聚氯乙烯添加剂简介
PVC稳定剂的作用机理及用途解析

PVC稳定剂的作用机理及用途解析PVC稳定剂是一种添加剂,用于在聚氯乙烯(PVC)的制造和加工过程中,防止PVC在加工、使用和储存过程中脱氢氯化物和分解,从而延长PVC的使用寿命。
PVC稳定剂起到阻止PVC分子链断裂和颗粒降解的作用,使PVC能够在高温和长期暴露于光线、水和氧化物等环境中保持稳定。
1.去酸:PVC在加工和使用过程中会发生脱氢氯化反应,产生HCl。
PVC稳定剂中的酸酯类物质能与HCl反应,将其中和并脱除,避免进一步腐蚀PVC分子链或颗粒。
2.螯合金属离子:PVC稳定剂中的有机酸或硫醇类化合物能与金属离子形成络合物,降低金属离子对PVC的催化氧化作用,减少其对PVC分子链的破坏。
3.溶解氧:PVC稳定剂中的氯化锡化合物能与空气中的溶解氧反应,形成不溶性的氧化锡,减少氧对PVC的溶解和氧化作用。
4.吸收紫外线:PVC稳定剂中的有机锑化合物或有机锡化合物能吸收紫外线,减少紫外线对PVC的照射和降解作用。
1.塑料制品:PVC稳定剂是制造PVC塑料制品(如管道、电线、复合材料等)的重要添加剂。
它可以改善PVC的热稳定性和耐候性,提高塑料制品的使用寿命和质量稳定性。
2.建筑材料:PVC稳定剂也广泛应用于PVC建筑材料,如地板、壁板、屋顶膜等。
它可以提高PVC材料的热稳定性和耐候性,增加材料的抗老化能力,延长使用寿命。
3.医疗器械:PVC稳定剂在医疗器械方面的应用也很广泛,如输液袋、输血管、导管等。
在这些应用中,PVC稳定剂能够提高PVC材料的稳定性和安全性,确保医疗器械的高品质和长期安全使用。
4.包装材料:PVC稳定剂也常用于食品包装材料,如保鲜膜、食品袋等。
它可以提高PVC包装材料的稳定性和耐候性,确保食品的安全和保鲜效果。
5.汽车行业:PVC稳定剂也广泛用于汽车行业,如汽车内饰、车身密封条等。
它可以提高汽车零部件的耐热性和耐腐蚀性,延长使用寿命,同时还能提供良好的表面质量和外观效果。
总之,PVC稳定剂的主要作用是保护PVC材料在制造和使用过程中的稳定性,延长其使用寿命。
pvc型材或pvc管材配方中各添加剂的主要作用及其作用机理

pvc型材或pvc管材配方中各添加剂的主要作用及其作用机理下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!PVC型材或PVC管材配方中各添加剂的主要作用及其作用机理1. 塑化剂(Plasticizers)。
pvc增塑剂,稳定剂,PVC添加剂

pvc增塑剂,稳定剂,PVC添加剂盘VC添加剂3.1添加剂的范围和类型为了提供最终产品的特殊范围,PVC聚合物根据它的用途与一些添加剂相混合。
PVC化合物的成份(树脂+添加剂)根据不同量的添加剂有较大的变化。
如加入到聚合物中作为填充剂、稳定剂、润滑利、成形剂、着色剂和阻燃剂,大量不同型式PVC化合物用作加工产品,增塑剂(主要是邻苯二果酸盐)和稳定剂的使用量是很高的,构成了PVC比其它塑料加工的特殊性质。
所有其它类型的添加剂也用于其它塑料材料中。
添加剂的最重要的类型是稳定剂,需要科学地分析其危险特性和对人体健康及环境的风险,特别是包含重金属如铅、镉和增塑剂如邻苯二甲酸盐。
3.2 pvc稳定剂为了防止热和光降解,稳定剂加入到PVC聚合物中,在最终产品中使用何种类型的稳定剂,是根据应范围的技术要求而定。
铅稳定剂是最常用的一种,特别是硫化铅和氟化铅。
1998年欧洲共使用了112000吨铅稳定剂,包含5100吨铅金属,占总稳定剂消耗量的70%。
1995年欧洲消耗了160万吨的铅,铅稳定剂占总消耗量的3%,铅稳定剂主要用于导管,断面和电缆线。
镉稳定剂仍被一些生产厂家用作稳定剂,用于PVC窗框架生产,它的使用仍然为欧盟法规所允许。
在欧洲,镉的使用已大大减少,大约从1992年的600吨/年到1997年的100吨/年和1998年的50吨/年。
1998年欧洲大约使用了14500吨混合金属固态剂和16400吨液态稳定剂,在这些稳定剂中,钙/锌和钡/锌体系是最常用的。
有机锡化合物,总的消耗量为15000吨,大约是欧洲消耗稳定剂的9.3%。
各种类型的有机锡化合物,特别是单和双有机锡化合物的混合物被用作稳定剂,多数用于颗粒物的包装薄膜,瓶,顶和内衬层。
按照欧盟指导文件67/548/EEC关于修正的危险物质标签和分类,大多数铅化合物包括用于PVC被归于有害物质,对环境是有害的(生态毒性),表现累积效应,铅是持久的,在一定有机体内能积累。
PVC常用的添加剂类型和功能

PVC塑料的合成PVC塑料是由乙炔气体和氯化氢合成氯乙烯,再聚合而成。
在20世纪50年代前期是以乙炔电石法生产,50年代后期则转向了原料充足、成本低廉的乙烯氧化法;目前世界上80%以上的PVC树脂都是由此方法生产的。
但到2003年后,因石油价格暴涨,乙炔电石法成本反而比乙烯氧化法还要低10%左右,所以PVC的合成工艺又转向了乙炔电石法。
PVC塑料是由液态的氯乙烯单体(VCM)经悬浮、乳液、本体或溶液法工艺聚合而成,其中悬浮聚合工艺生产工艺成熟、操作简单、生产成本低、产品品种多、应用范围广,一直是生产PVC树脂的主要方法,在世界PVC生产装置中大约占90%的比例(在世界PVC总产量中均聚物也占大约90%的比例)。
其次是乳液法,用于生产PVC糊树脂。
其聚合反应由自由基引发,反应温度一般为40~70OC,反应温度和引发剂的浓度对聚合反应速率和PVC 树脂的分子量分布影响很大。
悬浮聚合悬浮聚合通过不断进行搅拌使单体液滴在水中保持悬浮状态,聚合反应在单体小液滴中进行。
通常悬浮聚合反应为间歇聚合。
近年来各公司对PVC树脂间歇悬浮聚合工艺的配方、聚合釜、产品品种和质量不断研究和改进,开发出各具特点的工艺技术,目前应用较多的是Geon公司(原B.F Goodrichg公司)技术、日本信越公司技术、欧洲EVC 公司技术, 这三大公司的技术在1990年以来世界新增的PVC树脂生产能力中各占大约21%的比例。
乳液聚合乳液聚合与悬浮聚合基本类似,只是要采用更为大量的乳化剂,并且不是溶于水中而是溶于单体中。
这种聚合体系可以有效防止聚合物粒子的凝聚,从而得到粒径很小的聚合物树脂,一般乳液法生产的PVC树脂的粒径为0.1—0.2mm,悬浮法为20―200mm。
引发剂体系与悬浮聚合也有所不同,通常是含有过硫酸盐的氧化还原体系。
干燥方法也设计成可以保持较小的粒径的方式, 常常采用一些喷雾干燥剂。
由于不可能将乳化剂完全除去,因此用乳液法生产的树脂不能用于生产需要高透明性的制品如包装薄膜或要求吸水性很低的制品如电线绝缘层。
细节详解聚氯乙烯配方

细节详解聚氯乙烯配方-概述说明以及解释1.引言1.1 概述聚氯乙烯(Polyvinyl Chloride,PVC)是一种常见的合成材料,广泛应用于建筑、医疗、电力、化工等各个领域。
其独特的性质和良好的加工性能使得聚氯乙烯被广泛使用。
然而,要获得理想的性能和特性,需要进行合理的配方设计。
本文将详细介绍聚氯乙烯配方的细节,并重点关注配方中的主要成分、添加剂、控制因素以及工艺参数。
通过深入研究聚氯乙烯配方,可以更好地了解其制备过程,进一步优化产品的性能和质量。
在配方中,主要成分是聚氯乙烯的主体,对产品的机械性能、化学性能和耐候性等方面起着决定性的作用。
而添加剂则是为了改善聚氯乙烯的某些特性或满足特定的应用需求而添加的。
这些添加剂可以分为增塑剂、稳定剂、润滑剂、填料等多种类型,它们的种类和用量的合理选择对产品的性能有着重要影响。
除了主要成分和添加剂,配方中还需要考虑一些控制因素,如氯乙烯单体的纯度、反应温度、反应时间等。
这些因素会直接影响聚合反应的进行和产品的质量。
因此,合理控制这些因素是实现理想配方的关键。
在配方设计过程中,还需要考虑工艺参数的选择,如搅拌速度、温度控制、压力等。
这些参数的优化可以提高聚氯乙烯的加工性能和产品的稳定性。
通过详细解析聚氯乙烯配方的各个细节,本文旨在帮助读者深入了解聚氯乙烯制备过程中的关键因素和要点。
同时,对未来聚氯乙烯配方研究的发展方向进行展望,以期为聚氯乙烯配方的改进和优化提供借鉴和指导。
结合实践经验和理论知识,我们相信聚氯乙烯配方的深入研究将为相关领域的发展做出一定贡献。
1.2 文章结构文章结构部分的内容如下:2. 正文2.1 聚氯乙烯的特性2.2 聚氯乙烯的应用领域2.3 聚氯乙烯的制备方法2.4 聚氯乙烯的配方3. 细节详解聚氯乙烯配方3.1 配方中的主要成分3.2 配方中的添加剂3.3 配方中的控制因素3.4 配方中的工艺参数这篇长文将详细介绍聚氯乙烯配方,并着重探讨配方中的各个细节。
pvc增塑剂

PVC增塑剂概述PVC增塑剂是一种常用的化学添加剂,用于改善聚氯乙烯(PVC)的柔软性和可加工性。
PVC由聚合氯乙烯单体制成,这是一种坚硬且脆弱的材料。
通过添加增塑剂,可以改善PVC的柔软性并增加其可塑性,使其更易于加工和使用。
在本文档中,我们将探讨PVC增塑剂的种类、工作原理以及使用PVC增塑剂的一些注意事项。
PVC增塑剂的种类PVC增塑剂有多种类型,包括可溶性增塑剂和固体增塑剂。
根据增塑剂的化学结构和性质,可将其分为以下几类:1.酯类增塑剂:酯类增塑剂通常是聚醚类或脂肪酸酯类化合物。
它们通过与PVC形成物理引力相互作用,使PVC变得柔软。
常见的酯类增塑剂有邻苯二甲酸酯(DOP)、邻苯二甲酸二丁酯(DBP)等。
2.环氧增塑剂:环氧增塑剂是一种固体增塑剂,具有优异的增塑性能。
它们通过将环氧树脂复合到PVC中,增加了PVC的可塑性和耐候性。
环氧增塑剂具有良好的热稳定性和流动性,适用于制造高要求的塑料制品。
3.天然增塑剂:天然增塑剂是从天然植物中提取的增塑剂。
相对于合成增塑剂,天然增塑剂更环保且可降解。
常见的天然增塑剂包括植物油、淀粉和纤维素等。
PVC增塑剂的工作原理PVC增塑剂通过与PVC形成物理或化学相互作用来改变其分子结构和性能。
增塑剂与PVC的相互作用方式有以下几种:1.物理相互作用:酯类增塑剂在PVC中的添加可以通过物理分散相互作用破坏PVC的晶体结构,从而使其柔软。
2.溶解作用:增塑剂能够与PVC分子相互作用,使PVC分子链的运动变得容易。
这种溶解作用可以使PVC更易于加工和成型。
3.化学相互作用:某些特定的增塑剂可以与PVC发生化学反应,形成共聚物或交联结构,从而增强PVC的力学性能和热稳定性。
使用PVC增塑剂的注意事项在使用PVC增塑剂时,需注意以下几点:1.选择合适的增塑剂:根据具体应用需求选择合适类型的增塑剂,如需要耐候性,可选用环氧增塑剂。
同时要注意增塑剂与PVC的相容性,以避免不良影响。
聚氯乙烯添加剂简介
聚氯乙烯是世界上实现工业化时间最早,应用范围最广泛的通用型热塑性塑料。
纯聚氯乙烯树脂的分解和塑化温度极为接近,当加热到130℃-140℃时,就会发生分解,放出氯化氢,所以用纯聚氯乙烯树脂是不能加工制造塑料制品的,必须加入各种助剂,改善聚氯乙烯性能,才能获得性能各异、用途广泛的各种制品。
因此,聚氯乙烯配方设计是聚氯乙烯制品加工的前提和重要工序。
相比其它塑料品种,聚氯乙烯是配方最复杂,所用助剂品种最多、数量最大的塑料。
热稳定剂、增塑剂、润滑剂、填充剂、着色剂以及加工助剂和抗冲改性剂等常用助剂,在大多数聚氯乙烯配方中均能见到,而且针对这些助剂的作用原理和实际应用情况,很多专家和学者已给出了大量的深刻论述。
这里不再重述。
为使聚氯乙烯获得更加优异的性能,适应更严峻的应用环境,拓宽聚氯乙烯的应用领域,在一些聚氯乙烯配方中有时还往往添加部分非常用助剂,如抗静电剂、阻燃剂、抗氧剂等。
本文对这些助剂进行了归纳总结,希望能为大家进行聚氯乙烯配方设计,提供有益的帮助。
一、抗氧剂抗氧剂是一种能抑制和延缓聚合物材料氧化和降解的化学助剂,其作用机理复杂。
根据抗氧剂所具有的官能团可将它们概括的分为主抗氧剂和辅助抗氧剂。
它们的作用是:主抗氧剂靠束缚自由基而中断链式反应;辅助抗氧剂或称预防性抗氧剂是破坏氢过氧化物的,这是产生自由基的根源。
由于大部分聚氯乙烯的降解过程是离子化过程,故只在考虑有自由基降解时,才使用主抗氧剂。
因为氧能加剧聚氯乙烯的热,光降解历程,高温下增塑剂的氧化也很快,氧化后的增塑剂会使相容性下降,“挥发度”增大。
所有这些破坏作用,使聚氯乙烯制品性能迅速下降,并会有气味产生。
聚氯乙烯在氧化过程中一旦生成了双键,其后的氧化过程就和其他不饱和聚合物一样了。
为了防止和缓解聚氯乙烯在加工和使用过程中老化,提高聚氯乙烯制品的应用质量,在某些配方中应加入一定量的抗氧剂。
聚氯乙烯对抗氧剂的要求不是很高,所以聚氯乙烯配方中大多没有抗氧剂。
cpe在pvc生产中的作用
CPE在PVC生产中的作用CPE是氯化聚乙烯(Chlorinated Polyethylene)的缩写,是一种重要的塑料添加剂。
它广泛应用于PVC(聚氯乙烯)生产过程中,可以改善PVC 的性能和加工特性。
下面将详细介绍CPE在PVC生产中的作用。
1.增加PVC的韧性和抗冲击性:CPE具有良好的韧性和抗冲击性,可以有效提高PVC的韧性和抗冲击性。
当PVC中添加适量的CPE时,可以增加PVC分子链的柔韧性,使其能够更好地吸收冲击能量,从而提高PVC的抗冲击性。
这对于PVC制品在低温环境下的使用非常重要,因为低温环境下PVC容易变脆。
2.提高PVC的耐热性和耐老化性:CPE具有良好的耐热性和耐老化性,可以有效提高PVC的耐热性和耐老化性。
当PVC中添加适量的CPE时,可以形成一种热稳定剂,能够抑制PVC在高温环境下的降解反应,从而延长PVC的使用寿命。
此外,CPE还可以防止PVC在紫外线照射下的光老化,保持PVC制品的颜色稳定性和外观质量。
3.改善PVC的加工性能:CPE具有良好的流动性和润滑性,可以改善PVC的加工性能。
当PVC中添加适量的CPE时,可以降低PVC的熔融粘度,提高其流动性,从而改善PVC的加工性能。
此外,CPE还可以减少PVC加工过程中的摩擦和磨损,提高加工设备的寿命。
4.提高PVC的电气绝缘性能:CPE具有良好的电气绝缘性能,可以提高PVC的电气绝缘性能。
当PVC中添加适量的CPE时,可以形成一种绝缘层,能够阻止电流的传导,从而提高PVC的电气绝缘性能。
这使得PVC广泛应用于电线电缆、电缆套管等领域。
5.改善PVC的阻燃性能:CPE具有良好的阻燃性能,可以改善PVC的阻燃性能。
当PVC中添加适量的CPE时,可以形成一种阻燃剂,能够抑制PVC燃烧时的火焰传播和烟雾产生,从而提高PVC的阻燃性能。
这使得PVC广泛应用于建筑、汽车、电子等领域。
综上所述,CPE在PVC生产中具有重要的作用。
PVC常用的添加剂类型与功能
PVC塑料的合成PVC塑料是由乙炔气体和氯化氢合成氯乙烯,再聚合而成。
在20世纪50年代前期是以乙炔电石法生产,50年代后期则转向了原料充足、成本低廉的乙烯氧化法;目前世界上80%以上的PVC树脂都是由此方法生产的。
但到2003年后,因石油价格暴涨,乙炔电石法成本反而比乙烯氧化法还要低10%左右,所以PVC的合成工艺又转向了乙炔电石法。
PVC塑料是由液态的氯乙烯单体(VCM)经悬浮、乳液、本体或溶液法工艺聚合而成,其中悬浮聚合工艺生产工艺成熟、操作简单、生产成本低、产品品种多、应用范围广,一直是生产PVC树脂的主要方法,在世界PVC生产装置中大约占90%的比例(在世界PVC总产量中均聚物也占大约90%的比例)。
其次是乳液法,用于生产PVC糊树脂。
其聚合反应由自由基引发,反应温度一般为40~70OC,反应温度和引发剂的浓度对聚合反应速率和PVC 树脂的分子量分布影响很大。
悬浮聚合悬浮聚合通过不断进行搅拌使单体液滴在水中保持悬浮状态,聚合反应在单体小液滴中进行。
通常悬浮聚合反应为间歇聚合。
近年来各公司对PVC树脂间歇悬浮聚合工艺的配方、聚合釜、产品品种和质量不断研究和改进,开发出各具特点的工艺技术,目前应用较多的是Geon公司(原B.F Goodrichg公司)技术、日本信越公司技术、欧洲EVC 公司技术, 这三大公司的技术在1990年以来世界新增的PVC树脂生产能力中各占大约21%的比例。
乳液聚合乳液聚合与悬浮聚合基本类似,只是要采用更为大量的乳化剂,并且不是溶于水中而是溶于单体中。
这种聚合体系可以有效防止聚合物粒子的凝聚,从而得到粒径很小的聚合物树脂,一般乳液法生产的PVC树脂的粒径为0.1—0.2mm,悬浮法为20―200mm。
引发剂体系与悬浮聚合也有所不同,通常是含有过硫酸盐的氧化还原体系。
干燥方法也设计成可以保持较小的粒径的方式, 常常采用一些喷雾干燥剂。
由于不可能将乳化剂完全除去,因此用乳液法生产的树脂不能用于生产需要高透明性的制品如包装薄膜或要求吸水性很低的制品如电线绝缘层。
聚氯乙烯VC介绍及配方介绍
目录一、聚氯乙烯1聚氯乙烯(英文:PolyVinyl Chloride,简称:PVC)是一种使用一个氯原子取代聚乙烯中的一个氢原子的高分子材料。
PVC为无定形结构的白色粉末,支化度较小。
工业生产的PVC分子量一般在5~12万范围内,具有较大的多分散性,分子量随聚合温度的降低而增加。
无固定熔点,80~85℃开始软化,130℃变为粘弹态,160~180℃开始转变为粘流态。
其抗张强度60MPa左右,冲击强度5~10kJ/m2;有优异的介电性能。
对光和热的稳定性差,在100℃以上或经长时间阳光曝晒,就会分解而产生氯化氢,并自动催化分解引起变色,在实际应用中必须加入稳定剂以提高对热和光的稳定性。
PVC很坚硬,只能溶于环己酮、二氯乙烷和四氢呋喃等少数溶剂中,对有机和无机酸、碱、盐均稳定,化学稳定性随使用温度的升高而降低。
2聚氯乙烯的分类生产方法的不同,PVC可分为:通用型PVC树脂、高聚合度PVC树脂、交联PVC树脂。
通用型PVC树脂是由氯乙烯单体在引发剂的作用下聚合形成的;高聚合度PVC树脂是指在氯乙烯单体聚合体系中加入链增长剂聚合而成的树脂;交联PVC树脂是在氯乙烯单体聚合体系中加入含有双烯和多烯的交联剂聚合而成的树脂。
软PVC一般用于地板、天花板以及皮革的表层,但由于软PVC中含有柔软剂,容易变脆,不易保存,所以其使用范围受到了局限。
硬PVC不含柔软剂,柔韧性好,易成型,不易脆,无毒无污染,保存时间长,因此具有很大的开发应用价值。
PVC发泡板具有防腐、防潮、防霉、不吸水、可钻、可锯、可刨、易于热成型、热弯曲加工等特性,因此广泛应用于家具、橱柜、浴柜、展览架用板、箱体芯层、室内外装饰、建材、化工等领域用板,广告标示、印刷、丝印、喷绘、电脑刻字、电子仪表产品包装等行业。
PVC硬塑板具有优良的耐腐蚀性、绝缘性,并有一定的机械强度;经二次加工后可制成硫酸(盐酸)槽(桶箱);医药用空针架,化程架;公共卫生间水箱;加工产品的模板、装饰板、排风管道、设备衬里等各种异型制品、容器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聚氯乙烯是世界上实现工业化时间最早,应用范围最广泛的通用型热塑性塑料。
纯聚氯乙烯树脂的分解和塑化温度极为接近,当加热到130℃-140℃时,就会发生分解,放出氯化氢,所以用纯聚氯乙烯树脂是不能加工制造塑料制品的,必须加入各种助剂,改善聚氯乙烯性能,才能获得性能各异、用途广泛的各种制品。
因此,聚氯乙烯配方设计是聚氯乙烯制品加工的前提和重要工序。
相比其它塑料品种,聚氯乙烯是配方最复杂,所用助剂品种最多、数量最大的塑料。
热稳定剂、增塑剂、润滑剂、填充剂、着色剂以及加工助剂和抗冲改性剂等常用助剂,在大多数聚氯乙烯配方中均能见到,而且针对这些助剂的作用原理和实际应用情况,很多专家和学者已给出了大量的深刻论述。
这里不再重述。
为使聚氯乙烯获得更加优异的性能,适应更严峻的应用环境,拓宽聚氯乙烯的应用领域,在一些聚氯乙烯配方中有时还往往添加部分非常用助剂,如抗静电剂、阻燃剂、抗氧剂等。
本文对这些助剂进行了归纳总结,希望能为大家进行聚氯乙烯配方设计,提供有益的帮助。
一、抗氧剂抗氧剂是一种能抑制和延缓聚合物材料氧化和降解的化学助剂,其作用机理复杂。
根据抗氧剂所具有的官能团可将它们概括的分为主抗氧剂和辅助抗氧剂。
它们的作用是:主抗氧剂靠束缚自由基而中断链式反应;辅助抗氧剂或称预防性抗氧剂是破坏氢过氧化物的,这是产生自由基的根源。
由于大部分聚氯乙烯的降解过程是离子化过程,故只在考虑有自由基降解时,才使用主抗氧剂。
因为氧能加剧聚氯乙烯的热,光降解历程,高温下增塑剂的氧化也很快,氧化后的增塑剂会使相容性下降,“挥发度”增大。
所有这些破坏作用,使聚氯乙烯制品性能迅速下降,并会有气味产生。
聚氯乙烯在氧化过程中一旦生成了双键,其后的氧化过程就和其他不饱和聚合物一样了。
为了防止和缓解聚氯乙烯在加工和使用过程中老化,提高聚氯乙烯制品的应用质量,在某些配方中应加入一定量的抗氧剂。
聚氯乙烯对抗氧剂的要求不是很高,所以聚氯乙烯配方中大多没有抗氧剂。
但对于长期在户外应用的、高温环境下应用的、耐侯性要求较高的聚氯乙烯制品。
特别是易发生氧化裂解和潜在降解的增塑聚氯乙烯制品,如电缆材料等。
配方中一般在加入热稳定剂的同时,加入一定量的抗氧剂,以保证聚氯乙烯制品的内在稳定性和外观质量。
另外废旧聚氯乙烯制品的回收利用的再加工中,不仅应补加损失的热稳定剂,同时还应加入一定量的抗氧剂,使因老化产生的自由基的活性降低或丧失。
避免发生链式反应,增强新制品的稳定性,延长其使用寿命。
可用于聚氯乙烯的抗氧剂主要有两大类,即主抗氧剂和亚磷酸酯类辅助抗氧剂。
主抗氧剂主要有双酚A、抗氧剂CA,抗氧剂264,抗氧剂2246 ,抗氧剂1076等。
从综合性能、来源及成本来考虑,聚氯乙烯中应用最多的是双酚A。
其主要用于增塑聚氯乙烯配方中,特别是电线电缆材料。
因为它不仅对聚氯乙烯树脂有抗氧化作用,同时对防止增塑剂挥发和氧化分解也有抑制作用,一般加入量为0.3-0.5%。
亚磷酸酯类抗氧剂在聚氯乙烯中广泛作螯合剂使用。
特别是以金属皂作稳定剂时具有协同效果,可减少金属氯化物的危害,阻止金属离子对聚氯乙烯树脂的催化降解。
在透明聚氯乙烯膜、片、板中应用较多。
常用品种有亚磷酸三苯酯(TPP)、二苯基—异辛基亚磷酸酯(ODPP)、亚磷酸苯二异辛酯等。
它们能使聚氯乙烯制品保持其透明度,并抑制颜色的变化。
配方中用量一般为0.3%-1.0%。
二、光稳定剂光稳定剂的作用机理因自身结构和品种不同而不同,有的能屏蔽紫外线或吸收紫外线并将其转化为无害的热能;有的可淬灭被紫外线激发的分子或基团的激发态,使其回复到基态;有的则捕获因光氧化产生的自由基,抑制光氧化链式反应的进行,使高分子材料免遭紫外线的破坏。
聚氯乙烯材料是一种对紫外线不太敏感的聚合物,但聚氯乙烯中残留的感光杂质、催化剂残留物或其它光敏添加剂将会引起聚氯乙烯的降解。
聚氯乙烯塑料在日光照射下,由于受日光中290—400纳米波长紫外线的照射,吸收紫外线能量、化学键破坏,并引起链式反应,使聚氯乙烯塑料性能下降,如降低冲击强度或使制品变色等。
配方中加入紫外线吸收剂便可有效地抑制光降解。
因此,聚氯乙烯所用的光稳定剂,使用最普遍的是紫外线吸收剂。
聚氯乙烯硬质品在紫外线稳定方面的要求主要是在户外建材方面,如护墙板、百叶窗、窗用型材;软质品主要应用于座位外罩、花园园艺软管和草坪设施等。
光稳定剂的种类和品种很多,用于聚氯乙烯中的主要有二苯甲酮类、苯并三唑类、三嗪类和炭黑。
常用品种是:UV-9(2-羟基-4-甲氧基二苯甲酮)、UV-531(2-羟基-4-正辛氧基-二苯甲酮)、UV-326[(2’-羟基-3’-叔丁基-5’-甲基苯基)-5-氯代苯并三唑]、UV-P[2-(2’-羟基-5’-甲基苯基)苯并三唑]、UV-24(2,2’-二羟基-甲氧基二苯甲酮)、三嗪-5[2,4,6-三(2’-羟基-4’-正辛氧基苯基)-1,3,5-三嗪]。
炭黑可以吸收入射光,并将其转化成热能重新释放出去而不损坏聚合物。
但只能用于深色的聚氯乙烯制品。
其用量还取决于制品的颜色,所以炭黑在聚氯乙烯中使用受到制约和限制。
选择聚氯乙烯用的光稳定剂,应考虑它们与热稳定剂之间的相互影响,光稳定剂的应用需以不影响热稳定剂效果为前提。
例如,二苯甲酮类光稳定剂与钡-镉热稳定剂并用时,会使软质聚氯乙烯制品泛黄,降低钡-镉稳定剂的碱性,泛黄现象得以减弱。
苯并三唑类光稳定剂对于提高聚氯乙烯的光稳定性,特别是对硬质聚氯乙烯是非常有效的。
然而在硬质聚氯乙烯中某些苯并三唑类光稳定剂与硫基锡热稳定剂并用时形成粉红色络合物。
因此,当热稳定剂为金属皂类时,常选用UV-P,用量为0.2%-0.5%。
当以硫醇有机锡为热稳定剂时,常选用UV-531,用量为0.3-0.5%。
在聚氯乙烯农用薄膜中,三嗪-5有突出的防老化效果,用量为0.2-0.5%。
三、阻燃剂和抑烟剂(一)阻燃剂阻燃剂是提高可燃性聚合物的难燃性的一类助剂。
阻燃剂的作用机理很复杂,阻燃效果是通过各种不同途径实现的。
但归结起来,阻燃剂的作用不外乎是通过物理途径和化学途径来达到切断燃烧循环的目的。
有的阻燃剂有助于生成一种保护性的焦炭层,从而使未燃烧的聚合物与火焰和热源隔开;有的阻燃剂是通过改变火焰的反应机理而起作用,即在气相中阻止自由基的生成;还有的则是将其水分释放到热源上,急冷和冷却燃烧反应。
根据塑料阻燃剂应用的方法,一般把阻燃剂分为添加型和反应型两大类。
聚氯乙烯树脂的含氯量为56.8%,所以本身具有自熄性,硬质品也具有阻燃性,但是聚氯乙烯软质品由于配用大量的增塑剂,增塑剂中绝大多数品种遇火燃烧,所以配方中一般增塑剂的加入量小于50份时,制品遇火燃烧,离开火能自熄;若是大于50份,将极易燃烧且不能自熄。
另外聚氯乙烯配方中所加入一些改性剂,往往也是可燃的,这些组分也将提高聚氯乙烯制品的可燃性。
聚氯乙烯配方中最常用的阻燃剂有氧化锑、硼酸锌、氯化石蜡、磷酸三甲苯脂(TCP)、磷酸三(2,3-二氯丙基)酯、磷酸三(2,3-二溴丙基)酯等。
作为PVC抗冲改性剂之一的氯化聚乙烯,由于能提高制品的氯含量,也能起到一定阻燃作用。
氧化锑(三氧化二锑)在单独使用时,几乎没有阻燃活性,但和卤素共用则有协同效应。
聚氯乙烯是含卤树脂,所以单独使用氧化锑就能得到阻燃性。
当氧化锑与氯化石蜡并用时,阻燃效果将更好。
然而由于使用氧化锑后制品不透明,所以在一定程度上,限制了它的用途。
氧化锑的有效用量是1-5phr,常用量为2-3phr。
目前国外已开发出用于透明制品的氧化锑品种如Nyacol。
硼酸锌是一种价廉阻燃剂,阻燃效果没有氧化锑好,所以一般和氧化锑并用,减少氧化锑用量,降低成本。
磷酸酯是一种较高效的阻燃剂,最常用的是磷酸三甲苯脂。
但磷酸三甲苯脂的低温性能很差,所以在需要考虑耐寒性的场合使用烷基磷酸酯更为合适。
此类阻燃剂可用于透明制品。
磷酸酯类阻燃剂一般加入量为5—15phr,具体用量取决于聚氯乙烯制品阻燃等级的要求。
含溴的磷酸酯类阻燃效果要好于相同结构的含氯磷酸酯。
由于此类阻燃剂中大多数品种对制品低温柔曲性产生不良影响,所以它们最大用量很少超过15phr。
和氧化锑并用,可获得更佳的阻燃效果。
氯化石蜡是一种比较典型的阻燃剂,随着含氯量的增加,阻燃效果增强。
使用70%氯化石蜡,可以补偿聚氯乙烯氯含量的损失。
50%氯化石蜡还有增塑作用,是辅助增塑剂,混合这种阻燃剂不仅能减少易燃增塑剂用量,还可减少配方中氧化锑的量,但它的应用受到低相容性和增塑效果的限制。
另外氯化石蜡也对一些稳定体系产生负作用,配方设计时应注意。
(二)抑烟剂通过对很多火灾事故实例的研究表明:一半以上火险死亡事故是烟雾而不是热和燃烧引起的。
聚氯乙烯是属于产生烟雾危害的许多物种中的一种。
软聚氯乙烯中所用的大多数普通阻燃剂在控制有焰燃烧上虽属有效,但却会增加烟量,甚至本身阻燃的硬聚氯乙烯也会产生显著的烟量。
当聚氯乙烯燃烧时,在材料的内部和远离火焰端,聚合物的裂解和交联激烈地发生竞争,然后发生二次反应,碳氢化合物和其它可燃性产物通过炭化层散发出来,并与表面的氧接触,这样有可能就燃烧。
因此,使用聚氯乙烯的抑烟剂有可能以两种途径来控制这些竞争反应的平衡,而且都将导致空气中飞扬的烟灰明显地减少。
优先选用的添加剂最好能形成固态的炭化层,工业上使用的能形成炭化层的聚氯乙烯抑烟剂有:三氧化钼、无机钼的混合物(如钼酸锌或八钼酸铵)、锌镁复合物和过渡金属氧化物。
在燃烧前期,这些金属氧化物与释放的氯化氢反应生成金属氯化物,催化的烷基化反应能相应减少烟气的产生。
同样,这些添加剂催化聚氯乙烯脱去氯化氢,导致形成反式多烯系列,但不会环化成苯的衍生物。
接着,几乎同时通过交联,抑制烟气产生。
广泛的交联会导致炭化层增加,并能有效地减少形成烟气或烟灰的碳的数量。
现已研究发现,锌镁复合物能加速形成炭化层,并能使苯释放减少到三分之二。
其次,是使用能抑制烟气的添加剂,使烟灰微粒氧化生成气相的一氧化碳和二氧化碳。
二络铁和它的衍生物就是典型的抑烟剂。
当聚氯乙烯使用二络铁时,最初可能是气相反应,形成如羟基那样的高能量的基团,这些羟基使烟灰微粒氧化成一氧化碳,并导致烟气减少。
二络铁的缺点是价格偏高,有气化压力,呈黄色,不适合用于增塑的聚氯乙烯体系中。
用作填料等级的其它抑烟剂,也可以导致减少烟气,这是由于有机成分被稀释的缘故,改善了燃烧时产生挥发物的性质和数量。
研究表明:单独使用氢氧化镁与铝的三水合物效果相同,能减少聚合物释放烟雾量。
然而当氢氧化镁与铝的三水合物以3:1的比例混合使用时,根据ASTME-662测量,可得到最大的烟雾密度降低值。
由于钼化合物十分昂贵,制约了其在聚氯乙烯配方中的应用,目前一般和其它氧化物复配,如MoO3-Cu2O, MoO3-Fe2O3,MoO3-SnO2等,这些复合物不仅能降低成本,而且还可以利用组分间的协同效应,提高抑烟和阻燃效果。