先求出圆锥的母线长,再根据扇形的面积公式计算即可.【解答】解:∵圆锥的底面半径为10cm,高为10cm,∴圆锥的母线为=20(cm),∴圆锥的侧面展开图的面积为×(2π×10)×20=200π(cm2).故答案为:200π.【点评】本题考查圆锥的计算,解题的关键是求出圆锥的母线和掌握圆锥的侧面展开图的面积公式.14.【分析】飞机停下时,也就是滑行距离最远时,即在本题中需求出s最大时对应的t值.【解答】解:由题意得,S=﹣0.25t2+10t=﹣0.25(t2﹣40t+400﹣400)=﹣0.25(t﹣20)2+100,∵﹣0.25<0,∴t=20时,飞机滑行的距离最大,即当t=20秒时,飞机才能停下来.故答案为:20.【点评】本题考查了二次函数的应用,能熟练的应用配方法得到顶点式是解题关键.15.【分析】作AD⊥BC于D,根据速度和时间先求得AC的长,在Rt△ACD中,求得∠ACD 的度数,再求得AD的长度,然后根据∠B=30°求出AB的长.【解答】解:如图,过点A作AD⊥BC,垂足为D,在Rt△ACD中,∠ACD=75°﹣30°=45°,AC=30×20=600(米),∴AD=AC•sin45°=300(米).在Rt△ABD中,∵∠B=30°,∴AB=2AD=600(米).故答案为:600.【点评】本题考查了解直角三角形的应用,解答本题的关键是根据仰角和俯角构造直角三角形并解直角三角形,难度适中.16.【分析】证明△AFD∽△EBA,得到,求出AF,即可求出AE,从而可得EF.【解答】解:∵四边形ABCD为矩形,∴AB=CD=3,BC=AD=10,AD∥BC,∴∠AEB=∠DAF,∴△AFD∽△EBA,∴,∵DF=6,∴AF===8,∴,∴AE=5,∴EF=AF﹣AE=8﹣5=3,故答案为:3.【点评】本题考查了相似三角形的判定和性质,矩形的性质,勾股定理,解题的关键是掌握相似三角形的判定方法.17.【分析】先根据一元二次方程的解的定义及根与系数的关系得出a +b =5,a 2=5a +2,再将其代入整理后的代数式计算即可.【解答】解:∵a ,b 是一元二次方程x 2﹣5x ﹣2=0的两个实数根,∴a +b =5,a 2﹣5a ﹣2=0,即:a 2=5a +2,∴,故答案为:5.【点评】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时,,x 1•x 2=.也考查了一元二次方程的解.18.【分析】过点B 作直线AC 的垂线交直线AC 于点F ,由△BCE 的面积是△ADE 的面积的2倍以及E 是AB 的中点即可得出S △ABC =2S △ABD ,结合CD =k 即可得出点A 、B 的坐标,再根据AB =2AC 、AF =AC +BD 即可求出AB 、AF 的长度,根据勾股定理即可算出k 的值,此题得解.【解答】解:过点B 作直线AC 的垂线交直线AC 于点F ,如图所示.∵△BCE 的面积是△ADE 的面积的2倍,E 是AB 的中点,∴S △ABC =2S △BCE ,S △ABD =2S △ADE ,∴S △ABC =2S △ABD ,且△ABC 和△ABD 的高均为BF ,∴AC =2BD ,又∵OC •AC =OD •BD ,∴OD =2OC .∵CD =k ,∴点A 的坐标为(,3),点B 的坐标为(﹣,﹣),∴AC =3,BD =,∴AB =2AC =6,AF =AC +BD =,∴CD =k ===.故答案为:.【点评】本题考查了反比例函数图象上点的坐标特征、三角形的面积公式以及勾股定理,构造直角三角形利用勾股定理巧妙得出k值是解题的关键.三、解答题(本大题共8小题,共90分.解答时应写出文字说明、证明过程或演算步骤)19.【分析】(1)先化简,然后算加减法即可;(2)先算括号内的式子,再算括号外的除法,然后将x的值代入化简后的式子计算即可.【解答】解:(1)=3+﹣1﹣=+;(2)=•===,当x=3时,原式==﹣5.【点评】本题考查实数的运算、分式的化简求值,熟练掌握运算法则是解答本题的关键.20.【分析】(1)由平行线的性质得∠A=∠FDE,根据等式的性质可得AC=DE,再由SAS 证明△ABC≌△DFE即可;(2)先根据三角形的外角可得∠DOC=74°,由平行线的性质可得∠B=∠DOC,最后由全等三角形的性质可得结论.【解答】(1)证明:∵AB∥DF,∴∠A=∠EDF,∵AD=CE,∴AD+CD=CE+CD,即AC=DE,在△ABC和△DFE中,,∴△ABC≌△DFE(SAS);(2)解:∵∠BCF=54°,∠DFC=20°,∴∠DOC=∠BCF+∠DFC=54°+20°=74°,∵AB∥DF,∴∠B=∠DOC=74°,∵△ABC≌△DFE,∴∠DFE=∠B=74°.【点评】本题考查了全等三角形的判定与性质,平行线的性质,证明三角形全等是解题的关键.21.【分析】(1)直接利用概率公式计算;(2)画树状图展示所有16种等可能的结果,再找出抽到B和F的结果数,然后根据概率公式计算.【解答】解:(1)小刚抽到物理实验A的概率是;故答案为:;(2)画树状图为:共有16种等可能的结果,其中抽到B和F的结果数为1,所以小刚抽到物理实验B和化学实验F的概率=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.22.【分析】(1)求出调查人数以及B等级的学生人数所占的百分比即可求出相应的圆心角度数,根据中位数的定义求出中位数即可得出m的值;(2)通过平均数、中位数、众数的大小比较得出答案;(3)根据平均数、中位数、众数综合进行判断即可.【解答】解:(1)由条形统计图可得,调查人数为2+5+8+2+3=20(人),扇形统计图中B等级所占圆心角的度数是360=90°,将七年级这20名学生的成绩从小到大排列,处在中间位置的两个数的平均数为=75,因此中位数是75分,即m=75,故答案为:90°,75;(2)八年级学生的成绩较好,理由:八年级学生成绩的平均数、中位数、众数均比七年级学生的平均数、中位数、众数大,所以八年级学生成绩较好;(3)青年学生对深入学习宣传贯彻习近平新时代中国特色社会主义思想和党的十九大精神掌握情况一般,还需要进一步加强学习和宣传.【点评】本题考查条形统计图、扇形统计图,平均数、中位数、众数,理解两个统计图中数量之间的关系以及中位数、众数、平均数的意义是正确解答的前提.23.【分析】(1)连接OC,可证明△BOC是等边三角形,则∠BOC=∠BCO=60°,由CD 与⊙O相切于点C,得∠OCD=90°,即可求得∠D=90°﹣∠BOC=30°,∠BCD=90°﹣∠BCO=30°,所以∠BCD=∠D,则BD=BC;(2)作CE⊥OB于点E,则CE=OC•sin60°=3,可求得S阴影=S扇形BOC﹣S△BOC=6π﹣9.【解答】(1)证明:连接OC,则OC=OB,∵∠ABC=60°,∴△BOC是等边三角形,∴∠BOC=∠BCO=60°,∵CD与⊙O相切于点C,∴CD⊥OC,∴∠OCD=90°,∴∠D=90°﹣∠BOC=30°,∠BCD=90°﹣∠BCO=30°,∴∠BCD=∠D,∴BD=BC.(2)解:作CE⊥OB于点E,则∠OEC=90°,∵OC=OB=6,∴CE=OC•sin60°=6×=3,∴S阴影=S扇形BOC﹣S△BOC=﹣×6×3=6π﹣9,∴阴影部分的面积是6π﹣9.【点评】此题重点考查切线的性质、等边三角形的判定与性质、等腰三角形的判定、锐角三角函数与解直角三角形、三角形的面积公式、扇形的面积公式等知识,正确地作出所需要的辅助线是解题的关键.24.【分析】(1)设A种羽毛球拍每副的进价为x元,根据用2800元购进A种球拍的数量与用2000元购进B种球拍的数量相同,列分式方程,求解即可;(2)设该商店购进A种羽毛球拍m副,根据购买这100副羽毛球拍的资金不超过5900元,列一元一次不等式,求解即可;(3)设总利润为w元,表示出w与m的函数关系式,根据一次函数的性质即可确定如何进货总利润最大,并进一步求出最大利润即可.【解答】解:(1)设A种羽毛球拍每副的进价为x元,根据题意,得,解得x=70,经检验,x=70是原分式方程的根,且符合题意,70﹣20=50(元),答:A种羽毛球拍每副的进价为70元,B种羽毛球拍每副的进价为50元;(2)设该商店购进A种羽毛球拍m副,根据题意,得70m+50(100﹣m)≤5900,解得m≤45,m为正整数,答:该商店最多购进A种羽毛球拍45副;(3)设总利润为w元,w=25m+20(100﹣m)=5m+2000,∵5>0,∴w随着m的增大而增大,当m=45时,w取得最大值,最大利润为5×45+2000=2225(元),此时购进A种羽毛球拍45副,B种羽毛球拍100﹣45=55(副),答:购进A种羽毛球拍45副,B种羽毛球拍55副时,总获利最大,最大利润为2225元.【点评】本题考查了分式方程的应用,一元一次不等式的应用,一次函数的应用,理解题意并根据题意建立相应的关系式是解题的关键.25.【分析】(1)由轴对称的性质可得∠DAP=∠EAP=70°,AD=AE,由等腰三角形的性质和三角形内角和定理可求解;(2)先求出∠AFE=45°,通过证明△CDF∽△BDE,可得BE=CF;(3)先确定点G在以O为圆心,1为半径的圆上运动,再根据等腰直角三角形的性质求解即可.【解答】解:(1)补全图形如图1所示;设∠BAP=x,∴∠DAP=90°﹣x,∵线段AE与AD关于直线AP对称,∴∠DAP=∠EAP=90°﹣x,AD=AE,∴∠BAE=90°﹣2x,AB=AE,∴∠E=∠ABE=45°+x,∴∠AFE=180°﹣(90°﹣x)﹣(45°+x)=45°;(2)BE=CF;证明:如图2,连接DF,DE,BD,∵四边形ABCD是正方形,∴BD=CD,∠CDB=45°,∵线段AE与AD关于直线AP对称,∴DF=EF,∠DFA=∠AFE=45°,∴∠DFE=90°,∴∠FDE=45°=∠CDB,DE=DF,∴∠CDF=∠BDE,,∴△CDF∽△BDE,∴,∴BE=CF;(3)如图3,连接AC,BD交于点O,连接OG,∵四边形ABCD是正方形,∴AO=CO,又∵G是CE中点,∴OG=AE=AD=1,∴点G在以O为圆心,1为半径的圆上运动,∴点P从点B运动到点C,点G的运动到BD上时DG的值最大,且DG的最大值为DO+OG,∵OD=AD=,∴DG的最大值为1.【点评】本题是四边形综合题,考查了正方形的性质,轴对称的性质,相似三角形的判断和性质,三角形中位线定理等知识,灵活运用这些性质解决问题是本题的关键.26.【分析】(1)在y=﹣x+3中,令y=﹣x得﹣x=﹣x+3,方程无解,可知y=﹣x+3的图象上不存在“平衡点”;同理可得y=,y=x2+x+7的图象上不存在“平衡点”,y=﹣x2+2x+1的图象上存在“平衡点”;(2)在y=﹣中,令y=﹣x得A(2,﹣2)或(﹣2,2);在y=2x+b中,令y=﹣x 得B(﹣,),当A(2,﹣2)时,C(0,﹣2),可得AB2=2(2+)2,BC2=+(2+)2,AC2=4,分三种情况列方程可得答案;(3)设M(0,m),m<﹣1,求出抛物线y=x2+2x的顶点为(﹣1,﹣1),而点(﹣1,﹣1)关于M(0,m)的对称点为(1,2m+1),可得旋转后的抛物线解析式为y=﹣(x ﹣1)2+2m+1=﹣x2+2x+2m,令y=﹣x得x2﹣3x﹣2m=0,根据旋转后的图象上恰有1个“平衡点”,知x2﹣3x﹣2m=0有两个相等实数根,故9+8m=0,m=﹣,从而得M的坐标为(0,﹣).【解答】解:(1)根据“平衡点”的定义,“平衡点”的横、纵坐标互为相反数,在y=﹣x+3中,令y=﹣x得﹣x=﹣x+3,方程无解,∴y=﹣x+3的图象上不存在“平衡点”;同理可得y=,y=x2+x+7的图象上不存在“平衡点”,y=﹣x2+2x+1的图象上存在“平衡点”;故答案为:③;(2)在y=﹣中,令y=﹣x得﹣x=﹣,解得x=2或x=﹣2,∵x>0,∴A(2,﹣2);在y=2x+b中,令y=﹣x得﹣x=2x+b,解得x=﹣,∴B(﹣,),当A(2,﹣2)时,C(0,﹣2),∴AB2=2(2+)2,BC2=+(2+)2,AC2=4,若AB=BC,则2(2+)2=+(2+)2,解得b=﹣3;若AB=AC,则2(2+)2=4,解得b=﹣3﹣6或b=3﹣6;若BC=AC,则+(2+)2=4,解得b=0或b=﹣6(此时A,B重合,舍去);∴b的值为﹣3或﹣3﹣6或3﹣6或0;(3)设M(0,m),m<﹣1,∵y=x2+2x=(x+1)2﹣1,∴抛物线y=x2+2x的顶点为(﹣1,﹣1),点(﹣1,﹣1)关于M(0,m)的对称点为(1,2m+1),∴旋转后的抛物线解析式为y=﹣(x﹣1)2+2m+1=﹣x2+2x+2m,在y=﹣x2+2x+2m中,令y=﹣x得:﹣x=﹣x2+2x+2m,∴x2﹣3x﹣2m=0,∵旋转后的图象上恰有1个“平衡点”,∴x2﹣3x﹣2m=0有两个相等实数根,∴Δ=0,即9+8m=0,∴m=﹣,∴M的坐标为(0,﹣).【点评】本题考查二次函数的综合应用,涉及新定义,等腰三角形,一元二次方程根的判别式,旋转变换等知识,解题的关键是读懂新定义,利用二次函数与一元二次方程的关系解决问题。
2023年浙江省宁波市江北区中考数学一模试卷及答案解析

2023年浙江省宁波市江北区中考数学一模试卷一、选择题(每题4分,共40分,在每小题给出的四个选项中,只有一项符合题目要求)1.(4分)在﹣2,﹣1,0,2这四个数中,最小的数是()A.﹣2B.﹣1C.0D.22.(4分)下列计算正确的是()A.a2•a3=a6B.a3÷a=a3C.(a5)2=a7D.a3+a3=2a3 3.(4分)“宁波地铁”发文称,2023年2月13日至6月30日,每天晚上8点后及法定节假日全天,宁波地铁1—5号线全线网皆可免费乘车,免费时段无需购票、刷卡、扫码,可直接进站乘车.2月17日,宁波地铁限时段免费后的首个周五,地铁客流量达到约107.6万人次.数107.6万用科学记数法表示为()A.1.076×105B.10.76×105C.1.076×106D.0.1076×106 4.(4分)如图是某品牌的多功能笔筒,其俯视图为()A.B.C.D.5.(4分)能说明命题“对于任意实数x,x2>0”是假命题的一个反例可以是()A.B.x=1C.x=0D.x=﹣16.(4分)某鞋店对某款女鞋一周的销售情况进行统计,结果如下:尺码353637383940销售量(双)618331221根据上表信息,该店主决定下周多进一些37码的鞋子,影响店主进货决策的统计量是()A.众数B.中位数C.平均数D.方差7.(4分)如图,在△ABC中,AB=AC,∠A=36°.以点B为圆心,适当长为半径作圆弧,交AB于点M,交BC于点N.接着分别以点M,N为圆心,大于长为半径作圆弧,两弧交于点H.作射线BH,交AC于点D.再以点D为圆心,DC长为半径作圆弧,交BC于点E,连结DE.则下列说法错误的是()A.AD=BD B.∠BDC=∠BCD C.D.△BED∽△BDA 8.(4分)《张丘建算经》是中国古代数学著作,其中提出了许多数学问题,比如:“今有甲乙怀钱各不知其数,甲得乙十钱,多乙余钱五倍;乙得甲十钱,适等;问甲乙怀钱各几何?”可以理解为:甲乙两人各有一些钱,若乙给甲10元,则甲的钱比乙多5倍;若甲给乙10元,则两人的钱一样多.不妨设甲原有钱x元,乙原有钱y元,则可列方程组为()A.B.C.D.9.(4分)如图是由4个全等的大正方形和5个全等的小正方形组成的图形.若要求线段MN的长度,只需要知道顶点P与正方形ABDC某个顶点之间的距离即可,这个点是()A.点A B.点B C.点C D.点D10.(4分)已知抛物线y=(x﹣b)2+c经过A(1﹣n,y1),B(n,y2),C(n+3,y3)三点,y1=y3.当1﹣n≤x≤n时,二次函数的最大值与最小值的差为16,则n的值为()A.﹣5B.3C.D.4二、填空题(每题5分,共30分)11.(5分)=.12.(5分)因式分解:b2﹣9=.13.(5分)如图,小江,小北周末都在荪湖公园踏春.小江在三岔路口A处,随意选择一条路准备出园,小江与在其中一条路上的B景点处游玩的小北邂逅的概率是.14.(5分)如图,在△ABC中,分别以AB,AC为斜边在同侧作两个等腰直角△ADB与△AEC,若点D是△AEC的重心,则tan∠BAC=.15.(5分)如图1,在平行四边形ABCD中,∠A=60°,动点E,F从点A同时出发,分别沿A→B→C和A→D→C的方向都以每秒1个单位长度的速度运动,到达点C后停止运动.设运动时间为t(s),△AEF的面积为y,y与t的大致函数关系如图2所示.则当时,t的值为.16.(5分)如图,菱形ABCO的顶点A与对角线交点D都在反比例函数的图象上,对角线AC交y轴于点E,CE=2DE,且△ADB的面积为15,则k=;延长BA交x轴于点F,则点F的坐标为.三、解答题(本大题有8小题,共80分)17.(8分)(1)计算:(a+1)2﹣a(a+1);(2)解不等式组:.18.(8分)如图,下列3×4网格图均由12个相同的小正方形组成,每个网格图中有2个小正方形已涂上阴影,请在余下的空白小正方形中,分别按下列要求选取两个涂上阴影:(1)使得4个阴影小正方形组成的图形是轴对称图形,但不是中心对称图形.(2)使得4个阴影小正方形组成的图形是中心对称图形,但不是轴对称图形.请将以上两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形即可.19.(8分)今天,4月20日恰逢24节气中的谷雨.播谷降雨,雨生百谷,这也是春季的最后一个节气.在古代,各地都有着不同的习俗活动来迎接与庆祝,有赏花、品茗、走谷雨(踏春)、洗桃花水(沐浴)、吃椿(香椿)等.为了了解学生最感兴趣的一项活动的人数分布情况,学校从全校学生中随机抽取100名学生进行问卷调查,并绘制了如下两幅统计图.(1)请计算最感兴趣活动为“洗桃花水(沐浴)”的学生总人数,并补全条形统计图;(2)请计算最感兴趣活动为“走谷雨(踏春)”的女生人数;(3)男生最感兴趣活动中“洗桃花水(沐浴)”和“吃椿(香椿)”的人数相同吗?为什么?20.(8分)如图,一次函数y=ax+b(a≠0)的图象与反比例函数的图象交于A(m,2),B(1,6)两点.(1)求反比例函数和一次函数的函数表达式;(2)根据图象直接写出满足当时,x的取值范围.21.(10分)桑梯——登以採桑,它是我国古代劳动人民发明的一种采桑工具.图1是明朝科学家徐光启在《农政全书》中用图画描绘的桑梯,其示意图如图2所示,已知AB=AC =1.6米,AD=1.2米,设∠BAC=α,为保证安全,α的调整范围是30°≤α≤90°.(1)当α=60°时,若人站在AD的中点E处,求此人离地面(BC)的高度.(2)在安全使用范围下,求桑梯顶端D到地面BC的距离范围.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73,,,精确到0.1米)22.(12分)乌馒头是江北慈城地方特色点心,用麦粉发酵,再掺以白糖黄糖,蒸制而成.因其用黄糖,颜色暗黄,所以称之谓“乌馒头”.某商店销售乌馒头,通过分析销售情况发现,乌馒头的日销售量y(盒)是销售单价x(元/盒)的一次函数,销售单价、日销售量的部分对应值如下表,已知销售单价不低于成本价且不高于20元,每天销售乌馒头的固定损耗为20元,且销售单价为18元/盒时,日销售纯利润为1180元.销售单价x(元/盒)1513日销售量y(盒)500700(1)求乌馒头的日销售量y(盒)与销售单价x(元/盒)的函数表达式;(2)“端午乌馒重阳粽”是慈城的习俗.端午节期间,商店决定采用降价促销的方式回馈顾客.在顾客获得最大实惠的前提下,当乌馒头每盒降价多少元时,商店日销售纯利润为1480元?(3)当销售单价定为多少时,日销售纯利润最大,并求此日销售最大纯利润.23.(12分)【基础巩固】:(1)如图1,在△ABC中,D是BC的中点,E是AC的一个三等分点,且.连结AD,BE交于点G,则AG:GD=;BG:GE=.【尝试应用】:(2)如图2,在△ABC中,E为AC上一点,AB=AE,∠BAD=∠C,若AD⊥BE,CE =1,AE=3,求AD的长.【拓展提高】:(3)如图3,在平行四边形ABCD中,F为BC上一点,E为CD中点,BE与AC,AF分别交于点G,M,若∠BAF=∠DAC,AB=AG,BF=2,BM=2MG,求AM的长.24.(14分)如图,等腰△ABC内接于⊙O,其中AB=BC,点D在上运动,,DE分别交AB、BC于点P、Q,CD交AB于点M.(1)求证:.(2)连结AE,当AE为⊙O的直径时,①求证:CD⊥AB.②连结QM,若MQ∥AE,求tan∠EAC的值.③连结CE,设,,请直接写出y关于x的函数表达式.2023年浙江省宁波市江北区中考数学一模试卷参考答案与试题解析一、选择题(每题4分,共40分,在每小题给出的四个选项中,只有一项符合题目要求)1.【分析】因为正数大于一切负数,0大于负数,所以负数最小,﹣2<﹣1,所以﹣2最小.【解答】解:﹣2<﹣1<0<2,故选:A.【点评】本题考查了有理数大小比较,根据大小比较原则,直接比较两个负数的大小即可:两个负数,绝对值大的反而小.2.【分析】根据同底数幂相乘法则计算A,再同底数幂相除法则计算B,然后根据幂的乘方法则计算C,最后根据合并同类项法则计算判断D即可.【解答】解:因为a2⋅a3=a2+3=a5,所以A不正确;因为a3÷a=a3﹣1=a2,所以B不正确;因为(a5)2=a5×2=a10,所以C不正确;因为a3+a3=2a3,所以D正确.故选:D.【点评】本题主要考查了幂的运算,掌握运算法则是解题的关键.即同底数幂相乘(除),底数不变,指数相加(减);幂的乘方,底数不变,指数相乘;合并同类项时,系数相加减,字母和字母指数不变.3.【分析】科学记数法的表现形式为a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n是正数,当原数绝对值小于1时n是负数;由此进行求解即可得到答案.【解答】解:107.6万=1076000=1.076×106,故选:C.【点评】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.4.【分析】根据三视图进行判断即可,注意看得见的部分用实线,看不见的部分用虚线表示.【解答】解:俯视图是从上面看到的图形,∴俯视图是,【点评】本题考查了三视图的知识,掌握“俯视图是从物体的上面看到的视图”是解本题的关键.5.【分析】根据题意,只要举例说明0的平方等于0即可.【解答】解:∵02=0,∴当x=0时,该命题是假命题,故选:C.【点评】本题考查了举反例说明命题是假命题,掌握以上知识是解题的关键.6.【分析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差是描述一组数据离散程度的统计量.销量大的尺码就是这组数据的众数.【解答】解:由于众数是数据中出现次数最多的数,故影响该店主决策的统计量是众数.故选:A.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.7.【分析】由作图得BD平分∠ABC,DE=DC,由AB=AC,∠A=36°,得∠ABC=∠ACB =72°,则∠ABD=∠CBD=36°=∠A,所以AD=BD,可判断A正确;因为∠BDC=∠ABD+∠A=72°,∠BCD=72°,所以∠BDC=∠BCD,可判断B正确;因为∠DEC =∠DCE=72°,所以∠EDB=∠DEC﹣∠CBD=36°,则∠EDB=∠CBD,所以BE=DE=DC,由∠DBE=∠ABD=36°,∠EDB=∠A=36°,得△BED∽△BDA,可判断D正确;由=,得=,则AD2=DC•AC,可证明AD=BE≠BE,可判断C错误,于是得到问题的答案.【解答】解:由作图得BD平分∠ABC,DE=DC,∵AB=AC,∠A=36°,∴∠ABC=∠ACB==72°,∴∠ABD=∠CBD=∠ABC=×72°=36°,∴∠ABD=∠A,∴AD=BD,故A正确;∵∠BDC=∠ABD+∠A=36°+36°=72°,∠BCD=72°,∴∠BDC=∠BCD,∵DE=DC,∴∠DEC=∠DCE=72°,∴∠EDB=∠DEC﹣∠CBD=72°﹣36°=36°,∴∠EDB=∠CBD,∴BE=DE=DC,∵∠DBE=∠ABD=36°,∠EDB=∠A=36°,∴△BED∽△BDA,故D正确;∴=,∴=,∴AD2=DC•AC,设AD=x,BE=DC=m,则AC=x+m,∴x2=m(x+m),解关于x的方程得x1=m,x2=m(不符合题意,舍去),∴AD=BE≠BE,故C错误,故选:C.【点评】此题重点考查等腰三角形的判定与性质、三角形内角和定理、相似三角形的判定与性质、一元二次方程的解法等知识,证明△BED∽△BDA是解题的关键.8.【分析】由题意知知,,进而可得结果.【解答】解:由题意知,,故答案为:B.【点评】本题考查了二元一次方程组的应用.解题的关键在于根据题意正确的列方程组.9.【分析】根据平移的性质和全等图形解答即可.【解答】解:如图,将MN平移至PQ,连接BQ,PB,在△PHQ与△QAB中,∴△PHQ≌△QAB(SAS),∴PQ=BQ,∠PQH=∠QBA,∵∠AQB+∠QBA=90°,∴∠PQH+∠AQB=90°,∴∠PQB=90°,∴△PQB为等腰直角三角形,∴.即B点,故选:B.【点评】此题考查全等图形,关键是根据平移的性质和全等图形解答.10.【分析】根据y1=y3,可得A,C两点关于对称轴对称,从而得到抛物线解析式为y=(x ﹣2)2+c,再由1﹣n≤x≤n,可得点B在点A的右侧,,然后分两种情况讨论,即可求解.∴A,C两点关于对称轴对称.∴,即抛物线解析式为y=(x﹣2)2+c.∵1﹣n≤x≤n,∴点B在点A的右侧,且有1﹣n≤n,∴.情况1:如图1,当点A与点B均在对称轴的左侧时,此时n<2;当x=1﹣n时,二次函数取到最大值为y=(1﹣n﹣2)2+c=(n+1)2+c;当x=n时,二次函数取到最小值为y=(n﹣2)2+c,∴(n+1)2+c﹣(n﹣2)2﹣c=16,解得(舍去).情况2:如图2,当点A与点B在对称轴的两侧时,此时n≥2;A到对称轴的水平距离为2﹣(1﹣n)=1+n.B到对称轴的距离为n﹣2,当x=1﹣n时,二次函数取到最大值为y=(1﹣n﹣2)2+c=(n+1)2+c;当x=2时,二次函数取到最小值为y=c,∴(n+1)2+c﹣c=16,解得n=3或﹣5(舍).综上,n=3.故选:B.【点评】本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质,利用分类讨论思想解答是解题的关键.二、填空题(每题5分,共30分)11.【分析】利用算术平方根定义计算即可求出值.【解答】解:∵22=4,∴4的算术平方根是2,即=2.故答案为:2.【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.12.【分析】直接利用平方差公式分解因式即可.【解答】解:b2﹣9=(b+3)(b﹣3).故答案为:(b+3)(b﹣3).【点评】此题主要考查了公式法分解因式,正确运用平方差公式是解题关键.13.【分析】小江在三岔路口A处,随意选择一条路准备出园共有3种等可能的结果,其中与在B景点处游玩的小北邂逅的情况只有1种,根据概率的定义可得答案.【解答】解:小江在三岔路口A处,随意选择一条路准备出园共有3种等可能的结果,其中与在B景点处游玩的小北邂逅的情况只有1种,所以小江与在B景点处游玩的小北邂逅的概率为,故答案为:.【点评】本题考查列表法或树状图法,列举出所有等可能出现的结果是正确解答的前提,掌握概率的定义是正确解答的关键.14.【分析】连接ED,由重心可得ED=2DM,△AME是等腰直角三角形,再过D作DN⊥AE,即可根据∠BAC=∠DAE,求出tan∠BAC的值.【解答】解:连接ED并延长交AC于点M,过D作DN⊥AE点N,∵点D是△AEC的重心,重心到定点的距离等于到对边距离的2倍,∴ED=2DM,AM=CM,设DM=x,则ED=2DM=2x,∵分别以AB,AC为斜边在同侧作两个等腰直角△ADB与△AEC,∴△AME、△DNE是等腰直角三角形,∠BAC=∠DAE=45°﹣∠DAC,∴AM=CM=EM=3x,,,∴,∴,故答案为:.【点评】本题考查重心的性质,求正切,等腰直角三角形的性质与判定,解题的关键是熟记重心的定义及性质.15.【分析】因为E、F运动到不同位置时,△AEF的面积不同,所以对t的取值范围进行分类,0<t≤1,1<t≤2,2<t≤3,然后进行分别求解即可.【解答】解:四边形ABCD是平行四边形,由图2得:AD=BC=3﹣2=1,AB=CD=2,当0<t≤1时,AF=AE,∵∠A=60°,∴AEF是等边三角形,∴y=×t×t=t2当y=时,=t2解得t=1或t=﹣1(舍去);当1<t≤2时,如图,∴DG=AD•sin60°=,∵AE=t,∴y=AE•DG=t×=t,当y=时,t=,解得t=1(舍去);当2<t≤3时,如图:BE=t﹣2,CE=CF=3﹣t,DF=t﹣1,=S四边形ABCD﹣S△ABE﹣S△ADF﹣S△CEF∴y=S△AEF=2×﹣×2×(t﹣2)×﹣×(t﹣1)﹣×(3﹣t)2=﹣+t,当y=时,=﹣+t,解得t=或t=(舍去),综上所述得:当y=时.t=1或t=.故答案为:1或.【点评】本题考查了动点在平行四边形中产生的面积问题,求二次函数解析式,掌握“化动为静”是解题的关键.16.【分析】通过构造延长线得到直角三角形EOM,再用射影定理求出ED、DA、DO之间的数量关系,在通过△ODA面积为15求出ED、DA、DO实际长度,再通过求D点到y 轴的距离求出D点坐标,也解出k,进而得出B点坐标.再过点A作AH⊥ND于H,然后通过相似求出A点坐标,进而得出AB直线解析式,最后得出F点坐标.【解答】解:延长DA交x轴于点M,设DE=a,则CE=2a,CD=AD=3a,∵ED=a,∴AM=a,∴Rt△MOE中,OD⊥EM,OD2=ED⋅DM,∴OD=2a,∵,∴,∴过D作DN⊥y轴,则,即ON=2DN,∵,∴D(2,4),即k=8.∵D(2,4),∴B(4,8),过点A作AH⊥ND于H,∵∠OND=∠H=90°,∠EDN+∠NDO=90°,∠NDO+∠HDA=90°,∴∠NDO=∠HDA,∴△DHA∽△OND,∵,∴DH=6,AH=3,∴A(8,1),∴,∴.【点评】本题考查反比例函数解析式求解、相似三角形的应用、射影定理应用、菱形的性质、一次函数应用,掌握这些是本题关键.三、解答题(本大题有8小题,共80分)17.【分析】(1)根据完全平方式和合并同类项即可求解;(2)根据不等式组解法求解即可.【解答】解:(1)原式=(a2+2a+1)﹣(a2+a)=a2+2a+1﹣a2﹣a=a+1;(2),由①得x<2,由②得x≥﹣1,∴不等式组的解集为﹣1≤x<2.【点评】本题考查了解不等式组、实数运算,正确求解是解题关键.18.【分析】(1)根据轴对称定义,在第一行第二列涂上阴影和在第三行第二列涂上阴影即可.(2)根据中心对称定义,在第一行第四列涂上阴影和在第三行第一列涂上阴影即可.【解答】解:(1)如图所示:答案不唯一.(2)如图所示:答案不唯一.【点评】本题主要考查作轴对称图形和中心对称图形,如果一个图形沿着一条直线对折后两部分完全重台,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重台,那么这个图形就叫做中心对称图形,这个点叫做对称中心,掌握轴对称图形和中心对称图形定义是解题的关键.19.【分析】(1)用总人数减去对其它活动最感兴趣的人数,即可求解;(2)用最感兴趣活动为“走谷雨(踏春)”的总人数乘以最感兴趣活动为“走谷雨(踏春)”的女生人数所占的百分比,即可求解;(3)分别求出男生最感兴趣活动中“洗桃花水(沐浴)”和“吃椿(香椿)”的人数,即可求解.【解答】解:(1)最感兴趣活动为“洗桃花水(沐浴)”的学生总人数为100﹣15﹣10﹣40﹣15=20(人),补全条形统计图,如下:(2)最感兴趣活动为“走谷雨(踏春)”的女生人数为40×(1﹣60%)=16(人)(3)不同,理由如下:洗桃花水:20×40%=8(人),吃椿:15×40%=6(人),所以男生最感兴趣活动中喜欢“洗桃花水”和“吃椿”的人数不同.【点评】本题主要考查了条形统计图,折线统计图,明确题意,准确从统计图获取信息是解题的关键.20.【分析】(1)用待定系数法求解析式即可;(2)根据两函数图象的上下位置关系结合交点横坐标,即可得出一次函数大于反比例函数的值的x的取值范围.【解答】解:(1)把(1,6)代入得k=6,∴,把(m,2)代入得m=3,把(3,2),(1,6)代入y=ax+b得,解得,∴y=﹣2x+8;(2)x<0或1<x<3.【点评】本题考查了反比例函数与一次函数的交点问题、反比例函数图象上点的坐标特征以及待定系数法求一次函数解析式,以及利用图象求不等式的解集,根据点的坐标利用待定系数法求出函数解析式是解题的关键.21.【分析】(1)过点E作EH⊥BC,垂足为H,根据已知易得△ABC是等边三角形,从而可得∠C=60°,再根据线段中点的定义可得AE=0.6米,从而可得EC=2.2(米),然后在Rt△ECH中,利用锐角三角函数的定义求出EH的长,即可解答;(2)过点D作DM⊥BC,垂足为M,然后分两种情况:当∠BAC=30°时;当∠BAC =90°时,分别求出DM的长,即可解答.【解答】解:(1)过点E作EH⊥BC,垂足为H,∵AB=AC=1.6米,∠BAC=60°,∴△ABC是等边三角形,∴∠C=60°,∵点E是AD的中点,∴AE=AD=0.6(米),∴EC=AE+AC=2.2(米),在Rt△ECH中,EH=EC•tan60°=2.2≈1.9(米),∴此人离地面(BC)的高度约为1.9米;(2)过点D作DM⊥BC,垂足为M,当∠BAC=30°时,∵AB=AC=1.6米,∴∠B=∠C=(180°﹣∠BAC)=75°,∵AD=1.2米,∴DC=AD+AC=2.8(米),在Rt△DMC中,DM=DC•sin75°≈2.8×0.97≈2.7(m);当∠BAC=90°时,∵AB=AC=1.6米,∴∠B=∠C=(180°﹣∠BAC)=45°,在Rt△DMC中,DM=DC•sin45°=2.8×=1.4≈2.0(m);∴在安全使用范围下,桑梯顶端D到地面BC的距离范围约为2.0m≤DM≤2.7m.【点评】本题考查了解直角三角形的应用,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.22.【分析】(1)设y=kx+b,根据表格即可求解;(2)根据:销售量×单件利润﹣损耗费用=销售总利润,列出方程即可求解;(3)设日销售纯利润为w元,根据:销售量×单件利润﹣损耗费用=销售总利润,列出函数关系式,并在12≤x≤20求最值即可.【解答】解:(1)设y=kx+b,由题意得,解得,∴y=﹣100x+2000.(2)当x=18时,y=200,即销售200盒的纯利润为1180元,∴成本价为:18﹣(1180+20)÷200=12(元),(﹣100x+2000)(x﹣12)=1480+20,解得:x1=17(舍),x2=15,18﹣15=3(元).答:当乌馒头每盒降价3元时,商店每天获利为1480元.(3)设日销售纯利润为w元,由题意得w=(﹣100x+2000)(x﹣12)﹣20=﹣100x2+3200x﹣24020=﹣100(x﹣16)2+1580,∵﹣100<0,12≤x≤20,∴当x=16时,w有最大值1580元,答:当销售单价定为16元/盒时,日销售纯利润最大,最大纯利润为1580元.【点评】本题考查了一次函数,一元二次方程,二次函数在销售利润中的应用,掌握销售问题中的等量关系式是解题的关键.23.【分析】(1)作DH∥AC交BE于H,则==1,所以BH=EH,则DH=CE,由CE=AC,得AE=CE,所以AE=DH,即可证明△AGE≌△DGH,得AG=GD,GE=GH,则AG:GD=1:1;因为BH=EH=2GE,所以BG=3GE,则BG:GE=3:1,于是得到问题的答案;(2)设BE交AD于点L,作EF∥AD交BC于点F,由CE=1,AE=3,得AB=AE=3,CA=CE+AE=4,所以==,则FD=3CF,再证明Rt△ALB≌Rt△ALE,得BL=EL,∠BAD=∠CAD,则==1,所以BD=FD=3CF,再证明∠CEF=∠CAD=∠C,则EF=CF,由△CEF∽△CAD,得==,再证明△DBA∽△ABC,得=,则BD•BC=AB2=32=9,设CF=m,则BD=3m,BC=7m,于是得3m×7m=9,求得AD=4EF=4CF=4m=;(3)作MN∥BC交CG于点N,设NG=n,由==2,得CN=2NG=2n,由AB =AG,得∠ABG=∠AGB,即可证明∠CEG=∠ABG=∠AGB=∠CGE,则DE=CE=CG=3n,AB=AG=CD=6n,所以AN=7n,AC=9n,再证明△FBA∽△ABC,得=,则AF=•BF=3,因为==,所以AM=AF=.【解答】解:(1)如图1,作DH∥AC交BE于H,则∠EAG=∠HDG,∠AEG=∠DHG,∵D是BC的中点,∴BD=CD,∴==1,∴BH=EH,∴DH=CE,∵E是AC的一个三等分点,且CE=AC,∴AE=CE,∴AE=DH,∴△AGE≌△DGH(ASA),∴AG=GD,GE=GH,∴AG:GD=1:1;∵BH=EH=2GE,∴BG=BH+GH=2GE+GE=3GE,∴BG:GE=3:1,故答案为:1:1;3:1.(2)设BE交AD于点L,作EF∥AD交BC于点F,∵CE=1,AE=3,∴AB=AE=3,CA=CE+AE=4,==,∴FD=3CF,∵AD⊥BE于点L,∴∠ALB=∠ALE=90°,∵AL=AL,∴Rt△ALB≌Rt△ALE(HL),∴BL=EL,∠BAD=∠CAD,∴==1,∴BD=FD=3CF,∵∠BAD=∠C,∴∠CAD=∠C,∴∠CEF=∠CAD=∠C,∴EF=CF,∵△CEF∽△CAD,∴==,∵∠BAD=∠C,∠DBA=∠ABC,∴△DBA∽△ABC,∴=,∴BD•BC=AB2=32=9,设CF=m,则BD=3m,BC=7m,∴3m×7m=9,∴解得m1=,m2=(不符合题意,舍去),∴AD=4EF=4CF=4m=4×=,∴AD的长为.(3)如图3,作MN∥BC交CG于点N,设NG=n,∵BM=2MG,∴==2,∴CN=2NG=2n,∵AB=AG,∴∠ABG=∠AGB,∵四边形ABCD是平行四边形,∴CD∥AB,∴∠CEG=∠ABG=∠AGB=∠CGE,∵E为CD中点,∴DE=CE=CG=CN+NG=2n+n=3n,∴AB=AG=CD=DE+CE=3n+3n=6n,∴AN=AG+NG=6n+n=7n,AC=AG+CG=6n+3n=9n,∵∠BAF=∠DAC,∠BCA=∠DAC,∴∠BAF=∠BCA,∵∠FBA=∠ABC,∴△FBA∽△ABC,∴=,∴AF=•BF=×2=3,∵===,∴AM=AF=×3=,∴AM的长为.【点评】此题重点考查平行四边形的性质、全等三角形的判定与性质、平行线分线段成比例定理、三角形的中位线定理、相似三角形的判定与性质、一元二次方程的解法等知识与方法,此题综合性强,难度较大,属于考试压轴题.24.【分析】(1)利用等弦对等弧和等式的性质解答即可;(2)①连接BE,令∠AED=α,利用圆周角定理,直角三角形的性质和三角形的内角和定理解答即可;②连结BD,EC,利用圆周角定理,平行线的性质,全等三角形的判定与性质,等角对等弧,等弧对等弦和等腰直角三角形的判定与性质得到∠EAC=45°,再利用特殊角的三角函数值解答即可;③连接BE,AD,利用圆周角定理和等腰三角形的判定定理得到QP=QB,利用圆周角定理和直角三角形的性质得到QE=PQ;设QP=xk,PD=k,则QE=PQ=xk,DE=EQ+PQ+PD=2xk+k=(2x+1)k,PE=PQ+EQ=2xk,利用勾股定理和相似三角形的判定与性质解答即可得出结论.【解答】(1)证明:∵AB=BC,∴,∵,∴,即;(2)①证明:连接BE,如图,令∠AED=α,∵,∴∠BAE=∠AED=α,∵AE为直径,∴∠ABE=90°,∴∠BEA=90°﹣α,∴∠BED=∠BEA﹣∠AED=90°﹣2α,∴∠DCB=∠BED=90°﹣2α,∵AB=BC,∴∠BAC=∠BCA=90°﹣α,∴∠ABC=180°﹣(90°﹣α)﹣(90°﹣α)=2α,∴∠DCB+∠ABC=90°,∴AB⊥DC;②解:连结BD,EC,如图,∵,∴∠ABD=∠EDB,∠PAE=∠PEA,∴BP=DP.∵MQ∥AE,∴∠PMQ=∠PAE,∠PQM=∠PEA,∴∠PQM=∠PMQ,∴PQ=PM.在△PBQ和△PDM中,,∴△PBQ≌△PDM(SAS),∴∠PBQ=∠QDC,∴,∴AC=EC,∵AE为⊙O的直径,∴∠ACE=90°,∴tan∠EAC=1;③解:y关于x的函数表达式为:,理由如下:连接BE,AD,如图,令∠DEA=α,∵,∴∠BAE=∠DEA=α,∴∠BPE=∠BAE+∠DEA=2α,∵AE为直径,∴,∵,∴,∴,∴∠ABC=2∠AED=2α,∴∠PBQ=∠BPQ=2a,∴QP=QB,∵AE为⊙O的直径,∴∠ABE=90°,∴∠BPQ+∠BEP=90°,∠PBQ+∠EBQ=90°,∴∠BEP=∠EBQ,∴QE=BQ,∴QE=PQ.∵,∴设QP=xk,PD=k,∴QE=PQ=xk,∴DE=EQ+PQ+PD=2xk+k=(2x+1)k,PE=PQ+EQ=2xk,∵∠PAE=∠PEA,∵AE为直径,∴∠PDA=90°,∴AD==k,在Rt△AED中:AE==k=2k.∵DC⊥AB,∴∠DMP=90°,∵AE为直径,∴∠ACE=90°,∴∠DMP=∠ACE=90°,∵∠EDC=∠EAC,∴△DMP∽△ACE∴,即.【点评】本题主要考查了圆的有关性质,圆周角定理,直角三角形的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,勾股定理,相似三角形的判定与性质,平行线的性质,连接直径所对的圆周角是解决此类问题常添加的辅助线。
2023年江苏省淮安市涟水县中考一模数学试题(含答案解析)

2023年江苏省淮安市涟水县中考一模数学试题学校:___________姓名:___________班级:___________考号:___________........二、填空题16.如图,正方形ABCD 的中心与坐标原点O 重合,将顶点()1,0D 绕点()0,1A 逆时针旋转90︒得点1D ,再将1D 绕点B 逆时针旋转90︒得点2D ,再将2D 绕点C 逆时针旋转90︒得点3D ,再将3D 绕点D 逆时针旋转90︒得点4D ,再将4D 绕点A 逆时针旋转90︒得点5D ……依此类推,则点2023D 的坐标是______.三、解答题(1)求点B 到地面的高度;(2)求建筑物CD 的高度.23.如图,以Rt ABC △的直角边AC 为直径作O ,交斜边AB 于点D ,E 为BC 边的中点,连DE .(1)请判断DE 是否为O 的切线,并证明你的结论.(2)当AD :9DB =:16时,8cm DE =时,求O 的半径R .24.某商场销售一种小商品,进货价为40元/件.当售价为60元/件时,每天的销售量为300件.在销售过程中发现:销售单价每上涨2元,每天的销售量就减少20件.设销售价格上涨x 元/件(x 为偶数),每天的销售量为y 件.(1)当销售价格上涨10元时,每天对应的销售量为______件.(2)请写出y 与x 的函数关系式.(3)设每天的销售利润为w 元,为了让利于顾客,则每件商品的销售单价定为多少元时,每天获得的利润最大,最大利润是多少?25.如图,由小正方形构成的网格中,每个小正方形的顶点叫做格点,O 经过A ,B ,C 三个格点,仅用无刻度的直尺在给定网格中按要求画图(画图过程用虚线,结果用实线).参考答案:1.C【分析】将图形旋转180︒后,能够与原图重合,这样的图形即为中心对称图形.【详解】解:旋转180︒后能够与原图重合,故为中心对称图形,其他图形旋转180︒后均不能与自身重合.故选:C.【点睛】本题考查了中心对称图形的概念,解决本题的关键是正确理解中心对称图形的概念.2.A【分析】结合题意,根据视图的性质分析,即可得到答案.【详解】由6个相同的正方体堆成的物体,它的左视图如下:故选:A【点睛】本题考查了视图的知识;解题的关键是熟练掌握左视图的性质,从而完成求解.3.C【分析】根据单项式乘多项式、完全平方公式、单项式乘单项式以及合并同类项的运算法则计算解答即可.【详解】解:A、-3(a-1)=-3a+1,选项错误,不符合题意;B、(x-3)2=x2-6x+9,选项错误,不符合题意;C、5y3•3y2=15y5,选项正确,符合题意;D、x3与x2不是同类项,不能合并,选项错误,不符合题意;故选:C.【点睛】此题考查整式的混合计算,关键是根据单项式乘多项式、完全平方公式、单项式乘单项式以及合并同类项的运算法则计算解答.4.C【分析】由调查的方法、方差的意义、概率公式以及随机事件的定义分别对各个选项进行判断即可.【详解】解:A、为检测我校是否有学生感染新冠病毒,进行核酸检测应该采用普查的方式,。
中考数学一模试题(含答案解析)
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________时间120分钟满分100分一.选择题(共8小题,满分16分,每小题2分)1.下面四个图形分别是可回收垃圾、其他垃圾、厨余垃圾、有害垃圾的标志,这四个标志中是轴对称图形的是()A.B.C.D.2.下列把2034000记成科学记数法正确的是()A.2.034×106B.20.34×105C.0.2034×106D.2.034×1033.如图,数轴上的点A所表示的数为x,则x的值为()A.B.+1C.﹣1D.1﹣4.若正多边形的内角和是1260°,则该正多边形的一个外角为()A.30°B.40°C.45°D.60°5.如图,AB∥CD,∠BAE=120°,∠DCE=30°,则∠AEC=()度.A.70B.150C.90D.1006.菲尔兹奖(FieldsMedal)是享有崇高声誉的数学大奖,每四年颁奖一次,颁给二至四名成就显著的年轻数学家.对截至2014年获奖者获奖时的年龄进行统计,整理成下面的表格.组别第一组第二组第三组第四组年龄段(岁)27<x≤3131<x≤3434<x≤3737<x≤40频数(人)8111720则这56个数据的中位数落在()A.第一组B.第二组C.第三组D.第四组7.如果a﹣b=5,那么代数式(﹣2)•的值是()A.﹣B.C.﹣5D.58.如图为某二次函数的部分图象,有如下四个结论:①此二次函数表达式为y=x2﹣x+9;②若点B(﹣1,n)在这个二次函数图象上,则n>m;③该二次函数图象与x轴的另一个交点为(﹣4,0);④当0<x<6时,m<y<8.所有正确结论的序号是()A.①③B.①④C.②③D.②④二.填空题(共8小题,满分16分,每小题2分)9.因式分解:4a3﹣16a=.10.设M=2x﹣3y,N=3x﹣2y,P=xy.若M=5,N=0,则P=.11.如图,已知点B、E、F、C在同一直线上,BE=CF,AF=DE,则添加条件,可以判断△ABF≌△DCE.12.如图,AB是⊙O的直径,C,D是圆上两点,∠AOC=50°,则∠D等于.13.在正方形网格中,A、B、C、D、E均为格点,则∠BAC﹣∠DAE=°.14.已知扇形的半径为6cm,弧长为5πcm,则扇形的圆心角为度.15.若关于x的一元二次方程x2+2x+k=0无实数根,则k的取值范围是.16.如图1,在△ABC中,AB>AC,D是边BC上一动点,设B,D两点之间的距离为x,A,D两点之间的距离为y,表示y与x的函数关系的图象如图2所示.则线段AC的长为,线段AB 的长为.三.解答题(共12小题,满分68分)17.(5分)计算:2sin45°+|﹣1|﹣tan60°+(π﹣2)0.18.(5分)解不等式:1﹣x≥﹣,并把它的解集在数轴上表示出来.19.(5分)已知x2﹣3x﹣1=0,求代数式(x+2)(x﹣2)﹣x(3x﹣6)的值.20.(5分)如图,AB为半圆O的直径,且AB=10,C为半圆上的一点,AC<BC.(1)请用尺规作图在BC上作一点D,使得BD=AC+CD;(不写作法,保留痕迹)(2)在(1)的条件下,连接OD,若OD=,求△ABC的面积.21.(6分)重庆是一个非常适合旅游打卡的城市,在渝中区有“洪崖洞”,南岸区有“南山一颗树”等等,为了解初三学生对重庆历史文化的了解程度,随机抽取了男、女各m名学生进行问卷测试,问卷共30道选择题,现将得分情况统计,并绘制了如图不完整的统计图(数据分组为A组:x<18,B组:18≤x<22,C组:22≤x<26,D组:26≤x≤30,x表示问卷测试的分数),其中男生得分处于C组的有14人,男生C组得分情况分别为:22,22,22,22,22,23,23,23,24,24,24,25,25,25.男生、女生得分的平均数、中位数、众数(单位:分)如表所示:组别平均数中位数众数男20n22女202320(1)直接写出m,n的值,并补全条形统计图;(2)通过以上数据分析,你认为成绩更好的是男生还是女生?说明理由(一条理由即可);(3)已知初三年级总人数为1800人,请估计参加问卷测试,成绩处于C组的人数.22.(5分)如图,在等边△ABC中,已知点E在直线AB上(不与点A、B重合),点D在直线BC上,且ED =EC.(1)若点E为线段AB的中点时,试说明DB=AE的理由;(2)若△ABC的边长为2,AE=1,求CD的长.23.(6分)探究一次函数y=kx+k﹣2(k是不为0的常数)图象的共同特点.(探究过程)小华尝试把x=﹣1代入时,发现可以消去k,竟然求出了y=﹣2.老师问:结合一次函数图象,这说明了什么?小组讨论得出:无论k取何值,一次函数y=kx+k﹣2的图象一定经过定点(﹣1,﹣2),老师:如果一次函数的图象是经过某一个定点的直线,那么我们把这样的一次函数图象称为“陀螺线”.若一次函数y=(k﹣1)x﹣(2k+3)的图象是“陀螺线”,(1)一次函数y=(k﹣1)x﹣(2k+3)的图象经过定点P的坐标是.(2)已知一次函数y=(k﹣1)x﹣(2k+3)的图象与x轴,y轴分别相交于点A、B.①若△OBP的面积为8,求k的值.②若S△AOB:S△OBP=3:2,求k的值.24.(6分)如图,P A、PB与⊙O相切于点A、B,过点B作BD∥AP交⊙O于点D.(1)求证:AD=AB;(2)若BD•BP=80,sin∠DAB=,求△ABP的面积.25.(5分)如图,已知△ABC中,BE平分∠ABC,且BE=BA,点F是BE延长线上一点,且BF=BC,过点F作FD⊥BC于点D.(1)求证:∠BEC=∠BAF;(2)判断△AFC的形状并说明理由.(3)若CD=2,求EF的长.26.(7分)如图,一次函数的图象y=ax+b(a≠0)与反比例函数y=(k≠0)的图象交于点A(,4),点B(m,1).(1)求这两个函数的表达式;(2)若一次函数图象与y轴交于点C,点D为点C关于原点O的对称点,点P是反比例函数图象上的一点,当S△OCP:S△BCD=1:3时,请直接写出点P的坐标.27.(6分)已抛物线y=x2+2x+m的顶点在x轴上.(1)求m的值;(2)若P(n,y1),Q(n+2,y2)是该二次函数的图象上的两点,且y1>y2,求实数n的取值范围.28.(7分)在平面直角坐标系xOy中,对于△ABC,点P在BC边的垂直平分线上,若以点P为圆心,PB 为半径的⨀P与△ABC三条边的公共点个数之和不小于3,则称点P为△ABC关于边BC的“Math点”.如图所示,点P即为△ABC关于边BC的“Math点”.已知点P(0,4),Q(a,0).(1)如图1,a=4,在点A(1,0)、B(2,2)、C(,)、D(5,5)中,△POQ关于边PQ的“Math点”为.(2)如图2,,①已知D(0,8),点E为△POQ关于边PQ的“Math点”,请直接写出线段DE的长度的取值范围;②将△POQ绕原点O旋转一周,直线交x轴、y轴于点M、N,若线段MN上存在△POQ关于边PQ的“Math点”,求b的取值范围.参考答案一.选择题(共8小题,满分16分,每小题2分)1.下面四个图形分别是可回收垃圾、其他垃圾、厨余垃圾、有害垃圾的标志,这四个标志中是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选:B.2.下列把2034000记成科学记数法正确的是()A.2.034×106B.20.34×105C.0.2034×106D.2.034×103【解答】解:数字2034000科学记数法可表示为2.034×106.故选:A.3.如图,数轴上的点A所表示的数为x,则x的值为()A.B.+1C.﹣1D.1﹣【解答】解:根据题意得:x=﹣1=﹣1,故选:C.4.若正多边形的内角和是1260°,则该正多边形的一个外角为() A.30°B.40°C.45°D.60°【解答】解:设该正多边形的边数为n,根据题意列方程,得(n﹣2)•180°=1260°解得n=9.∴该正多边形的边数是9,∵多边形的外角和为360°,360°÷9=40°,∴该正多边形的一个外角为40°.故选:B.5.如图,AB∥CD,∠BAE=120°,∠DCE=30°,则∠AEC=()度.A.70B.150C.90D.100【解答】解:如图,延长AE交CD于点F,∵AB∥CD,∴∠BAE+∠EFC=180°,又∵∠BAE=120°,∴∠EFC=180°﹣∠BAE=180°﹣120°=60°,又∵∠DCE=30°,∴∠AEC=∠DCE+∠EFC=30°+60°=90°.故选:C.6.菲尔兹奖(FieldsMedal)是享有崇高声誉的数学大奖,每四年颁奖一次,颁给二至四名成就显著的年轻数学家.对截至2014年获奖者获奖时的年龄进行统计,整理成下面的表格.组别第一组第二组第三组第四组年龄段(岁)27<x≤3131<x≤3434<x≤3737<x≤40频数(人)8111720则这56个数据的中位数落在()A.第一组B.第二组C.第三组D.第四组【解答】解:题目中数据共有56个,故中位数是按从小到大排列后第28、第29两个数的平均数,而第28、第29两个数均在第三组,故这组数据的中位数落在第三组.故选:C.7.如果a﹣b=5,那么代数式(﹣2)•的值是()A.﹣B.C.﹣5D.5【解答】解:∵a﹣b=5,∴原式=•=•=a﹣b=5,故选:D.8.如图为某二次函数的部分图象,有如下四个结论:①此二次函数表达式为y=x2﹣x+9;②若点B(﹣1,n)在这个二次函数图象上,则n>m;③该二次函数图象与x轴的另一个交点为(﹣4,0);④当0<x<6时,m<y<8.所有正确结论的序号是()A.①③B.①④C.②③D.②④【解答】解:①从图象看,抛物线的顶点坐标为(2,9),抛物线和x轴的一个交点坐标为(8,0),则设抛物线的表达式为y=a(x﹣2)2+9,将(8,0)代入上式得:0=a(8﹣2)2+9,解得a=﹣,故抛物线的表达式为y=x2﹣x+8,故①错误,不符合题意;②从点A、B的横坐标看,点A距离抛物线对称轴远,故n>m正确,符合题意;③抛物线的对称轴为直线x=2,抛物线和x轴的一个交点坐标为(8,0),则另外一个交点为(﹣4,0),故③正确,符合题意;④从图象看,当0<x<6时,m<y≤9,故④错误,不符合题意;故选:C.二.填空题(共8小题,满分16分,每小题2分)9.因式分解:4a3﹣16a=4a(a+2)(a﹣2).【解答】解:原式=4a(a2﹣4)=4a(a+2)(a﹣2),故答案为:4a(a+2)(a﹣2)10.设M=2x﹣3y,N=3x﹣2y,P=xy.若M=5,N=0,则P=6.【解答】解:由题意得,①+②得5x﹣5y=5,即x﹣y=1③,①﹣③×2得﹣y=3,解得y=﹣3,把y=﹣3代入③得,x=﹣2,∴P=xy=﹣2×(﹣3)=6,故答案为6.11.如图,已知点B、E、F、C在同一直线上,BE=CF,AF=DE,则添加条件∠AFB=∠DEC或AB=DC,可以判断△ABF≌△DCE.【解答】解:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,又∵AF=DE,∴若添加∠AFB=∠DEC,可以利用“SAS”证明△ABF≌△DCE,若添加AB=DC,可以利用“SSS”证明△ABF≌△DCE,所以,添加的条件为∠AFB=∠DEC或AB=DC.故答案为:∠AFB=∠DEC或AB=DC.12.如图,AB是⊙O的直径,C,D是圆上两点,∠AOC=50°,则∠D等于25°.【解答】解:∵∠AOC与∠D是同弧所对的圆心角与圆周角,∠AOC=50°,∴∠D=∠AOC=25°.故答案为25°.13.在正方形网格中,A、B、C、D、E均为格点,则∠BAC﹣∠DAE=45°.【解答】解:连接AF、EF,则∠CAB=∠F AD,∵∠F AD﹣∠DAE=∠F AE,∴∠BAC﹣∠DAE=∠F AE,设小正方形的边长为1,则AF=,EF=,AE=,∴AF2+EF2=AE2,∴△AFE是等腰直角三角形,∴∠F AE=45°,即∠BAC﹣∠DAE=45°,故答案为:45.14.已知扇形的半径为6cm,弧长为5πcm,则扇形的圆心角为150度.【解答】解:设扇形的圆心角为n°,∵扇形的半径为6cm,弧长为5πcm,∴5π=,解得n=150,故答案为:150.15.若关于x的一元二次方程x2+2x+k=0无实数根,则k的取值范围是k>1.【解答】解:根据题意得△=b2﹣4ac=22﹣4k<0,解得k>1.故答案为:k>1.16.如图1,在△ABC中,AB>AC,D是边BC上一动点,设B,D两点之间的距离为x,A,D两点之间的距离为y,表示y与x的函数关系的图象如图2所示.则线段AC的长为,线段AB的长为2.【解答】解:从图象看,当x=1时,y=,即BD=1时,AD=,当x=7时,y=,即BD=7时,C、D重合,此时y=AD=AC=,则CD=6,即当BD=1时,△ADC为以点A为顶点腰长为的等腰三角形,如下图:过点A作AH⊥BC于点H,在Rt△ACH中,AC=,CH=DH=CD=3,则AH===2,在Rt△ABH中,AB===2,故答案为:,2.三.解答题(共12小题,满分68分)17.(5分)计算:2sin45°+|﹣1|﹣tan60°+(π﹣2)0.【解答】解:原式=2×+﹣1﹣+1==.18.(5分)解不等式:1﹣x≥﹣,并把它的解集在数轴上表示出来.【解答】解:去分母得,6﹣4x≥3﹣(2x+1),去括号得,6﹣4x≥3﹣2x﹣1,移项、合并同类项得,﹣2x≥﹣4,把x的系数化为1得,x≤2.在数轴上表示此不等式的解集如下:19.(5分)已知x2﹣3x﹣1=0,求代数式(x+2)(x﹣2)﹣x(3x﹣6)的值.【解答】解:原式=x2﹣4﹣3x2+6x=﹣2x2+6x﹣4,∵x2﹣3x﹣1=0,∴x2﹣3x=1,∴原式=﹣2(x2﹣3x)﹣4=﹣2×1﹣4=﹣6.20.(5分)如图,AB为半圆O的直径,且AB=10,C为半圆上的一点,AC<BC.(1)请用尺规作图在BC上作一点D,使得BD=AC+CD;(不写作法,保留痕迹)(2)在(1)的条件下,连接OD,若OD=,求△ABC的面积.【解答】解:(1)如图,点D即为所求作.(2)连接AE,OD.∵OA=OB,DE=DB,∴AE=2OD=6,∵AB是直径,∴∠ACE=∠ACB=90°,在Rt△ACE中,AC=EC,∴AC=AE=6,∴BC===6,∴S△ABC=•AC•BC=×6×8=24.21.(6分)重庆是一个非常适合旅游打卡的城市,在渝中区有“洪崖洞”,南岸区有“南山一颗树”等等,为了解初三学生对重庆历史文化的了解程度,随机抽取了男、女各m名学生进行问卷测试,问卷共30道选择题,现将得分情况统计,并绘制了如图不完整的统计图(数据分组为A组:x<18,B组:18≤x<22,C组:22≤x<26,D组:26≤x≤30,x表示问卷测试的分数),其中男生得分处于C组的有14人,男生C组得分情况分别为:22,22,22,22,22,23,23,23,24,24,24,25,25,25.男生、女生得分的平均数、中位数、众数(单位:分)如表所示:组别平均数中位数众数男20n22女202320(1)直接写出m,n的值,并补全条形统计图;(2)通过以上数据分析,你认为成绩更好的是男生还是女生?说明理由(一条理由即可);(3)已知初三年级总人数为1800人,请估计参加问卷测试,成绩处于C组的人数.【解答】解:(1)m=14÷28%=50(人),50×(2%+24%)=12(人),∴男生中位数n=(25+25)÷2=25,女生C组人数=50﹣2﹣13﹣20=15(人),条形图如图所示:(2)男生的成绩比较好,因为男生的中位数比女生的中位数大(也可以根据众数的大小判断);(3)1800×=522(人),答:估计成绩处于C组的人数约为522人.22.(5分)如图,在等边△ABC中,已知点E在直线AB上(不与点A、B重合),点D在直线BC上,且ED =EC.(1)若点E为线段AB的中点时,试说明DB=AE的理由;(2)若△ABC的边长为2,AE=1,求CD的长.【解答】解:(1)∵△ABC是等边三角形,E为AB的中点,∴∠BCE=30°,BE=AE,∵ED=EC,∴∠EDB=∠BCE=30°,∵∠ABD=120°,∴∠DEB=30°,∴DB=EB,∴AE=DB;(2)如图1,E在线段AB上时,∵AB=2,AE=1,∴点E是AB的中点,由(1)知,BD=AE=1,∴CD=BC+BD=3;如图2,E在线段AB的反向延长线上时,∵AE=1,AB=2,∴BE=3,∵△ABC是等边三角形,∴∠BAC=∠BCA=60°,AB=BC=AC=2,过E作EH∥AC交BC的延长线于H,∴∠BEH=∠BHE=60°,∴△BEH是等边三角形,∴BE=EH=BH=3,∠B=∠H=60°,∵ED=EC,∴∠EDC=∠ECD,∴∠B+∠BED=∠H+∠HEC,∴∠BED=∠HEC,在△BDE和△HCE中,,∴△BDE≌△HCE(SAS),∴BD=HC=BH﹣BC=3﹣2=1,∴CD=BH﹣BD﹣HC=3﹣1﹣1=1.综上所述,CD的长为1或3.23.(6分)探究一次函数y=kx+k﹣2(k是不为0的常数)图象的共同特点.(探究过程)小华尝试把x=﹣1代入时,发现可以消去k,竟然求出了y=﹣2.老师问:结合一次函数图象,这说明了什么?小组讨论得出:无论k取何值,一次函数y=kx+k﹣2的图象一定经过定点(﹣1,﹣2),老师:如果一次函数的图象是经过某一个定点的直线,那么我们把这样的一次函数图象称为“陀螺线”.若一次函数y=(k﹣1)x﹣(2k+3)的图象是“陀螺线”,(1)一次函数y=(k﹣1)x﹣(2k+3)的图象经过定点P的坐标是(2,﹣5).(2)已知一次函数y=(k﹣1)x﹣(2k+3)的图象与x轴,y轴分别相交于点A、B.①若△OBP的面积为8,求k的值.②若S△AOB:S△OBP=3:2,求k的值.【解答】解:(1)当x=2时,y=(k﹣1)x﹣(2k+3)=2(k﹣1)﹣(2k+3)=﹣5;∴P (2,﹣5),故答案为:(2,﹣5);(2)解:①当x=0时,y=﹣(2k+3)∴OB=|2k+3|,∵P(2,﹣5),∴;∴2k+3=±8,解得:;②当y=0时,,∴,∴,∵S△OAB:S△OBP=3:2,∴,即,∴,解得:k=0或k=6,即k=0或k=6.24.(6分)如图,P A、PB与⊙O相切于点A、B,过点B作BD∥AP交⊙O于点D.(1)求证:AD=AB;(2)若BD•BP=80,sin∠DAB=,求△ABP的面积.【解答】(1)证明:连接AO,并延长交DB于点E,∵P A是⊙O的切线,∴OA⊥AP,∵BD∥AP,∴OA⊥BD于点E,∴DE=BE,即AE是BD的垂直平分线,∴AD=BD;(2)解:连接OB,OP交AB于点F,∵∠DAB=2∠OAB=∠EOB,且sin∠DAB=,∴sin∠EOB=,在Rt△EOB中,,设EB=4a,则OB=OA=5a,OE=3a,∴AE=8a,∴tan∠EAB=,又∵P A,PB与⊙O相切于点A,B,∴P A=PB,且OP平分∠APB,∴OP⊥AB,∴∠OP A+∠P AB=90°,∵∠OAB+∠P AB=90°,∴∠OAB=∠OP A,即tan∠OAB=tan∠OP A=,∴,即AP=BP=10a,又∵BD•BP=80,∴2BE•BP=80,即BE•BP=4a×10a=40a2=40,∴a=1,∴AE=8,BE=4,∴AB===4,设AF=b,则PF=2b,∴b2+(2b)2=102,∴b=2,∴FP=4,∴S△ABP=AB•FP==40.25.(5分)如图,已知△ABC中,BE平分∠ABC,且BE=BA,点F是BE延长线上一点,且BF=BC,过点F作FD⊥BC于点D.(1)求证:∠BEC=∠BAF;(2)判断△AFC的形状并说明理由.(3)若CD=2,求EF的长.【解答】解:(1)∵BE平分∠ABC,∴∠EBC=∠ABF,在△BEC和△BAF中,,∴△BEC≌△BAF(SAS),∴∠BEC=∠BAF;(2)△AFC是等腰三角形.证明:过F作FG⊥BA,与BA的延长线交于点G,如图,∵BA=BE,BC=BF,∠ABF=∠CBF,∴∠AEB=∠BCF,∵∠BEC=∠BAF,∴∠GAF=∠AEB=∠BCF,∵BF平分∠ABC,FD⊥BC,FG⊥BA,∴FD=FG,在△CDF和△AGF中,,∴△CDF≌△AGF(AAS),∴FC=F A,∵△ACF是等腰三角形;(3)设AB=BE=x,∵△CDF≌△AGF,CD=2,∴CD=AG=2,∴BG=BA+AG=x+2,在Rt△BFD和Rt△BFG中,,∴△BFD≌△BFG(HL),∴BD=BG=x+2,∴BF=BC=BD+CD=x+4,∴EF=BF﹣BE=x+4﹣x=4.26.(7分)如图,一次函数的图象y=ax+b(a≠0)与反比例函数y=(k≠0)的图象交于点A(,4),点B(m,1).(1)求这两个函数的表达式;(2)若一次函数图象与y轴交于点C,点D为点C关于原点O的对称点,点P是反比例函数图象上的一点,当S△OCP:S△BCD=1:3时,请直接写出点P的坐标.【解答】解:(1)把点A(,4)代入y=(k≠0)得:k=×4=2,∴反比例函数的表达式为:y=,∵点B(m,1)在y=上,∴m=2,∴B(2,1),∵点A(,4)、点B(2,1)都在y=ax+b(a≠0)上,∴,解得:,∴一次函数的表达式为:y=﹣2x+5;(2)∵一次函数图象与y轴交于点C,∴y=﹣2×0+5=5,∴C(0,5),∴OC=5,∵点D为点C关于原点O的对称点,∴D(0,﹣5),∴OD=5,∴CD=10,∴S△BCD=×10×2=10,设P(x,),∴S△OCP=×5×|x|=|x|,∵S△OCP:S△BCD=1:3,∴|x|=×10,∴|x|=,∴P的横坐标为或﹣,∴P(,)或(﹣,﹣).27.(6分)已抛物线y=x2+2x+m的顶点在x轴上.(1)求m的值;(2)若P(n,y1),Q(n+2,y2)是该二次函数的图象上的两点,且y1>y2,求实数n的取值范围.【解答】解:(1)∵抛物线y=x2+2x+m的顶点在x轴上,∴=0,解得,m=1.(2)(2)∵P(n,y1),Q(n+2,y2)是该二次函数的图象上的两点,且y1>y2,n2+2n+1>(n+2)2+2(n+2)+1,化简整理得,4n+8<0,∴n<﹣2,∴实数n的取值范围是n<﹣2.28.(7分)在平面直角坐标系xOy中,对于△ABC,点P在BC边的垂直平分线上,若以点P为圆心,PB 为半径的⨀P与△ABC三条边的公共点个数之和不小于3,则称点P为△ABC关于边BC的“Math点”.如图所示,点P即为△ABC关于边BC的“Math点”.已知点P(0,4),Q(a,0).(1)如图1,a=4,在点A(1,0)、B(2,2)、C(,)、D(5,5)中,△POQ关于边PQ的“Math点”为B,C.(2)如图2,,①已知D(0,8),点E为△POQ关于边PQ的“Math点”,请直接写出线段DE的长度的取值范围;②将△POQ绕原点O旋转一周,直线交x轴、y轴于点M、N,若线段MN上存在△POQ关于边PQ的“Math点”,求b的取值范围.【解答】解:(1)根据“Math点”的定义,观察图象可知,△POQ关于边PQ的“Math点”为B、C.故答案为:B,C.(2)如图2中,∵P(0,4),Q(4,0),∴OP=4,OQ=4,∴tan∠PQO=,∴∠PQO=30°,①当点E与PQ的中点K重合时,点E是△POQ关于边PQ的“Math点”,此时E(2,2),∵D(0,8),∴DE==4,当⊙E′与x轴相切于点Q时,E′(4,8),∴DE′=4,观察图象可知,当点E在线段KE′上时,点E为△POQ关于边PQ的“Math点”,∵E′Q⊥OQ,∴∠E′QO=90°,∴∠E′QK=60°,∴∠E′KQ=90°,∴∠EE′Q=30°,∵DE′∥OQ,∴∠DE′K=60°,∵DE′=DK,∴△DE′K是等边三角形,∵点D到E′K的距离的最小值为4•sin60°=6,∴.②如图3中,分别以O为圆心,4和4为半径画圆,当线段MN与图中圆环(包括小圆,不包据大圆)有交点时,线段MN上存在△POQ关于边PQ的“Math 点”,当直线MN与小圆交于(0,4)或(0,﹣4)时,b=±4,当直线MN与大圆相切时,b=±8,观察图象可知,满足条件的b的值为:4≤b<8或﹣8<b≤﹣4.。
2024年广东省珠海市香洲区九洲中学中考一模数学试题(解析版)
2024年广东省珠海市香洲区九洲中学中考数学一模试卷一、选择题(本大题10小题,每小题3分,共30分)每小题给出四个选项中只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1. 的倒数是( )A. B. C. D. 【答案】D【解析】【分析】本题主要考查了求一个数的倒数,根据乘积为1的两个数互为倒数进行求解即可.【详解】解:∵,∴的倒数是,故选:D .2.有意义,则的取值范围是( )A. B. C. D. 【答案】A【解析】【分析】根据被开方数为非负数求解即可.【详解】解:∵有意义,∴,解得:.故选A .【点睛】本题考查二次根式有意义的条件.掌握被开方数为非负数是解题关键.3. 今年哈尔滨旅游火出圈了,截止元旦假日第3天,哈尔滨市累计接待游客3047900人次,其中3047900这个数字用科学记数法表示为( )A. B. C. D. 【答案】C【解析】【分析】本题主要考查了科学记数法,将原数写成(,n 为整数)的形式,确定a 和n 20242024-202412024-120241202412024⨯=202412024x 3x ≥3x ≤3x >3x <30x -≥3x ≥530.47910⨯53.047910⨯63.047910⨯73.047910⨯10n a ⨯110a <<的值是解答本题的关键.将3047900写成(,n 为整数)的形式即可.【详解】解:,故选:C .4. 下列图形中,既是轴对称图形又是中心对称图形的是( )A. B.C. D.【答案】C【解析】【分析】本题考查了中心对称图形与轴对称图形的概念.正确掌握中心对称图形与轴对称图形定义是解题关键.中心对称图形的定义:把一个图形绕某一点旋转,如果旋转后的图形能与原来的图形重合,那么这个图形就叫做中心对称图形;轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重台,这样的图形叫做轴对称图形.根据定义依次对各个选项进行判断即可.【详解】解:A 、该图形是轴对称图形,不是中心对称图形,故此选项不符合题意;B 、该图形是中心对称图形,不是轴对称图形,故此选项不符合题意;C 、该图形既是轴对称图形,又是中心对称图形,故此选项符合题意;D 、该图形是中心对称图形,不是轴对称图形,故此选项不符合题意.故选:C .5. 下列运算中,正确的是( )A. B. C. D. 【答案】B【解析】【分析】根据二次根式的加法、二次根式的除法、同底数幂的除法的运算法则和完全平方公式逐项判断即可.【详解】解:A10n a ⨯110a <<63047900 3.047910=⨯180︒==623a a a ÷=()222a b a b +=+B,正确,符合题意;C 、,故此选项计算错误,不符合题意;D 、,故此选项计算错误,不符合题意,故选:B.【点睛】本题考查了二次根式的加法、二次根式的除法、同底数幂的除法、完全平方公式,熟练掌握运算法则是解答的关键.6. 若反比例函数在每个象限内的函数值y 随x 的增大而减小,则( )A. B. C. D. 【答案】C【解析】【分析】根据反比例函数的性质,k >0时,在每个象限内y 随x 增大而减小列不等式求解.【详解】解:∵反比例函数在每个象限内的函数值y 随x 增大而减小,∴k-1>0,解得k >1.故选:C .【点睛】本题考查反比例函数的性质,解题关键是熟练掌握反比例函数中k 的正负对函数增减性的影响.7. 石家庄市某中学为了解八年级1200名学生期中数学考试情况,从中抽取了200名学生的数学成绩进行统计.给出下列判断:①这种调查方式是抽样调查;②1200名学生是总体;③每名学生的数学成绩是个体;④200名学生是总体的一个样本;⑤200是样本容量.其中正确的判断有( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】解:①这种调查方式是抽样调查故①正确;②1200名学生的数学成绩是总体,故②错误;③每名学生的数学成绩是个体,故③正确;==62624a a a a -÷==()2222a b a ab b +=++1k y x -=k <0k >1k >1k <1k y x-=④200名学生的数学成绩是总体的一个样本,故④错误;⑤200是样本容量,故⑤正确;故选:C .【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.8. 如图,在中,,按以下步骤作图:分别以为圆心,大于一半的长为半径作圆弧,两弧相交于点和点,连结.若,,则的周长为( )A. B. C. D. 【答案】D【解析】【分析】本题考查了线段垂直平分线的作法及性质,三角形的周长,根据作图过程可知,是线段的垂直平分线,根据线段垂直平分线的性质可得,进而得到的周长,即可求解,掌握线段垂直平分线的作法及性质是解题的关键.【详解】解:根据作图过程可知,是线段的垂直平分线,∴,∴的周长为.故选:.9. 如图,这是由10个全等的菱形组成的网格,菱形的顶点称为格点,我们把三个顶点都在格点上的三角形称为格点三角形,是格点三角形,将平移后仍为格点三角形(本身除外)的方法有( )A. 5种B. 6种C. 7种D. 8种【答案】C ABC AB AC >B C ,BC M N CD 8AB =4AC =ACD 9101112MN BC CD BD =ACD AC CD AD AC BD AD AC AB ++=++=+MN BC CD BD =ACD 4812AC CD AD AC BD AD AC AB ++=++=+=+=D ABC ABC【解析】【分析】根据菱形的性质画出图形解答即可.【详解】解:如图所示:故选:C .【点睛】此题考查菱形的性质,关键是根据菱形的四边相等解答.10. 如图,抛物线y =ax 2+bx +c 经过点(﹣1,0),与y 轴交于(0,2),抛物线的对称轴为直线x =1,则下列结论中:①a +c =b ;②方程ax 2+bx +c =0的解为﹣1和3;③2a +b =0;④c ﹣a >2,其中正确的结论为( )A. ①②③B. ①②④C. ②③④D. ①②③④【答案】D【解析】【分析】将点代入解析式可判断;由对称性可得另一个交点,可判断;由,可判断,由可判断,即可求解.【详解】解:抛物线经过点,,,故正确;对称轴为x =1,一个交点为,另一个交点为,方程的解为﹣1和3,故正确;为10-(,)①30(,)②12b a-=③20c a =,<④① 2y ax bx c ++=10-(,)0a b c ∴+﹣=a c b ∴+=①② 10-(,)∴30(,)∴20ax bx c ++=②由对称轴为x =1,,,则,故正确;抛物线与y 轴交于,c =2,a <0,,故正确,故选:D .【点睛】本题考查了抛物线与x 轴的交点,根与系数关系,二次函数图象与系数关系,二次函数图象上点的坐标特征,灵活运用这些性质解决问题是本题的关键.二、填空题(本大题6小题,每小题3分,共18分)将正确答案写在答题卡相应的位置上.11. 单项式的系数是______.【答案】【解析】【分析】根据单项式系数的定义:单项式中的数字因数,得出结果.【详解】解:单项式的系数是-1.故答案是:-1.【点睛】本题考查单项式的系数,解题的关键是掌握单项式系数的定义.12. 如果,那么代数式的值为_____.【答案】7【解析】【分析】此题考查了代数式求值问题,用整体代入法求解即可.【详解】解:∵,∴,∴,故答案为:7.③∴12b a-=∴2b a =﹣20a b +=③④ 2y ax bx c ++=02(,)∴ 2c a ∴﹣>④ab -1-ab -23x y -=421x y -+23x y -=426x y -=421617x y -+=+=13. 已知是方程一个根,则另一个根为________.【答案】##【解析】【分析】根据一元二次方程根与系数的关系,即可得到答案.【详解】解:∵是方程的一个根,∴∴;∴方程的另一个根为;故答案为:.【点睛】本题考查了一元二次方程根与系数的关系,解题的关键是熟练掌握根与系数的关系.14. 如图,直线与直线相交于点,则关于x ,y 的方程组的解为______.【答案】【解析】【分析】先把代入直线即可求出b 的值,从而得到P 点坐标,再根据两函数图象的交点就是两函数解析式组成的二元一次去方程组的解可得答案.【详解】解:∵直线经过点,∴,解得,的1x =20x m +=1x =-1x =-+1x =20x m +=21x +==21x =-1x =-1x =-1:31l y x =+2:l y mx n =+()1,P b 31y x y mx n =+⎧⎨=+⎩14x y =⎧⎨=⎩()1,P b 1:31l y x =+1:31l y x =+()1,P b 31b =+4b =∴,∴关于x ,y 的方程组的解为,故答案为:.【点睛】此题考查了二元一次去方程组与一次函数的关系,关键是掌握两函数图象的交点的横纵坐标就是两函数组成的二元一次去方程组的解.15. 将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为___________.【答案】75°##75度【解析】【分析】利用三角形内角和定理和平行线的性质解题即可.【详解】解:如图,∵∠2=90°-30°=60°,∴∠3=180°-45°-60°=75°,∵a ∥b ,∴∠1=∠3=75°,故答案为:75°.【点睛】此题考查平行线的性质,关键是根据两直线平行,同位角相等解答.16. 如图,在⊙O 中,半径OA ⊥OB ,过OA 的中点C 作FD ∥OB 交⊙O 于D 、F 两点,且CD,以O 为圆心,OC 为半径作,交OB 于E 点.则图中阴影部分的面积为______________.(1),4P 31y x y mx n =+⎧⎨=+⎩14x y =⎧⎨=⎩14x y =⎧⎨=⎩CE【解析】【详解】分析:(1)首先证明OA ⊥DF ,由垂径定理求出,由OD=2CO 推出∠CDO=30°,设OC=x ,则OD=2x,利用勾股定理求得OD 的长,再根据S 阴=S △CDO +S 扇形OBD -S 扇形OCE 计算即可.详解:连接OD ,∵OA ⊥OB ,∴∠AOB=90°,∵CD ∥OB ,∴∠OCD=90°,∴OA ⊥DF ,∴CD=,在Rt △OCD 中,∵C 是AO 中点,∴OA=OD=2CO ,设OC=x ,则x 22=(2x)2,解得:x=1,∴OA=OD=2,∵OC=OD ∠OCD=90°,∴∠CDO=30°,∵FD ∥OB ,,121212∴∠DOB=∠ODC=30°,∴S 阴=S △CDO +S 扇形OBD −S 扇形OCE=+−.点睛:本题考查了扇形面积的计算:设圆心角是n 0,圆的半径为R 的扇形面积为S ,则或,(其中l 为扇形的弧长)三、解答题(一)(本大题3小题,每小题7分,共21分)17. 计算:.【答案】【解析】【分析】本题考查了实数的运算,解题的关键是掌握相关运算的法则.根据特殊角三角函数值,零指数幂,绝对值的代数意义,二次根式的化简分别计算即可得到答案.【详解】解:.18. 图,E 是正方形内一点,是等边三角形,连接,,延长交于点F .(1)求证:;(2)求的度数.【答案】(1)见解析(2)【解析】【分析】(1)由正方形的性质可得,由等边三角形的性质可得,再证明,即可证明;(2)证明,,,可得,再利用等腰三角形的性质与平行线的性质可得答案.【小问1详解】122302360π⨯2901360π⨯π122360n r S π=1=2S lR 扇形)04sin 451︒+604sin 451)5︒+-+--415=++-6=ABCD BCE DE AE DE AB ABE DCE ≌△△AFD ∠75︒AB DC =BE CE =ABE DCE ∠=∠ABE DCE ≌△△CE BC BE ==CD BC =AB CD ∥CE CD =证明:在正方形中,,,∵ 为等边三角形,∴ ,,∴ ,即:,在和中, ,∴,【小问2详解】∵是等边三角形,∴,∵四边形是正方形∴,,∴,∴,∵,∴.19. 先化简,再求值:,其中.【答案】【解析】【分析】由题意先利用分式的运算法则进行计算化简,进而代入计算即可.【详解】解:ABCD AB DC =90ABC BCD ∠=∠=︒BCE BE CE =60EBC ECB ∠=∠=︒ABC EBC BCD ECB ∠-∠=∠-∠30ABE DCE ∠=∠=︒ABE DCE △AB DC ABE DCE BE CE =⎧⎪∠=∠⎨⎪=⎩ABE DCE ≌ BCE CE BC BE ==ABCD CD BC =AB CD ∥CE CD =()118030752CDE ∠=︒-︒=︒AB CD ∥75AFD CDE ∠=∠=︒2211121x x x x x -⎛⎫-÷ ⎪+++⎝⎭1x =+11x -2211121x x x x x -⎛⎫-÷ ⎪+++⎝⎭22111121x x x x x x x +-⎛⎫=-÷ ⎪++++⎝⎭()()()211111x x x x +=⋅++-当时,原式.【点睛】本题考查分式的化简求值,熟练掌握分式的运算法则以及分母有理化的方法是解题的关键.四、解答题(二)(本大题3小题,每小题9分,共27分)20. 2024年春节联欢晚会的吉祥物“龙辰辰”具有龙年吉祥,幸福安康的寓意,深受大家喜欢.某商场第一次用2400元购进一批“龙辰辰”玩具,很快售完;该商场第二次购进该“龙辰辰”玩具时,进价提高了,同样用2400元购进的数量比第一次少10件,求第一次购进的“龙辰辰”玩具每件的进价是多少钱?【答案】40元【解析】【分析】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.设第一次购进的“龙辰辰”玩具每件的进价是元钱,则第二次购进的“龙辰辰”玩具每件的进价是元,根据该商场第二次同样用2400元购进的数量比第一次少10件,列出分式方程,解方程即可.【详解】解:设第一次购进的“龙辰辰”玩具每件的进价是元钱,则第二次购进的“龙辰辰”玩具每件的进价是元,由题意得:,解得:,经检验,是原方程的解,且符合题意,答:第一次购进的“龙辰辰”玩具每件的进价是40元.21. 如图,在中,,点在边上,以为直径作交的延长线于点,若是的切线.(1)求证:;(2)若,,求半径的长.11x =-1x =+==20%x (120%)x +x (120%)x +2400240010(120%)x x-=+40x =40x =Rt ABC △90ACB ∠=︒D AC AD O BD E CE O CE BC =4CD =1tan 2BEC ∠=O【答案】(1)见解析(2)6【解析】【分析】(1)连接,根据切线的性质得到,得到,根据,得到,证明,根据等腰三角形的判定定理证明结论;(2)根据正切的定义求出,根据勾股定理列出方程,解方程得到答案.本题考查的是切线的性质、正切的定义、勾股定理,掌握圆的切线垂直于经过切点的半径是解题的关键.【小问1详解】证明:连接,是的切线,,,,,,,,,;【小问2详解】解:设的半径为,,,,,,,,OE OE EC ⊥90OED BEC ∠+∠=︒OE OD =OED ODE ∠=∠BEC CBE ∠=∠BC OE CE O OE EC ∴⊥90OED BEC ∴∠+∠=°90ACB ∠=︒ 90CDB CBE ∴∠+∠=︒OE OD = OED ODE ∴∠=∠ODE CDB ∠=∠ BEC CBE ∴∠=∠CE BC ∴=O r BEC CBE ∠=∠ 1tan 2BEC ∠=1tan 2CBD ∴∠=∴12CD BC =4CD = 8BC ∴=8EC ∴=在中,,即,解得:,即的半径为6.22. 幸福成都,美在文明!为助力成都争全国文明典范城市,某校采用四种宣传形式:A .宣传单宣传,B .电子屏宣传,C .黑板报宣传,D .志愿者宣传.每名学生从中选择一种最喜欢的宣传形式,学校就最喜欢的宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.请结合图中所给信息,解答下列问题:(1)本次调查的学生共有______人,请补全条形统计图;(2)扇形统计图中,“D .志愿者宣传”对应的扇形圆心角度数为______;(3)本次调查中,在最喜欢“志愿者宣传”的学生中,有甲、乙、丙、丁四位同学表现优秀,若从这四位同学中随机选出两名同学参加学校的志愿者活动,请用列表或画树状图的方法,求选出两人恰好是甲和乙的概率【答案】(1)50,图见解析(2)(3)【解析】【分析】(1)根据C 项目的人数和所占的百分比求出总人数,再用总人数A 、C 、D 项目的人数即可解决问题;(2)用乘以 “D .志愿者宣传”的学生所占的比例即可;(3)列出表格,共有12种等可能的情况,其中被选取的两人恰好是甲和乙的有2种情况,再由概率公式求解即可.【小问1详解】本次调查的学生共有:(人),Rt OEC △222OC OE EC =+222(4)8r r +=+6r =O 108︒16360︒1020%50÷=喜欢B .电子屏宣传的人数有:(人),补全条形统计图如图所示:故答案为:50【小问2详解】“D .志愿者宣传”对应的扇形圆心角度数为;故答案为:;【小问3详解】列表得:甲乙丙丁甲(甲,乙)(甲,丙)(甲,丁)乙(乙,甲)(乙,丙)(乙,丁)丙(丙,甲)(丙,乙)(丙,丁)丁(丁,甲)(丁,乙)(丁,丙)共有12种等可能的结果,其中恰好是甲和乙的有2种,∴被选取的两人恰好是甲和乙的概率是.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考查了统计图.五、解答题(三)(本大题2小题,每小题12分,共24分)23. 在学习《圆》这一单元时,我们学习了圆周角定理的推论:圆内接四边形的对角互补;事实上,也是一个真命题.在图形旋转的综合题中经常会出现对角互补的四边形,那么,然后借助圆的相关知识来解决问题,例如:已知:是等边三角形,点是内一点,连接,将线段绕逆时针旋转得到线502010155---=1536010850︒⨯=︒108︒21==126ABC D ABC ∆CD CD C 60︒段,连接,,,并延长交于点.当点在如图所示的位置时:(1)观察填空:与全等的三角形是 ;(2)利用(1)中的结论,求的度数;(3)判断线段之间的数量关系【答案】(1)△BCE(2)60° (3)【解析】【分析】本题主要考查了等边三角形的性质和判定,全等三角形的性质和判定,四点共圆等,构造全等三角形是解题的关键.(1)根据等边三角形的性质得,,可知,再说明是等边三角形,可得,,进而得出,即可得出答案;(2)先说明点,,,四点共圆,可得,再根据,可得答案;(3)先证明三角形是等边三角形,再根据证明,得出,进而得出答案.【小问1详解】解:是等边三角形,,,.由旋转可知,,,是等边三角形,,,,∴故答案为:CE BE DE AD AD BE F D ACD AFB ∠FD FE FC ,,FC FE FD=+AB BC =60ACB ∠=︒60ACD DCB ∠+∠=︒A DCE 60BCE DCB ∠+∠=︒CD CE =ACD BCE ∠=∠C D F E 180AFE DCE ∠+∠=︒180AFB AFE ∠+∠=︒EFG AAS CEG DEF △≌△CG FD -ABC AB AC BC ∴==60BAC ACB ABC ∠=∠=∠=︒60ACD DCB ∴∠+∠=︒CE CD =60DCE ∠=︒DCE ∴60BCE DCB ∠+∠=︒ACD BCE ∠=∠CD CE =()SAS ACD BCE △≌△Δ:BCE【小问2详解】由(1)知.,,点,,,四点共圆,.,;【小问3详解】解:由(1)知是等边三角形,.由(2)得,点,,,四点共圆,.在上取一点,使,是等边三角形,,,.:点,,,四点共圆,,∴,,24. 已知抛物线与轴交于点和,与轴交于点C()SAS ACD BCE △≌△ADC BEC ∠∠∴=180ADC FDC ∠+∠=︒ BEC C ∴∠+180FDC =︒∴C D F E 180AFE DCE ∴∠+∠=︒180AFB AFE ∴∠+∠=︒60AFB DCE ∴∠=∠=︒DCE △CE DE ∴=180120DFE DCE ∠=︒-∠-︒C D F E 60CFE CDE ∴∠=∠=︒FC G FG FE =∴EFG EG FE ∴=60EGF ∠-︒120CGE DFE ∴∠=︒=∠ C D F E ECG EDF ∴∠=∠()AAS CEG DEF ≌CG FD ∴=FC FG CG FE FD∴=+=+24(0)y ax bx a =++>x (1,0)A (4,0)B y(1)求抛物线的表达式;(2)如图1,点是线段上的一个动点(不与点,重合),过点作轴的垂线交抛物线于点,连接,当四边形恰好是平行四边形时,求点的坐标;(3)如图2,在(2)的条件下,是的中点,过点的直线与抛物线交于点,且,在直线上是否存在点,使得与相似?若存在,求点的坐标;若不存在,请说明理由.【答案】(1)(2)(3)存在,的坐标为或.【解析】【分析】(1)用待定系数法可得;(2)由,可得直线解析式为,设,由,有,即可解得;(3)可得直线的表达式为,知在直线上,,过点作轴于点,过作轴于,根据,可得直线和直线关于直线对称,有,,,从而可得直线的表达式为,点的坐标为,即得,,故P BC B C P x Q OQ OCPQ Q D OC Q E 2DQE ODQ ∠=∠QE F BEF △ADC △F 257y x x =-+()22Q ,-F (4,2)(1.6, 2.8)-254y x x =-+(4,0)B (0,4)C BC 4y x =-+(,4)P m m -+OC PQ =244m m -+=(2,2)Q -DQ 22y x =-+A DQ AD =AC =Q QH x ⊥H E EK x ⊥K 2DQE ODQ ∠=∠AQ QE QH DAO QAH QGH EGB ∠=∠=∠=∠1GH AH ==(3,0)G QE 26y x =-E (5,4)EKB COA ∽V V EBK CAO ∠=∠,与相似,点与点是对应点,设点的坐标为,当时,有解得;当时,,解得.【小问1详解】解:把,代入得:,解得:,;【小问2详解】解:由,可得直线解析式为,设,则,,,要使四边形恰好是平行四边形,只需,,解得,;【小问3详解】解:在直线上存在点,使得与相似,理由如下:是的中点,点,点,由(2)知,直线表达式为,的DAC GEB ∠=∠BEF △ADC △E A F (,26)t t -BEF CAD ∽V V =(4,2)F BEF DAC ∽V V =(1.6, 2.8)F -(1,0)A (4,0)B 24y ax bx =++4016440a b a b ++=⎧⎨++=⎩15a b =⎧⎨=-⎩254y x x ∴=-+(4,0)B (0,4)C BC 4y x =-+(,4)P m m -+2(,54)Q m m m -+224(54)4PQ m m m m m ∴=-+--+=-+OC PQ OCPQ OC PQ =244m m ∴-+=2m =(2,2)Q ∴-QE F BEF △ADC △D OC (0,4)C ∴(0,2)D (2,2)Q -∴DQ 22y x =-+,直线上,,过点作轴于点,过作轴于,如图:,故,,,直线和直线关于直线对称,,,,由点,可得直线的表达式为,联立,解得或,点的坐标为,,,,,,,,,即,与相似,点与点是对应点,设点的坐标为,则当时,有,在(1,0)A A ∴DQ AD =AC =Q QH x ⊥H E EK x ⊥K QH CO Q P AQH ODQ ∠=∠2DQE ODQ ∠=∠ HQA HQE ∴∠=∠∴AQ QE QH DAO QAH QGH EGB ∴∠=∠=∠=∠1GH AH ==(3,0)G ∴(2,2)Q -(3,0)G QE 26y x =-25426y x x y x ⎧=-+⎨=-⎩54x y =⎧⎨=⎩22x y =⎧⎨=-⎩∴E (5,4)(4,0)B 1BK ∴=4EK =BE =∴14BK OA EK OC==90EKB COA ∠=︒=∠Q EKB COA ∴∽V V EBK CAO ∴∠=∠CAO DAO EBK EGB ∴∠-∠=∠-∠DAC GEB ∠=∠BEF ∴ ADC △E A F (,26)t t -EF =BEF CAD ∽V V BE EF AC AD =解得或(在右侧,舍去),;当时,,解得(舍去)或,,综上所述,的坐标为或.【点睛】本题考查二次函数的综合应用,涉及待定系数法求一次函数、二次函数的解析式,平行四边形,相似三角形等知识,难度较大,综合性较强,解题的关键是证明,从而得到与相似,点与点是对应点.∴=4t =6t =E (4,2)F ∴BEF DAC ∽V V BE EF AD AC=∴=8.4t = 1.6t =(1.6, 2.8)F ∴-F (4,2)(1.6, 2.8)-DAC GEB ∠=∠BEF △ADC △E A。
2023年江苏省南通市如东县、通州区中考数学一模试卷(含解析)
2023年江苏省南通市如东县、通州区中考数学一模试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 计算(−6)÷3=( )A. 2B. −2C. 12D. −122. 下列计算的结果为a8的是( )A. (a4)4B. a2⋅a4C. a4⋅a4D. a4÷a43. 清代袁枚的一首诗《苔》中的诗句:“白日不到处,青春恰自来,苔花如米小,也学牡丹开”.若苔花的花粉直径约为0.0000084米,则数据0.0000084用科学记数法表示为( )A. 0.84×10−5B. 8.4×10−5C. 8.4×10−6D. 84×10−74.某几何体由若干个小正方体组成,其俯视图如图所示,图中数字表示该位置上的小正方体的个数,则这个几何体的主视图是( )A. B. C. D.5.一副直角三角板(∠ACB=30°,∠BED=45°)按如图所示的位置摆放,如果AC//DE,那么∠EBC的度数是( )A. 15° B. 20°C. 30°D. 35°6.如图,AB,BC为⊙O的两条弦,连接OA,OC,点D为AB的延长线上一点,若∠CBD=62°,则∠AOC的度数为( )A. 100°B. 118°C. 124°D. 130°7. 某人在甲、乙、丙、丁四个超市购买某品牌商品的总价和购买数量如图所示,按平均单价计算,购买该品牌商品最划算的超市是( )A. 甲B. 乙C. 丙D. 丁8. 如果一个函数同时满足条件:①图象经过点(1,1);②图象经过第四象限;③当x>1时,y随x的增大而减小,那么这个函数解析式可能是( )A. y=2x−1B. y=1xC. y=−x2+4x−2D. y=−2x2+3x9. 如图,Rt△ABC中,∠C=90°,AB=5,BC=5,点D在折线ACB上运动,过点D作AB的垂线,垂足为E.设AE=x,S△A D E=y,则y关于x的函数图象大致是( )A. B.C. D.10.如图,将矩形纸片ABCD沿对角线AC所在直线折叠,点D落在点D′处.过AC的中点O作OE//BC交AD′于点E.若AB=8cm,BC=6cm,则OE的长为( )A. 103B. 4C. 256D. 5二、填空题(本大题共8小题,共30.0分)11. 因式分解:m2−mn=______.12. 计算27−31的结果是.313. 二元一次方程组{x+3y=−1,2x+y=3的解是______ .14.如图,D,E两点分别在AB,AC上,AB=AC,要使△ABE≌△ACD,只需添加一个条件,则这个条件可以是______ .15. 如图1,筒车是我国古代发明的一种水利灌溉工具,筒车盛水筒的运行轨迹是以O为圆心的一个圆,可简化为图2.若⊙O被水面所截的弦长AB=8米,⊙O的半径为5米,则筒车最低点距水面______ 米.16.如图,学校有一旗杆AB.为了测量旗杆高度,小明采用如下方案:在点C处测得旗杆顶B的仰角为45°,从与点C相距6m的E处测得旗杆顶B的仰角为60°.若CD=EF=1.5m,则旗杆AB的高度为______ 米.(结果保留小数点后一位,2≈1.41,3≈1.73.)17. 如图,点A是函数y=2(x>0)图象上一点,连接AO并延x(x<0)的图象于点B,作AC⊥y轴,垂足为C,长,交函数y=kx连接BC,则△OBC的面积为______ (用含k的式子表示).18.如图,等边三角形ABC 中,P ,Q 两点分别在边BC ,AC 上,BP =C Q ,D 是PQ 的中点.若BC =4,则CD 的最小值是______ .三、解答题(本大题共8小题,共90.0分。
2024年山东省淄博市临淄区中考一模数学试题(解析版)
2023—2024学年度第二学期期中质量检测初四数学试题本试卷共8页,满分150分,考试时间120分钟.考试结束后.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将学校、班级、姓名、考试号、座号填写在答题卡和试卷规定位置.2. 选择题每小题选出答案后,用 2B 铅笔涂黑答题卡对应题目的答案标号;如需改动,用橡皮擦干净后,再选涂其他答案标号.3.非选择题必须用0.5毫米黑色签字笔作答,字体工整、笔迹清晰,写在答题卡各题目指定区域内;如需改动,先划掉原来答案,然后再写上新答案.严禁使用涂改液、胶带纸、修正带修改.4.保证答题卡清洁、完整,严禁折叠,严禁在答题卡上做任何标记.5.评分以答题卡上的答案为依据.不按以上要求作答的答案无效.一、选择题(本题共 10 小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项填在下面的表中.每小题4分, 满分40分,错选、不选、多选,均记0分.)1. 某体育场有10000个座位,10000用科学记数法表示为( )A. 4110×B. 50.110×C. 41010×D. 31010×【答案】A【解析】【分析】本题考查科学记数法,根据科学记数法的表示方法进行解答即可.【详解】根据科学记数法的表示形式10n a ×,110a ≤<,可确定1a =,n 值等于原数的整数位数减1,可确定4n =,∴10000用科学记数法表示为:4110×.故选:A2. 下面的几何图形:其中是轴对称图形但不是中心对称图形的共有( )A. 4个B. 3个C. 2个D. 1个【答案】C【解析】 【分析】根据中心对称图形和轴对称图形的概念判断即可.【详解】解:正方形和圆既是中心对称图形,也是轴对称图形;等边三角形是轴对称图形,不是中心对称图形;正五边形是轴对称图形,不是中心对称图形,故选:C .【点睛】本题考查了中心对称图形和轴对称图形的识别,解题的关键是掌握中心对称图形和轴对称图形的概念,把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形;如果一个平面图形沿一条直线折叠直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.3. 下列运算正确的是( )A. 23a a a ⋅=B. 33a a −=C. 432a a a ÷=D. ()235a a = 【答案】A【解析】【分析】本题主要考查了同底数幂的运算法则,合并同类项,解题的关键是掌握同底数幂相乘(除),底数不变,指数相加(减);幂的乘方,底数不变,指数相乘;积的乘方,把每个因式分别乘方;合并同类项,【详解】解:A 、23a a a ⋅=,故A 正确,符合题意;B 、32a a a −=,故B 不正确,不符合题意;C 、43a a a ÷=,故C 不正确,不符合题意;D 、()236a a =,故D 不正确,不符合题意;故选:A .4. 一组数据3,3,4,6,8,9中位数是( )A. 4B. 5C. 5.5D. 6【答案】B【解析】【详解】试题分析:数据3,3,4,6,8,9的中位数是:(4+6)÷2=5,故选B .考点:中位数;统计与概率. 的5. 不等式组30240xx+>−≤的解集在数轴上表示正确的是()A. B.C. D.【答案】C【解析】【分析】根据解不等式组的一般步骤解不等式组,求出不等式组的解集即可判断.【详解】解∶30 240 xx+>−解①得,x>﹣3,解②得,x≤2,不等式组的解集是﹣3<x≤2,表示在数轴上如下:故选:C.【点睛】此题考查的是解不等式组,掌握解不等式组的一般步骤、解集的取法和用数轴表示解集是解决此题的关键.6. 如图,直线a∥b,若∠1=24°,∠A=46°,则∠2等于()A. 46°B. 70°C. 40°D. 30°【答案】B【解析】【分析】如详解中图,先根据对顶角相等得出∠ADB的度数,再由三角形外角的性质得出∠3,即可由平行线的性质求出∠2的度数.【详解】如图,∵∠1=24°,∴∠ADB=∠1=24°.∵∠3是△ABD的外角,∴∠3=∠A+∠ADB=46°+24°=70°.∵直线a∥b,∠3=70°,∴∠2=∠3=70°.故选B.小,需要熟练掌握基本知识.7. 设点A(x1,y1)和点B(x2,y2)是反比例函数y=kx图象上的两点,当x1<x2<0时,y1>y2,则一次函数y=-2x+k的图象不经过的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】【分析】如图1,根据当x1<x2<0时,y1>y2可知:反比例函数y=kx图象上,y随x的增大而减小,得k>0;如图2,再根据一次函数性质:-2<0,所以图象在二、四象限,由k>0得,与y轴交于正半轴,得出结论.【详解】解:∵当x1<x2<0时,y1>y2,∴反比例函数y=kx图象上,y随x的增大而减小,∴图象在一、三象限,如图1,∴k >0,∴一次函数y=-2x+k 的图象经过二、四象限,且与y 轴交于正半轴,∴一次函数y=-2x+k 的图象经过一、二、四象限,如图2,故选C .【点睛】本题考查了一次函数与反比例函数的图象和性质,知道:①当k >0,双曲线的两支分别位于第一、三象限,在每一象限内y 随x 的增大而减小;②当k <0,双曲线的两支分别位于第二、四象限,在每一象限内y 随x 的增大而增大;反之也成立;③一次函数y=kx+b 中,当k >0,图象在一、三象限;k <0,图象在二、四象限;b >0时,与y 轴交于正半轴,当b <0时,与y 轴交于负半轴.8. 甲、乙两人沿着总长度为10km 的“健身步道”健步走,甲的速度是乙的1.2倍,甲比乙提前12分钟走完全程.设乙的速度为km/h x ,则下列方程中正确的是( )A 1010121.2x x −= B. 10100.21.2x x −= C. 1010121.2x x −= D. 10100.21.2x x−= 【答案】D【解析】【分析】根据题意可直接进行求解. 【详解】解:由题意得:10100.21.2x x−=; 故选D ..【点睛】本题主要考查分式方程应用,熟练掌握分式方程的应用是解题的关键.9. 如图,将矩形纸片ABCD 折叠,使点A 与点C 重合,折痕为EF ,若AB=4,BC=2,那么线段EF 的长为( )B.C.D. 【答案】B【解析】 【详解】解:连接AF ,根据折叠的性知AF=CF ,AC ⊥EF ,OA=OC ,由AD=2,CD=4,根据勾股定理可求得,所以△COF ∽△CDA ,因此根据相似的性质可得OC OF CD AD =2OF =,可求得,所以故选B .【点睛】本题考查折叠变换,勾股定理,相似三角形的性质及判定的应用,掌握性质定理正确推理论证是解题关键.10. 如图,四边形ABCD 内接于O ,AC 为直径,ABC ∠的平分线BD 交AC 于点E ,点F 在BA 的延长线上,AF BC =.有如下五个结论:①AD CD =;②ABE DBC ∽ ;③AE CE BE DE ×=×;④AB BC +;⑤四边形ABCD 的面积为212AD ,则上列说法中正确的个数为( )A. 2个B. 3个C. 4个D. 5个的【答案】C【解析】【分析】由直径所对的圆周角等于90°可得出90ABC ADC ∠=∠=°,由已知条件可得出1452ABD DBC ABC ∠=∠=∠=°,由同弧所对的圆周角相等即可得出ABD ACD ∠=∠,进而ACD DAC ∠=∠,即可判断①,证明ABE DBC ∽可判断②,证明AEB DEC ∽可判断③,()SAS DAF DCB ≌可得出FDA BDC =∠,DF DB =,证明FDB △为等腰直角三角形,即可判断④,根据ADC ABC ABCD S S S =+ 四边形即可判断⑤.【详解】解:∵AC 为直径,∴90ABC ADC ∠=∠=°,∵BD 为ABC ∠的角平分线, ∴1452ABD DBC ABC ∠=∠=∠=°,∵ABD ACD ∠=∠,∴45ACD ∠=°,∴45DAC ∠=°,∴AD CD =,故①正确,∵BAE BDC ∠=∠, 又∵12ABE DBC ABC ∠=∠=∠∴ABE DBC ∽,故②正确,∵BAE CDE ∠=∠,又∵AEB DEC ∠=∠∴AEB DEC ∽, ∴AEBEDE CE =,即AE CE DE BE ⋅=⋅,故③正确,由①知DA DC =,∵FAD BCD ∠=∠,且AF CB =,∴()SAS DAF DCB ≌,∴FDA BDC ∠=∠,DF DB =∴90ADB BDC ∠+∠=°,∴90FDA ADB ∠+∠=°,∴FDB △为等腰直角三角形,∴FB =,即AF AB BC AB +=+=, 故④正确,∵ADC ABC ABCDS S S =+ 四边形 1122AD DC AB BC =⋅+⋅ 21122AD AB BC =+⋅ 故⑤错误,综上①②③④正确,故选:C .【点睛】本题主要考查了等角对等边,相似三角形的判定以及性质,全等三角形的判定以及性质,圆周角定理以及圆内接四边形的性质等知识,掌握这些判定定理以及性质是解题的关键,二、填空题(每小题4分,共20分)11. 点()3,3A −关于y 轴对称的点1A 的坐标是______.【答案】(3,3)【解析】【分析】平面直角坐标系中任意一点A (x ,y ),关于y 轴的对称点是(−x ,y ),从而可得出答案.【详解】根据轴对称的性质,得点A (−3,3)关于y 轴对称点的坐标A 1(3,3).故答案是:(3,3).【点睛】本题主要考查关于y 轴对称的点坐标的关系,解题的关键是掌握点关于y 轴对称的坐标规律.12. 因式分解:3212x x x −−=________. 【答案】()()43x x x −+【解析】【分析】本题主要考查了分解因式,先提取公因式x ,再利用十字相乘法分解因式即可得到答案.【详解】解:3212x x x −−()212x x x =−− ()()43x x x =−+,故答案为:()()43x x x −+.13. 如图,按照程序计算,若输出y 的值是1,则输入x 的值是________.【答案】34−【解析】 【分析】本题主要考查了解二元一次方程以及解分式方程,根据输出y 的值是1,代入上一步程序,得出2331x x ++=或311x x x−=+,然后分别解出x , 根据程序分析得出正确的值即可. 【详解】解:∵输出y 的值是1, ∴上一步计算为:2331x x ++=或311x x x −=+, 当2331x x ++=时,解得:=1x −,或2x =−,∵10−<,20−<,∴不符合程序判断条件, 当311x x x−=+时,解得:34x =−,(经检验,是原方程的解) ∵304−<, ∴符合程序判断条件. 故答案为:34−. 14. 若实数m ,n 分别满足2202320240m m ++=,2202320240n n ++=且m n ≠,则11m n+的值为________. 【答案】20232024−【解析】【分析】本题考查了一元二次方程根与系数的关系,解题关键是掌握“若一元二次方程20(0)ax bx c a ++=≠的两个根分别为1x ,2x ,则12b x x a +=−,12c x x a=. 直接利用根与系数的关系求解即可. 【详解】解:∵实数m ,n 分别满足2202320240m m ++=,2202320240n n ++=, ∴m 和n 是2202320240x x ++=的两个根,∴2023m n +=−,2024mn =, ∴1120232024m n m n mn++==−. 故答案为:20232024− 15. 如图,小明同学在观察图案中“◎”“★”的排列方式时,通过研究每个图案中它们数量的规律,发现第n 个图案中“★”的个数是“◎”的个数的2倍,则n 的值为________【答案】11【解析】【分析】本题考查的是图形类的规律探究,一元二次方程的解法,先归纳得到第n 个图案中“◎”的个数为3n ,第n 个图案中“★”的个数为()12n n +,再建立方程求解即可.【详解】解:∵图案中“◎”的个数依次为:3,6,9,⋅⋅⋅⋅⋅⋅∴第n 个图案中“◎”的个数为3n ,∵图案中“★”的个数依次为:1,3,6,10,⋅⋅⋅⋅⋅⋅∴第n 个图案中“★”的个数为()12n n +, ∴由题意得:()1232n n n +=×,解得:11n =(不符合题意的根舍去), 故答案为:11;三、解答题(第16,17,18,19题每题10分;第20,21题每题12分,第22,23题每题13分;满分90分)解答要写出必要的文字说明、证明过程或演算步骤.16. (1)先化简,再求值:()()()22113a a a a −−−−,其中1a = (2)解方程组:43253x y x y −+=− −=−【答案】(1)21a +,4−(2)11x y = = 【解析】【分析】本题主要考查二元一次方程组的求解及二次根式的运算:(1)先计算平方差,再进行去括号,合并同类项即可,然后把a 的值代入化简以后的式子中求值即可. (2)按照代入消元法解方程组即可.【详解】解:(1)()())22113a a a a −−−− 222313a a a a =−+−+21a =+1a =−∴原式(221114a =+=+=−(2) 43253x y x y −+=− −=− ①② 由①得:43y x =−③, 把③代入②得:()25433x x −−=−, 解得:1x =,把1x =代入③得4131y =×−=,∴方程组的解为11x y = =. 17. 网络技术的发展对学生学习方式产生巨大的影响,某校为了解学生每周课余利用网络资源进行自主学习的时间,在本校随机抽取若干名学生进行问卷调查,现将调查结果绘制成如下不完整的统计图表,请根据图表中的信息解答下列问题. 组别学习时间()h x 频数(人数) A01x <≤ 8 B12x <≤ 24 C 23x <≤ 32 D34x <≤ n E 4小时以上4(1)表中的n = ,扇形统计图中B 组对应的圆心角为 °;(2)请补全频数分布直方图;(3)该校准备召开利用网络资源进行自主学习的交流会,计划在 E 组学生中随机选出两人进行经验介绍,已知E 组的四名学生中,七、八年级各有1人,九年级有2 人,请用画树状图法或列表法求抽取的两名学生都来自九年级的概率.【答案】(1)12,108(2)见解析 (3)16【解析】【分析】本题考查利用画树状图法或列表法求概率,还考查了扇形统计图以及频数分布直方图;熟练掌握运算公式(①各部分扇形圆心角的度数=部分占总体的百分比360×°,②百分比=该组频数÷总数)是解本题的关键.(1)根据A 组的频数和百分比求出总人数,再利用D 组的百分比求出n 的值,利用360°乘以B 组所占的百分比求解即可;(2)由频数分布表能作出频数分布直方图.(3)画树状图,能求出抽取的两名学生都来自九年级的概率.【小问1详解】解:810%80÷=,15%8012n =×=,B 组对应的圆心角2436010880=×°=°, 故答案:12,108;【小问2详解】解:如图所示:【小问3详解】解:画树状图为:共12种可能,抽取的两名学生都来自九年级的有2种可能,∴P (两个学生都是九年级)21126==, 答:抽取的两名学生都来自九年级的概率为16. 18. 根据调查,超速行驶是引发交通事故的主要原因之一,现规定在以下情境中的速度不得超过15m/s ,在一条笔直公路BD 的上方A 处有一探测仪,如平面几何图,24m,90AD D =∠=°,现探测到一辆轿车从B 点匀速向D 点行驶,测得31ABD ∠=°,2秒后到达C 点,测得50ACD ∠=°. 科学计算器按键顺序计算结果(已取近似为值)sin 3 1= 0.5cos 3 1=0.9tan 3 1 = 0.6sin 5 0= 0.8cos 5 0=0.6tan 5 0 = 1.2(1)求BC 的距离.(结果精确到1m )(2)通过计算,判断此轿车是否超速.【答案】(1)20m(2)没有超速【解析】【分析】本题考查了解直角三角形的应用:(1)在Rt △ABD 与Rt ACD △中,利用锐角三角函数定义求出BD 与CD 的长,由BD CD −求出BC 的长即可;(2)根据路程除以时间求出该轿车的速度,即可作出判断.【小问1详解】解:在Rt △ABD 中,24m,31AD B =∠=°,tan31AD BD°∴=,即()2440m 0.6BD ==, ∵在Rt ACD △中,24m,50AD ACD =∠=°, tan50AD CD°∴=,即 ()2420m 1.2CD ==, ∴()402020m BC BD CD =−=−=,则BC 的距离为20m ;【小问2详解】解:根据题意得:()()20210m/s <15m/s ÷=, ∴此轿车没有超速.19. 如图,在平面直角坐标系中,反比例函数m y x=的图象与一次函数()2y k x =−的图象交于A ,B 两点, 其中A 点坐标为()3,2.(1)求反比例函数与一次函数的解析式及B 点坐标;(2)根据图象直接写出不等式()2m k x x>−的解集; (3)若点C 在y 轴上,且满足ABC 的面积为10,求点C 的坐标.【答案】(1)6y x=,24y x =−,()1,6B −− (2)1x <−或03x <<(3)()0,1或()0,9−【解析】【分析】本题考查待定系数法求解析式,反比例函数与一次函数的交点问题,三角形的面积.(1)采用待定系数法,把点()3,2A 代入函数m y x=和()2y k x =−,即可求出m 和k 的值,从而得到反比例函数和一次函数的解析式.解两个函数构成的方程组,即可得到交点坐标,从而解答;(2)根据图象,不等式的的解集就是反比例函数的图象位于一次函数图象上方时横坐标x 的取值范围;(3)先求出一次函数24y x =−图象与y 轴的交点()0,4M −,过点()3,2A 作AE y ⊥轴于点E ,过点()1,6B −−作BF y ⊥轴于点F ,得到3AE =,1BF =,设C 点的坐标为()0,C y ,则()44C C CM y y =−−=+,根据ABCAMC BMC S S S =+△△△即可得到方程,求解即可. 【小问1详解】解:∵点()3,2A 在反比例函数m y x =和一次函数()2y k x =−的图象上; ∴23m =,()232k =−, 解得:6m =,2k =, ∴反比例函数的解析式为6y x=, 一次函数的解析式为24y x =−; 解方程组624y x y x = =− ,得1132x y = = ,2216x y =− =− , 经检验,1132x y = = ,2216x y =− =− 均是方程组的解, ∴反比例函数与一次函数图象的另一交点B 的坐标为()1,6−−;【小问2详解】 由图象可知,不等式()2m k x x>−的解集是1x <−或03x <<; 【小问3详解】 设24y x =−与y 轴的交点为M ,令0x =,则4y =−,∴点M 的坐标为()0,4−,过点()3,2A 作AE y ⊥轴于点E ,过点()1,6B −−作BF y ⊥轴于点F ,∴3AE =,1BF =设C 点的坐标为()0,C y ,∴()44C C CM y y =−−=+ ∵111022ABC AMC BMC S S S CM AE CM BF =+=⋅+⋅= ∴1134141022C C y y ××++××+=, ∴45C y +=, 解得1C y =或9C y =−,∴点C 的坐标为()0,1或()0,9−.20. 如图,ABC 内接于O ,AB 是直径,DO BC ⊥,延长DO 到点E ,使得B E ∠=∠,连接,AD AE ,2,4OA OE ==.(1)求证:AE 是O 的切线;(2)求sin CAD ∠.【答案】(1)见解析 (2 【解析】【分析】题目主要考查相似三角形的判定和性质,切线的判定定理,勾股定理解三角形及求正弦值,理解题意,熟练掌握运用相似三角形的判定和性质及切线的判定定理是解题关键.(1)根据相似三角形的判定得出ODB OAE ∽,再由其性质及切线的判定定理即可证明;(2)根据相似三角形的性质得出1OD =,再由勾股定理及三角形中位线的性质确定22AC OD ==,利用正弦函数的定义求解即可.【小问1详解】∵在ODB 和OAE 中,B E DOB AOE ∠∠∠∠==,∴ODB OAE ∽,∴OAE ODB ∠∠=,∵OD BC ⊥,∴90ODB ∠=°,∴90OAE ∠=°∴AE 是O 的切线;【小问2详解】由(1)得ODB OAE ∽,OD OB OA OE ∴=,即224OD =, ∴1OD =,在 Rt ODB 中, 由勾股定理得:222OD DB OB +=DB ∴=∵ OD BC ⊥, OD 经过OCD DB ∴==∵O ,D 分别是,AB BC 的中点,∴22AC OD ==,∴在Rt ACD 中,ADsin CD CAD AD ∴∠==21. 如图,在以O 为圆心,1为半径的四分之一圆弧组成的扇形中,点P 在弧AB 上运动(不与端点,A B 重合),连接PO ,作PQ 垂直于半径OA ,垂足为Q ,设POA α∠=∠.(1)设PQ 的长度为y ,y 是角α的函数吗?请说明理由; (2)若Rt POQ △的面积为S ,请回答下列问题: ①当点P 在弧AB 上运动时,随着角α的逐渐变大,S 的变化规律为 (横线处填“逐渐变大”“逐渐变小”“先变大再变小”“先变小再变大”); ②求面积S 关于角α的表达式,并写出角α的取值范围; ③当S 取最大值时,请直接写出角α的值.【答案】(1)是,理由:对于变量α的每一个值,PQ 的长度y 都有唯一确定的值与之对应 (2)①先变大再变小;②1cos sin 2Sαα⋅,α°<∠<°090;③45° 【解析】【分析】本题考查函数的定义,三角形的面积. (1)由函数的定义可直接判断,对于变量α的每一个值,PQ 的长度y 都有唯一确定的值与之对应,故y 是α的函数;(2)①随着角α的逐渐变大,S 的变化规律为先变大再变小;②先求出底OQ ,再求高PQ 即可;③当S 取最大值时,即当点P 运动到弧AB 的中点,此时45α∠=°.【小问1详解】解:是.∵对于变量α的每一个值,PQ 的长度y 都有唯一确定的值与之对应 ∴y 是α的函数;【小问2详解】①先变大再变小,因为P 在A 时,面积为0,往B 方向运动时,面积逐渐变大,到达B 时,面积为0,故先变大再变小;故答案为:先变大再变小②在Rt POQ 中,∵αααα====cos cos ,sin sin OQ OPPQ OP 11cos sin 22S OQ PQ αα∴=⋅⋅=⋅ α°<∠<°090③当S 取最大值时,45α∠=°.理由:设点C 为OP 的中点,连结QC ,过点Q 作OP 的垂线,垂足为H ,连接QH .∵点C 为OP 的中点,PQ OQ ⊥∴OC CQ =1122S PO HQ PO CQ =⋅⋅≤⋅⋅ ∴当点P 运动到弧AB 的中点,使得HQ 与CQ 重合时,S 的值最大此时,=HQ HO ,⊥HQ OH ∴OHQ 为等腰直角三角形∴45α∠=°.22. 如图,在边长为6的菱形ABCD 中,60BCD ∠=°,连接BD ,点 E ,F 分别是边AB ,BC 上的动点,且AE BF =,连接DE ,DF ,EF .(1)如图①,当点E 是边AB 的中点时,求EDF ∠的度数; (2)如图②,当点E 是边AB 上任意一点时,EDF ∠的度数是否发生改变?若不改变,请证明:若发生改变,请说明理由;(3)若点P 是线段BD 上的一个动点,连接PF ,求PF DP +的最小值.【答案】(1)60°(2)不改变,见解析 (3)【解析】【分析】(1)由菱形ABCD 可得6AB BC CD AD ====,60BAD BCD ∠=∠=°,从而ABD △,BCD △是等边三角形,根据“三线合一”可得 1302EDB ADB ∠=∠=°,12AE AB =,进而证得点F 是边BC 的中点,从而1302BDF BDC ∠=∠=°,根据EDF EDB BDF ∠=∠+∠即可解答; (2)由(1)得到ABD △,BCD △是等边三角形,从而AD BD =,60DAB DBC ∠=∠=°,进而证得()SAS ADE BDF ≌,得到ADE BDF ∠=∠,从而60EDF ADB ∠=∠=°; (3)过点P 作PG AD ⊥于点 G ,连接PF ,过点F 作FG AD ′⊥于点G ′,交BD 于点P ′,则sin GP DP ADB =⋅∠=,因此PF PF GP =+,当点F ,P ,G 三点共线,且FG AD ⊥时,PF GP +有最小值,最小值为FG 的长,过点D 作DH BC ⊥于点H ,PF DP +的最小值即为DH 的长,在Rt CDH △中通过解直角三角形即可解答.【小问1详解】∵四边形ABCD 是菱形,边长为6,∴6AB BC CD AD ====,60BAD BCD ∠=∠=°,∴ABD △,BCD △是等边三角形,∴60ADB∠=°, ∵点E 是边AB 的中点, ∴11603022EDB ADB ∠=∠=×°=°,12AE AB =, ∵AE BF =, ∴1122BF AB BC == ∴点F 是边BC 的中点, ∴11603022BDF BDC ∠=∠=×°=°, ∴303060EDF EDB BDF ∠=∠+∠=°+°=°;【小问2详解】EDF ∠的度数不改变,证明如下:由(1)得到ABD △,BCD △是等边三角形,∴AD BD =,60DAB DBC ∠=∠=°,∵AE BF =,∴()SAS ADE BDF ≌,∴ADE BDF ∠=∠,∴60EDF BDE BDF BDE ADE ADB ∠=∠+∠=∠+∠=∠=°;【小问3详解】如图,过点P 作PG AD ⊥于点 G ,连接PF ,过点F 作FG AD ′⊥于点G ′,交BD 于点P ′,∵60ADB∠=°,∴在Rt DPG 中,sin sin60GP DP ADB DP DP =⋅∠=⋅°=∴PF DP PF GP +=+ ∴当点F ,P ,G 三点共线,且FG AD ⊥时,PF GP +有最小值,最小值为FG 的长,过点D 作DH BC ⊥于点H ,∵四边形ABCD 是菱形,∴DH FG ′=,∴PF +的最小值即为DH 的长, ∵DH BC ⊥,BCD △是等边三角形,∴sin sin60DH CD C CD =⋅⋅°==∴PF +的最小值为 【点睛】本题考查菱形的性质,等边三角形的判定及性质,三角形全等的判定及性质,垂线段最短,解直角三角形.正确作出辅助线,综合运用相关知识,采用转化思想是解题的关键.23. 已知抛物线()²30y ax bx a =+−≠与x 轴交于点(1,0)A −,点(3,0)B ,与y 轴交于点C .(1)求抛物线的表达式;(2)如图,若直线BC 下方的抛物线上有一动点M ,过点M 作y 轴平行线交BC 于N ,过点M 作BC 的垂线,垂足为H ,求HMN △周长的最大值;(3)若点P 在抛物线的对称轴上,点Q 在x 轴上,是否存在以B ,C ,P ,Q 为顶点的四边形为平行四边形,若存在,求出点Q 的坐标,若不存在,请说明理由;(4)将抛物线向左平移1个单位,再向上平移4个单位,得到一个新的抛物线,问在y 轴正半轴上是否存在一点F ,使得当经过点F 的任意一条直线与新抛物线交于S ,T 两点时,总有2211FS FT +为定值?若存在,求出点F 坐标及定值,若不存在,请说明理由.【答案】(1)2=23y x x −−(2 (3)存在,Q 点的坐标为(2,0),(4,0),(2,0)−(4)存在,定点02,1F ,2211FS FT +的值为4 【解析】【分析】(1)把(1,0)A −,点(3,0)B 代入²3y ax bx =+−,得出关于a 、b 的二元一次方程组,解方程组求出a 、b 的值,即可得答案;(2)根据抛物线解析式求出点C 坐标,利用待定系数法求出直线BC 解析式,设()2,23M m m m −−,则(,3)N m m −,根据MN y ∥,MH BC ⊥及B 、C 两点坐标得出HMN △是等腰直角三角形,利用m 表示出HMN △的周长,利用二次函数的性质求出最大值即可得答案;(3)根据抛物线解析式求出对称轴为直线1x =,点P 坐标为(1,)s ,点Q 坐标为(,0)Q t ,根据平行四边形对角线中点的坐标相同,分BC 、BP 、BQ 为对角线三种情况,列方程组求出s 、t 的值即可得答案;(4)根据平移规律得出新的抛物线解析式为2y x ,设ST 的解析式为y kx b =+,11(,)S x y ,22(),T x y ,则(0,)F b ,联立抛物线与直线ST 的解析式得20x kx b −−=,利用一元二次方程根与系数的关系用k 、b 、1x 、2x 分别表示2FS 和2FT ,代入2211FS FT +,根据2211FS FT +为定值得出b 值及定值即可. 【小问1详解】 解:∵(1,0)A −,(3,0)B 在抛物线()230y ax bx a +−≠上, ∴309330a b a b −−= +−=, 解得:12a b = =−, ∴抛物线的表达式为:2=23y x x −−.【小问2详解】∵抛物线的表达式为:2=23y x x −−,∴当0x =时,=3y −,∴(0,3)C −,设直线BC 的解析式为y kx n =+, ∵(3,0)B ,(0,3)C −,∴303k n n += =−, 解得:13k n = =− ∴直线BC 解析式为3y x =−,设()2,23M m m m −−其中03m <<,则(,3)N m m −, ∴()223233MN m m m m m =−−−−=−+ ∵3OB OC ==,90BOC ∠=°, 的∴45OCB ∠=°∵MN y ∥轴,∴45MNH OCB ∠=∠=°, ∵MH BC ⊥,∴HMN △是等腰直角三角形,HM HN MN ∴=,∴HMN △的周长1l MN +)()213m m =+−+ ))2131m m −+++231)()2m −−∴当32m =时,HMN △的周长有最大值,l =最大 【小问3详解】 由题意知,抛物线的对称轴为直线2121x −=−=×,(3,0)B ,(0,3)C −, 设点P 坐标为(1,)s ,点Q 坐标为(,0)Q t ,①当BC 为对角线时,301030t s +=+ −=+, 解得:32s t =− =, ∴(20)Q ,,②当BP 为对角线时,310030t s +=+ +=−+ , 解得:34s t =− =, ∴(40)Q ,,③当BQ 为对角线时,310003t s +=+ +=−, 解得:32s t = =−, 解得:(20)Q −,,综上所述,存在点Q ,以B ,C ,P ,Q 为顶点的四边形为平行四边形,Q 点的坐标为(2,0),(4,0),(2,0)−. 【小问4详解】当抛物线2=23y x x −−向左平移1个单位,向上平移4个单位后,得到新的抛物线()()212134y x x +−+−+,即2y x ,设ST 的解析式为y kx b =+,点S 坐标为11(,)x y ,点T 坐标为22(,)x y ,则(0,)F b , 联立新抛物线与直线ST 的解析式得:2y kx b y x =+=∴20x kx b −−=, ∴12x x k +=,12x x b =−, ()()22222222111111FS x y b x k x k x =+−=+=+,同理,()22221FT k x =+, ()()2212122222222221212211111112111x x x x k b FS FT k x x kk b x x +− +∴+=+== +++ , ∵2211FS FT+为定值, ∴2212k k b +=+,解得:12b =, 当12b =时,22114FS FT +=, ∴定点221110,,2F FS FT+ 的值为4. 【点睛】本题考查二次函数的综合,包括待定系数法求二次函数解析式、二次函数图像的平移、求一次函数解析式、平行四边形的性质、求二次函数的最大值、一元二次方程根与系数的关系,综合性强,熟练掌握相关的性质及规律是解题关键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年江苏省盐城中考数学一模试卷一、选择题(共8小题,每小题3分,满分24分)1. 16的平方根是()A.8 B.4 C.±4 D.±22.计算(﹣2a3)2的结果是()A.﹣8a5B.4a6C.8a5D.﹣4a63.在下面的四个几何体中,左视图与主视图不完全相同的几何是()A.正方体B.长方体C.球 D.圆锥4.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.5.在某校初三年级古诗词比赛中,初三(1)班60名学生的成绩统计如下:则该班学生成绩的中位数和众数分别是()A.80,80 B.70,80 C.80,90 D.90,806.在平面直角坐标系中,已知点A(﹣1,2),则点A关于x轴的对称点B的坐标是()A.(﹣1,﹣2) B.(1,2) C.(2,﹣1)7.如图,直线m∥n,点A在直线m上,点B,C在直线n上,AB=BC,∠1=70°,CD⊥AB于D,那么∠2等于()A.20° B.30° C.32° D.25°8.在平面直角坐标系xOy中,四边形OABC是矩形,且A,C在坐标轴上,满足OA=,OC=1.将矩形OABC绕原点0以每秒15°的速度逆时针旋转.设运动时间为t秒(0≤t≤6),旋转过程中矩形在第二象限内的面积为S,表示S与t的函数关系的图象大致如图所示,则矩形OABC的初始位置是()A. B. C.D.二、填空题(共10小题,每小题3分,满分30分)9.使式子有意义的x的取值范围是.10.已知=(a≠0),则代数式的值为.11.分解因式:x2﹣2x+1= .12.“中华人民共和国全国人民代表大会”和“中国人民政治协商会议”于2016年3月3日在北京胜利召开.截止到2016年3月14日,在百度上搜索关键词“两会”,显示的搜索结果约为96 500 000条.将96 500 000用科学记数法表示应为.13.已知关于x的方程x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是.14.某游戏的规则为:选手蒙眼在一张如图所示的正方形黑白格子纸(九个小正方形面积相等)上描一个点,若所描的点落在黑色区域,获得笔记本一个;若落在白色区域,获得钢笔一支.选手获得笔记本的概率为.15.如图,△ABC的中位线DE=10cm,把△ABC沿DE折叠,使点A落在边BC上的点F处,若A、F两点间的距离是16cm,则△ABC的面积为cm2.16.如图,四边形ABCD内接于⊙O,∠A=100°,⊙O的半径=2,则劣弧的长= .17.反比例函数y=和正比例函数y=mx的部分图象如图所示,由此可以得到关于x的方程=mx的解为.18.在平面直角坐标系中,点O为坐标原点,A、B、C三点的坐标为(,0)、(3,0)、(0,5),点D在第一象限,且∠ADB=60°,则线段CD的长的最小值为.三、解答题(共10小题,满分96分)19.计算:|﹣4|﹣20160﹣cos30°(2)解方程: +3=.20.解不等式组,并把不等式组的解集在数轴上表示出来.21.国家规定体质健康状况分为优秀、良好、合格和不合格四种等级.为了了解某地区10000名初中学生的体质健康状况,某校数学兴趣小组从该地区七、八、九年级随机抽取了共500名学生数据进行整理分析,他们对其中体质健康为优秀的人数做了以下分析:(1)写出本次随机抽取的七年级人数m= ;(2)补全条形统计图;(3)在分析样本时,发现七年级学生的体质健康状况中不合格人数有10人,若要制作样本中七年级学生体质健康状况等级人数的扇形统计图,求“不合格”人数对应扇形统计图的圆心角度数;(4)根据抽样调查的结果,估计该地区10000名初中学生体质健康状况为优秀的人数.22.从1名男生和3名女生中随机抽取参加“最是书香能致远”演讲比赛的同学.(1)若抽取1名,恰好是男生的概率为;(2)若抽取2名,求其中有男生参加比赛的概率.(用树状图或列表法求解)23.如图,已知AB=DC,AC=DB,AC与DB交于点M.过点C作CN∥BD,过点B作BN∥AC,CN与BN 交于点N.(1)求证:△ABC≌△DCB;(2)求证:四边形BNCM是菱形.24.如图,一艘潜艇在海面下500米深处的A点,测得正前方俯角为31.0°方向上的海底有黑匣子发出的信号,潜艇在同一深度保持直线航行500米,在B点处测得海底黑匣子位于正前方俯角为36.9°的方向上,求海底黑匣子C所在点距离海面的深度.(精确到1米)(参考数据:sin36.9°≈0.60,cos36.9°≈0.80,tan36.9°≈0.75,sin31.0°≈0.51,cos31.0°≈0.87,tan31.0°≈0.60)25.小明为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小明一次性购买这种服装x(x为正整数)件,支付y元.(1)当x=12时,小明购买的这种服装的单价为元;(2)写出y关于x的函数表达式,并给出自变量x的取值范围;(3)小明一次性购买这种服装付了1050元,请问他购买了多少件这种服装?26.如图1,C地位于A,B两地之间,甲步行直接从C地前往B地;乙骑自行车由C地先回A地,再从A地前往B地(在A地停留时间忽略不计).已知两人同时出发且速度不变,乙的速度是甲的倍,设出发xmin后甲、乙两人离C地的距离分别为y1m,y2m,图②中线段OM表示y1与x的函数图象.(1)甲的速度为m/min,乙的速度为m/min;(2)在图2中画出y2与x的函数图象;(3)求甲乙两人相遇的时间;(4)在上述过程中,甲乙两人相距的最远距离为m.27.在Rt△ABC中,∠ACB=90°,D是AB的中点,DE⊥BC于E,连接CD.(1)如图1,如果∠A=30°,那么DE与CE之间的数量关系是 DE=BC.(2)如图2,在(1)的条件下,P是线段CB上一点,连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论.(3)如图3,如果∠A=45°,P是射线CB上一动点(不与B、C重合),连接DP,将线段DP绕点D 逆时针旋转90°,得到线段DF,连接BF,请直接写出DE、BF、BP三者之间的数量关系(不需证明).28.如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx+3与x轴交于点A(﹣3,0)、C(1,0),与y轴交于点B.(1)求此抛物线的解析式;(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为点F,交直线AB于点E,作PD⊥AB于点D.点P在什么位置时,△PDE的周长最大,求出此时P点的坐标;(3)在(2)的条件下,连接PA,以PA为边作矩形APMN使得=4,当顶点M或N恰好落在抛物线对称轴上时,求出对应的P点的坐标.(4)如图2,若点Q(0,t)为y轴上任意一点,⊙I为△ABO的内切圆,若⊙I上存在两个点M,N,使∠MQN=60°,请直接写出t的取值范围.2016年江苏省盐城初级中学中考数学一模试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.16的平方根是()A.8 B.4 C.±4 D.±2【考点】平方根.【分析】看看哪些数的平方等于16,就是16的平方根.【解答】解:∵(±4)2=16,∴16的平方根是±4.故选C.【点评】本题考查平方根的概念,要熟记这些概念,本题属于基本运算,要求必须掌握.2.计算(﹣2a3)2的结果是()A.﹣8a5B.4a6C.8a5D.﹣4a6【考点】幂的乘方与积的乘方.【分析】分别利用积的乘方运算法则计算得出答案.【解答】解:(﹣2a3)2=4a6.故选:B.【点评】此题主要考查了积的乘方运算,正确掌握运算法则是解题关键.3.在下面的四个几何体中,左视图与主视图不完全相同的几何是()A.正方体B.长方体C.球D.圆锥【考点】简单几何体的三视图.【分析】根据几何体的三种视图,对各图形的主视图与左视图分析后进行选择即可.【解答】解:A、正方体的主视图与左视图是全等的正方形;B、长方体的主视图的长方形的长与宽分别是长方体的长与高,左视图的长方形的长与宽分别是长方体的宽与高,两图形不一定相同;C、球的主视图与左视图是半径相等的圆;D、圆锥的主视图与左视图是全等的等腰三角形.故选B.【点评】本题考查简单几何体的三视图的相关知识;判断出所给几何体的三视图是解决本题的关键.4.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】结合选项根据轴对称图形与中心对称图形的概念求解即可.【解答】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,也是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,是中心对称图形.故选B.【点评】本题考查了中心对称图形与轴对称图形的知识.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.5.在某校初三年级古诗词比赛中,初三(1)班60名学生的成绩统计如下:则该班学生成绩的中位数和众数分别是()A.80,80 B.70,80 C.80,90 D.90,80【考点】众数;中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,即可得出答案.【解答】解:由统计表知:这组数据的个数是60,中间的第30和第31个数都是80,则中位数是80,80出现的次数最多,则众数是80.故选:A.【点评】此题考查了众数和中位数,掌握众数和中位数的概念是解题的关键,众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).6.在平面直角坐标系中,已知点A(﹣1,2),则点A关于x轴的对称点B的坐标是()A.(﹣1,﹣2) B.(1,2) C.(2,﹣1)【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x 轴的对称点P′的坐标是(x,﹣y),进而得出答案.【解答】解:∵A(﹣1,2),∴点A关于x轴的对称点的坐标是:(﹣1,﹣2).故选:A.【点评】此题主要考查了关于x轴对称点的性质,正确记忆关于坐标轴对称点的性质是解题关键.7.如图,直线m∥n,点A在直线m上,点B,C在直线n上,AB=BC,∠1=70°,CD⊥AB于D,那么∠2等于()A.20° B.30° C.32° D.25°【考点】平行线的性质.【分析】先由平行线的性质得出∠ACB=∠1=70°,根据等角对等边得出∠BAC=∠ACB=70°,由垂直的定义得到∠ADC=90°,那么∠2=90°﹣∠DAC=20°.【解答】解:∵m∥n,∴∠ACB=∠1=70°,∵AB=BC,∴∠BAC=∠ACB=70°,∵CD⊥AB于D,∴∠ADC=90°,∴∠2=90°﹣∠DAC=90°﹣70°=20°.故选A.【点评】本题考查了平行线的性质,等腰三角形的判定,垂直的定义,三角形内角和定理,求出∠BAC=70°是解题的关键.8.在平面直角坐标系xOy中,四边形OABC是矩形,且A,C在坐标轴上,满足OA=,OC=1.将矩形OABC绕原点0以每秒15°的速度逆时针旋转.设运动时间为t秒(0≤t≤6),旋转过程中矩形在第二象限内的面积为S,表示S与t的函数关系的图象大致如图所示,则矩形OABC的初始位置是()A. B. C.D.【考点】动点问题的函数图象.【分析】根据图象计算0秒、2秒、6秒的时候,矩形在第二象限内的面积为S,即可分析出矩形OABC 的初始位置.【解答】解:由图象可以看出在0秒时,S=0,在2秒时,S=,在6秒时,S=;由题意知,矩形OABC绕原点0以每秒15°的速度逆时针旋转,6秒逆时针旋转90°,S=,不难发现B和D都符合,但在2秒时,S=,即矩形OABC绕原点0逆时针旋转30°时,S=,则只有D符合条件.故选:D.【点评】本题主要考查了函数的图象以及旋转问题,正确分析0秒、2秒、6秒时图形的位置和图形在第二象限的面积是解决问题的关键.二、填空题(共10小题,每小题3分,满分30分)9.使式子有意义的x的取值范围是x≥﹣6 .【考点】二次根式有意义的条件.【分析】直接利用二次根式有意义的条件,进而得出x的取值范围.【解答】解:使式子有意义,则x+6≥0,解得:x≥﹣6,则x的取值范围是:x≥﹣6.故答案为:x≥﹣6.【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.10.已知=(a≠0),则代数式的值为 5 .【考点】分式的值.【分析】令==k,则a=3k,b=2k,再代入代数式进行计算即可.【解答】解:令==k,则a=3k,b=2k,故原式===5.故答案为:5.【点评】本题考查的是分式的值,分式求值历来是各级考试中出现频率较高的题型,而条件分式求值是较难的一种题型,在解答时应从已知条件和所求问题的特点出发,通过适当的变形、转化,才能发现解题的捷径.11.分解因式:x2﹣2x+1= (x﹣1)2.【考点】因式分解-运用公式法.【分析】直接利用完全平方公式分解因式即可.【解答】解:x2﹣2x+1=(x﹣1)2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.12.“中华人民共和国全国人民代表大会”和“中国人民政治协商会议”于2016年3月3日在北京胜利召开.截止到2016年3月14日,在百度上搜索关键词“两会”,显示的搜索结果约为96 500 000条.将96 500 000用科学记数法表示应为9.65×107.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将96500000用科学记数法表示应为9.65×107,故答案为:9.65×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.已知关于x的方程x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是m<1 .【考点】根的判别式.【专题】推理填空题.【分析】关于x的方程x2﹣2x+m=0有两个不相等的实数根,即判别式△=b2﹣4ac>0.即可得到关于m的不等式,从而求得m的范围.【解答】解:∵a=1,b=﹣2,c=m,∴△=b2﹣4ac=(﹣2)2﹣4×1×m=4﹣4m>0,解得:m<1.故答案为m<1.【点评】本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.14.某游戏的规则为:选手蒙眼在一张如图所示的正方形黑白格子纸(九个小正方形面积相等)上描一个点,若所描的点落在黑色区域,获得笔记本一个;若落在白色区域,获得钢笔一支.选手获得笔记本的概率为.【考点】几何概率.【分析】利用击中黑色区域的概率等于黑色区域面积与正方形总面积之比,进而求出答案.【解答】解:∵整个正方形被分成了9个小正方形,黑色正方形有5个,∴落在黑色区域即获得笔记本的概率为,故答案为:.【点评】此题考查了几何概率计算公式以及其简单应用,注意面积之比=几何概率.15.如图,△ABC的中位线DE=10cm,把△ABC沿DE折叠,使点A落在边BC上的点F处,若A、F 两点间的距离是16cm,则△ABC的面积为160 cm2.【考点】翻折变换(折叠问题);三角形中位线定理.【分析】根据对称轴垂直平分对应点连线,可得AF即是△ABC的高,再由中位线的性质求出BC,继而可得△ABC的面积.【解答】解:∵DE是△ABC的中位线,∴DE∥BC,BC=2DE=20cm;由折叠的性质可得:AF⊥DE,∴AF⊥BC,∴S△ABC=BC×AF=×20×16=160cm2,故答案为:160.【点评】本题考查了翻折变换的性质及三角形的中位线定理,解答本题的关键是得出AF是△ABC的高.16.如图,四边形ABCD内接于⊙O,∠A=100°,⊙O的半径=2,则劣弧的长= .【考点】弧长的计算;圆内接四边形的性质.【分析】连接OB、OD,首先根据圆周角定理求出∠BOD的度数,然后根据弧长公式求解.【解答】解:连接OB、OD,∵∠A=100°,∴∠C=80°,∴∠BOD=160°,则劣弧==.故答案为:.【点评】本题考查了弧长的计算,解答本题的关键是根据圆周角定理求出∠BOD的度数,注意掌握弧长公式.17.反比例函数y=和正比例函数y=mx的部分图象如图所示,由此可以得到关于x的方程=mx的解为x=1或x=﹣1 .【考点】反比例函数与一次函数的交点问题;分式方程的解.【分析】由函数与方程的关系可得到方程的解即为函数图象交点的横坐标,可求得答案.【解答】解:∵点C(1,2)为两函数图象的一个交点,∴两函数图象的另一交点坐标为(﹣1,﹣2),∴关于x的方程=mx的解为x=1或x=﹣1,故答案为:x=1或x=﹣1.【点评】本题主要考查函数与方程的关系,掌握两函数的交点横坐标即为两函数解析式组成的方程的解是解题的关键.18.在平面直角坐标系中,点O为坐标原点,A、B、C三点的坐标为(,0)、(3,0)、(0,5),点D在第一象限,且∠ADB=60°,则线段CD的长的最小值为2﹣2 .【考点】点与圆的位置关系;坐标与图形性质;垂径定理;圆周角定理.【分析】作圆,求出半径和PC的长度,判出点D只有在CP上时CD最短,CD=CP﹣DP求解.【解答】解:作圆,使∠ADB=60°,设圆心为P,连结PA、PB、PC,PE⊥AB于E,如图所示:∵A(,0)、B(3,0),∴E(2,0)又∠ADB=60°,∴∠APB=120°,∴PE=1,PA=2PE=2,∴P(2,1),∵C(0,5),∴PC==2,又∵PD=PA=2,∴只有点D在线段PC上时,CD最短(点D在别的位置时构成△CDP)∴CD最小值为:2﹣2.故答案为:2﹣2.【点评】本题主要考查坐标与图形的性质,圆周角定理及勾股定理,解决本题的关键是判出点D只有在CP上时CD最短.三、解答题(共10小题,满分96分)19.(1)计算:|﹣4|﹣20160﹣cos30°(2)解方程: +3=.【考点】解分式方程;实数的运算;零指数幂;特殊角的三角函数值.【专题】计算题;分式方程及应用.【分析】(1)原式利用绝对值的代数意义,零指数幂法则,以及特殊角的三角函数值计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=4﹣1﹣×=3﹣=2;(2)去分母得:1+3x﹣6=x﹣1,解得:x=2,经检验x=2是增根,分式方程无解.【点评】此题考查了解分式方程,以及实数的运算,熟练掌握运算法则是解本题的关键.20.解不等式组,并把不等式组的解集在数轴上表示出来.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】先求出不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【解答】解:∵由①得:,由②得:x≤1,∴不等式组的解集为:,在数轴上表示不等式组的解集为:.【点评】本题考查了解一元一次不等式组,解一元一次不等式,在数轴上表示不等式组的解集的应用,解此题的关键是能根据不等式的解集求出不等式组的解集,难度适中.21.国家规定体质健康状况分为优秀、良好、合格和不合格四种等级.为了了解某地区10000名初中学生的体质健康状况,某校数学兴趣小组从该地区七、八、九年级随机抽取了共500名学生数据进行整理分析,他们对其中体质健康为优秀的人数做了以下分析:(1)写出本次随机抽取的七年级人数m= 200 ;(2)补全条形统计图;(3)在分析样本时,发现七年级学生的体质健康状况中不合格人数有10人,若要制作样本中七年级学生体质健康状况等级人数的扇形统计图,求“不合格”人数对应扇形统计图的圆心角度数;(4)根据抽样调查的结果,估计该地区10000名初中学生体质健康状况为优秀的人数.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据七年级优秀人数除以优秀人数所占的百分比,可得答案;(2)根据八年级优秀人数除以优秀人数所占的百分比,可得八年级的人数,根据有理数的减法,可得九年级人数,根据九年级人数乘以九年级的优秀率,可得九年级优秀的人数,可得答案;(3)根据七年级不合格人数除以七年级的人数乘以360°,可得答案;(4)根据优秀率诚意总人数,可得答案.【解答】解:(1)本次随机抽取的七年级人数m=38÷19%=200,故答案为:200.(2)八年级人数26÷26%=100人,九年级人数500﹣200﹣100=200人,九年级人数优秀的人数200×28%=56人,统计图正确;(3)“不合格”人数占七年级总人数的百分比==5%.“不合格”人数对应扇形统计图的圆心角度数=360°×5%=18°.答:“不合格”人数对应扇形统计图的圆心角度数为18°.(4)×10000=2400人.答:估计该地区10000名初中学生体质健康状况优秀人数是2400人.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,折线统计图表示的是事物的变化情况,如增长率;折线统计图表示的是事物的变化情况,如增长率.22.从1名男生和3名女生中随机抽取参加“最是书香能致远”演讲比赛的同学.(1)若抽取1名,恰好是男生的概率为;(2)若抽取2名,求其中有男生参加比赛的概率.(用树状图或列表法求解)【考点】列表法与树状图法;概率公式.【分析】(1)由1名男生和3名女生中随机抽取参加“最是书香能致远”演讲比赛,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与有男生参加比赛的情况,再利用概率公式即可求得答案.【解答】解:(1)∵1名男生和3名女生中随机抽取参加“最是书香能致远”演讲比赛,∴抽取1名,恰好是男生的概率为:;故答案为:;(2)画树状图得:∵共有12种等可能的结果,其中有男生参加比赛的有6种情况,∴有男生参加比赛的概率==.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.(2015•溧水县二模)如图,已知AB=DC,AC=DB,AC与DB交于点M.过点C作CN∥BD,过点B 作BN∥AC,CN与BN交于点N.(1)求证:△ABC≌△DCB;(2)求证:四边形BNCM是菱形.【考点】菱形的判定;全等三角形的判定与性质.【专题】证明题.【分析】(1)利用SSS定理可直接判定△ABC≌△DCB;(2)首先根据CN∥BD、BN∥AC,可判定四边形BNCM是平行四边形,再根据△ABC≌△DCB可得∠1=∠2,进而可得BM=CM,根据邻边相等的平行四边形是菱形可得结论.【解答】解:(1)∵在△ABC和△DCB中,∴△ABC≌△DCB(SSS);(2)∵CN∥BD、BN∥AC,∴四边形BNCM是平行四边形,∵△ABC≌△DCB,∴∠1=∠2,∴BM=CM,∴四边形BNCM是菱形.【点评】此题主要考查了全等三角形的判定和性质,以及菱形的判定,关键是掌握一组邻边相等的平行四边形是菱形.24.如图,一艘潜艇在海面下500米深处的A点,测得正前方俯角为31.0°方向上的海底有黑匣子发出的信号,潜艇在同一深度保持直线航行500米,在B点处测得海底黑匣子位于正前方俯角为36.9°的方向上,求海底黑匣子C所在点距离海面的深度.(精确到1米)(参考数据:sin36.9°≈0.60,cos36.9°≈0.80,tan36.9°≈0.75,sin31.0°≈0.51,cos31.0°≈0.87,tan31.0°≈0.60)【考点】解直角三角形的应用-仰角俯角问题.【分析】首先作CD⊥AB于D,依题意,AB=500米,∠DAC=31.0°,∠CBD=36.9°,设CD=x,分别解Rt△ACD和Rt△BCD,表示出AD、BD,再根据AD﹣BD=AB列出方程,解方程求出x即可.【解答】解:作CD⊥AB于D,依题意,AB=500米,∠DAC=31.0°,∠CBD=36.9°,设CD=x,在Rt△ACD中,tan31.0°=,∴AD=x.在Rt△BCD中,tan36.9°=,∴BD=x.∵AD﹣BD=AB,∴x﹣x=500,解得x=1500,x+500=2000.答:海底黑匣子C所在点距离海面的深度为2000米.【点评】此题主要考查了俯角的定义及其解直角三角形的应用,解题时首先正确理解俯角的定义,然后利用三角函数和已知条件构造方程解决问题.25.小明为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小明一次性购买这种服装x(x为正整数)件,支付y元.(1)当x=12时,小明购买的这种服装的单价为76 元;(2)写出y关于x的函数表达式,并给出自变量x的取值范围;(3)小明一次性购买这种服装付了1050元,请问他购买了多少件这种服装?【考点】二次函数的应用;一元二次方程的应用.【分析】(1)根据每增加1件,购买的所有服装的单价降低2元,由此即可解决.(2)分①0≤x≤10,②10<x≤25,③x>25,分别求出y与x的关系即可.(3)根据(2)中结论列出方程即可解决,注意自变量的取值范围.【解答】解:(1)由题意x=12时,单价为76元,故答案为76.(2)①当0≤x≤10时,y=80x,②∵单价不得低于50元,∴降价了30元,购买了25件,∴10<x≤25时,y=[80﹣2(x﹣10)]x=﹣2x2+100x,③当x>25时,y=50x,综上所述y=.(3)①﹣2x2+100x=1050,解得x=15或35,∵10<x≤25,∴x=15.②50x=1050,解得x=21,21<25不合题意舍弃,答:小明购买了15件这种服装.【点评】本题考查二次函数的应用、一元二次方程的应用、分段函数等知识,解题的关键是理解题意,正确求出分段函数的解析式,学会构建函数解决实际问题,属于中考常考题型.26.如图1,C地位于A,B两地之间,甲步行直接从C地前往B地;乙骑自行车由C地先回A地,再从A地前往B地(在A地停留时间忽略不计).已知两人同时出发且速度不变,乙的速度是甲的倍,设出发xmin后甲、乙两人离C地的距离分别为y1m,y2m,图②中线段OM表示y1与x的函数图象.(1)甲的速度为80 m/min,乙的速度为200 m/min;(2)在图2中画出y2与x的函数图象;(3)求甲乙两人相遇的时间;(4)在上述过程中,甲乙两人相距的最远距离为960 m.【考点】一次函数的应用.【分析】(1)根据函数图象中点(30,2400),利用“速度=路程÷时间”可算出甲的速度,再根据甲乙速度间的关系可得出乙的速度;(2)根据乙的速度,以及A、C两地及B、C两地间的距离,利用“时间=路程÷速度”可找出函数图象经过点(0,0)、(3,600)、(6,0)、(18,2400),按照顺序连接两点即可得出结论;(3)设甲乙两人相遇的时间为xmin,结合(2)y2与x的函数图象可知,乙相当于比甲晚出发6分钟,依照“路程=速度×时间”可列出关于x的一元一次方程,解方程即可得出结论;(4)结合函数图象可知:最值只有可能出现在两种情况下,乙刚到A地时或乙到B地时,分别求出两种情形下两人间的距离,再作比较即可得出结论.【解答】解:(1)甲的速度为:2400÷30=80(m/min);乙的速度为:80×2.5=200(m/min).故答案为:80;200.(2)∵600÷200=3(min),600×2÷200=6(min).2400÷200+6=18(min).∴y2与x的函数图象过点(0,0)、(3,600)、(6,0)、(18,2400).画出图形如图所示.(3)设甲乙两人相遇的时间为xmin,依题意得:80x=200(x﹣6),解得:x=10.答:甲乙两人相遇的时间为10min.。