函数的对称性完美

合集下载

函数的对称性与周期性(归纳总结)

函数的对称性与周期性(归纳总结)

函数的对称性与周期性(归纳总结)一、函数对称性:1.2.3.4.5.6.7.8.f(a+x)=f(a-x)==>f(x)关于x=a对称f(a+x)=f(b-x)==>f(x)关于x=(a+b)/2对称f(a+x)=-f(a-x)==>f(x)关于点(a,0)对称f(a+x)=-f(a-x)+2b==>f(x)关于点(a,b)对称f(a+x)=-f(b-x)+c==>f(x)关于点[(a+b)/2,c/2]对称y=f(x)与y=f(-x)关于x=0对称y=f(x)与y=-f(x)关于y=0对称y=f(x)与y=-f(-x)关于点(0,0)对称例1:证明函数y=f(a+x)与y=f(b-x)关于x=(b-a)/2对称。

【解析】求两个不同函数的对称轴,用设点和对称原理作解。

证明:假设任意一点P(m,n)在函数y=f(a+x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a+m)=f[b(2tm)] ∴b2t=a,==>t=(b-a)/2,即证得对称轴为x=(b-a)/2.例2:证明函数y=f(a-x)与y=f(xb)关于x=(a+b)/2对称。

证明:假设任意一点P(m,n)在函数y=f(a-x)上,令关于x=t的对称点Q(2tm,n),那么n=f(a-m)=f[(2tm)b] ∴2t-b=a,==>t=(a+b)/2,即证得对称轴为x=(a+b)/2.二、函数的周期性令a,b均不为零,若:1、函数y=f(x)存在f(x)=f(x+a)==>函数最小正周期T=|a|2、函数y=f(x)存在f(a+x)=f(b+x)==>函数最小正周期T=|b-a|3、函数y=f(x)存在f(x)=-f(x+a)==>函数最小正周期T=|2a|4、函数y=f(x)存在f(x+a)=1/f(x)==>函数最小正周期T=|2a|5、函数y=f(x)存在f(x+a)=[f(x)+1]/[1f(x)]==>函数最小正周期T=|4a|这里只对第2~5点进行解析。

高考专题 函数对称性

高考专题   函数对称性

函数对称性一知识点精讲:I 函数)(x f y =图象本身的对称性(自身对称)1、)()(x b f x a f -=+⇔)(x f y =图象关于直线22)()(b a x b x a x +=-++=对称 证明:函数)(x f y =图象上的任一点00(,)P x y (满足00()f x y =)关于直线2a b x +=的对称点为00(,)Q a b x y +-,00()[()]f a b x f b x a +-=-+000[()]()f b b x f x y =--==∴点Q 仍在函数的图象上,从而函数的图象关于直线a b +对称.推论1推论2推论32、f (证明对称点为(Q a b +∴点Q 推论1推论2推论3II 1、y 2、y 345.函数00000∴点Q 在函数()y f b x =-的图象上;反之函数()y f b x =-的图象上任一点关于直线2b a x -=的对称点也在函数()y f a x =+图象上.从而函数()y f a x =+与()y f b x =-的图象关于直线2b a x -=对称. 推论1:函数)(x a f y +=与)(x a f y -=图象关于直线0=x 对称推论2:函数)(x f y =与)2(x a f y -=图象关于直线a x =对称推论3:函数)(x f y -=与)2(x a f y +=图象关于直线a x -=对称6若函数)(x f y =的定义域为R ,则函数()y f a x =+与()y f b x =--的图象关于点(,0)2b a -对称.证明:函数()y f a x =+图象上的任一点00(,)P x y (满足00()f a x y +=)关于点(,0)2b a -的对称点为00(,)Q b a x y ---,000[()]()f b b a x f a x y ----=-+=-∴点Q 在函数()y f b x =--的图象上;反之函数()y f b x =--的图象上任一点关于点(,0)2b a -的对称点也在函数()y f a x =+图象上.从而函数()y f a x =+与()y f b x =--的图象关于点(,0)2b a -对称. 二典例解析: 1、定义在实数集上的奇函数)(x f 恒满足)1()1(x f x f -=+,且)0,1(-∈x 时,512)(+=x x f ,则=)20(log 2f ________。

函数图象的对称性

函数图象的对称性

3、函数的周期性、图像对称性的相互关系:
(1)若x a和x b是函数f ( x)的对称轴,则函数的周 期为T ?
f (2a x) f ( x)
f (2b x) f ( x) T 2(b a)
f (2a x) f (2b x)
(2)若(a,0)和(b,0)是函数f ( x)的对称中心,则函数的 周期为T ?
2 、函数图像关于点 (a, 0) 对称的定义:
奇函数f (0 x) f (0 x) 图像关于点 0,0)对称 (
f (a x) f (a x) 或f (2a x) f ( x)
到(a,0)距离相等的点的函数值 互为相反数 sin( x) sin( x)


——函数图像的对称性
1、函数图像关于直线 x=a 对称的定义:
特例:偶函数 (0 x) f (0 x) 图像关于直线 0对称 f x
f (a x) f (a x) 或f (2a x) f ( x)
到直线x a距离相等的点的函数值 相等 cos( x) cos( x)
“双对称函数一定是周期函数”
3、函数的周期性、图像对称性的相互关系:
T (3) 若函数 f ( x)周期为 T , 对称轴为 x a, 则x) f ( x)
f (2a x) f ( x)
2a T T x a 2 2
f (2a x) f (T x)
T (4) 若函数 f ( x)周期为 T , 对称中心 (a,0), 则(a ,0)是对称中心 2
《天府高考》 24 P (3) y f ( x 2)是偶函数, y f ( x)关于x 1对称

函数对称性的总结

函数对称性的总结

函数对称性的总结函数对称性是数学中一个重要的概念,可以帮助我们更好地理解和分析各种函数。

在本文中,我将总结函数对称性的基本概念、性质和应用,以及如何判断函数的对称性。

首先,什么是函数对称性?函数对称性指的是函数在某种变换下保持不变的性质。

具体来说,如果函数在某个变换下满足等式 f(x) = f(-x),那么我们称这个函数具有对称性。

这个变换可以是关于原点对称、关于y轴对称、关于x轴对称等。

常见的函数对称性包括:1. 关于原点对称:如果一个函数满足 f(x) = f(-x),则称该函数关于原点对称。

这意味着函数的图像在原点处对称,即图像的左右两侧是镜像关系。

2. 关于y轴对称:如果一个函数满足 f(x) = f(-x),则称该函数关于y轴对称。

这意味着函数的图像在y轴上对称,即在图像的左右两侧相互重合。

3. 关于x轴对称:如果一个函数满足 f(x) = -f(-x),则称该函数关于x轴对称。

这意味着函数的图像在x轴上对称,即图像关于x轴对称。

函数对称性的性质也值得我们注意:1. 对称性可以简化函数的分析和计算。

例如,如果一个函数是关于y轴对称的,那么我们只需要计算出函数在y轴右侧的部分,然后将结果镜像到左侧即可。

2. 对称性可以帮助我们发现函数的特点。

例如,如果一个函数是关于x轴对称的,那么当 x = a 是函数的零点时,可以确定 x = -a 也是函数的零点。

现在,让我们来看看如何判断一个函数是否具有对称性。

一般来说,我们可以通过一些简单的方法来进行判断。

1. 对称性的代数判断方法:通过代数运算,我们可以验证函数的对称性。

例如,对于关于原点对称的函数,我们可以将 x 替换为 -x,然后将两边进行比较来判断函数是否具有对称性。

2. 对称性的图形判断方法:通过函数的图形来判断函数是否具有对称性。

我们可以绘制函数的图像,并观察图像是否在某个变换下保持不变。

3. 对称性的性质判断方法:通过函数的性质来判断函数是否具有对称性。

函数对称性公式大总结

函数对称性公式大总结

函数对称性公式大总结1. 引言在数学中,函数对称性是一个重要的概念,它描述了函数在某种变换下保持不变的性质。

函数对称性有多种形式,如轴对称性、中心对称性等。

本文将对函数对称性的一些常见公式进行总结,并提供示例说明。

2. 轴对称函数公式2.1 轴对称性的定义轴对称是指函数图像对于某一条直线对称,即函数图像在这条直线两侧对称。

设函数为 f(x),对称轴为 x = a,则函数 f(x) 在对称轴两侧的函数值相等,即 f(a + h) = f(a - h)。

2.2 轴对称函数公式•偶函数:若函数 f(x) 满足 f(-x) = f(x),则称 f(x) 为偶函数。

•奇函数:若函数 f(x) 满足 f(-x) = -f(x),则称 f(x) 为奇函数。

偶函数和奇函数都具有轴对称性,其中以偶函数更为常见。

3. 中心对称函数公式3.1 中心对称性的定义中心对称是指函数图像对于某一点对称,即函数图像关于这一点对称。

设函数为 f(x),对称中心为 (a, b),则函数 f(x) 在对称中心两侧的函数值相等,即 f(a + h) = f(a - h)。

3.2 中心对称函数公式•对数函数:对数函数 y = loga(x) 关于 y 轴对称,其中 a > 0,且a ≠ 1。

•幂函数:幂函数 y = ax^n 关于 y 轴对称,其中a ≠ 0,且 n 为任意整数。

•正弦函数和余弦函数:正弦函数 y = sin(x) 和余弦函数 y = cos(x) 关于原点对称。

4. 复合对称函数公式4.1 复合对称性的定义复合对称是指函数图像同时具有轴对称性和中心对称性。

函数 f(x) 在具有轴对称性的直线上的每一个点,同时也是具有中心对称性的点。

4.2 复合对称函数公式•奇次幂函数:奇次幂函数y = ax^(2n+1) 具有轴对称性和中心对称性,其中a ≠ 0,n 为任意整数。

5. 示例说明5.1 示例 1:偶函数考虑函数 f(x) = x^2,我们可以看到该函数关于 y 轴对称,即 f(x) = f(-x)。

函数对称性知识点归纳总结

函数对称性知识点归纳总结

函数对称性知识点归纳总结一、函数的对称性概念1.1 函数的定义在数学中,函数是一种将输入值映射到输出值的关系。

它通常表示为f(x),其中x是输入值,f(x)是输出值。

函数可以用数学公式、图表、图形等方式来表示。

1.2 函数的对称性函数的对称性是指在某种变换下,函数图像保持不变的性质。

这种变换可以是关于坐标轴的对称、关于原点的对称、关于直线或平面的对称等。

函数的对称性可以分为以下几种:- 偶函数:如果对任意的x,有f(x) = f(-x),那么函数f(x)是关于y轴对称的,称为偶函数。

偶函数的图像在y轴对称。

- 奇函数:如果对任意的x,有f(x) = -f(-x),那么函数f(x)是关于原点对称的,称为奇函数。

奇函数的图像关于原点对称。

- 周期函数:如果存在一个正数T,使得对任意的x,有f(x+T) = f(x),那么函数f(x)是周期函数。

周期函数的图像在某一段距离上重复。

1.3 示例以函数f(x) = x^2为例,它是一个偶函数。

因为对任意的x,有f(x) = x^2 = (-x)^2 = f(-x),所以函数图像关于y轴对称。

又如函数f(x) = sin(x),它是一个奇函数。

因为对任意的x,有f(x) = sin(x) = -sin(-x) = -f(-x),所以函数图像关于原点对称。

二、函数对称性的判定与应用2.1 函数对称性的判定在判断一个函数是否具有对称性时,可以通过以下方法进行判定:- 偶函数:验证函数f(x)是否满足f(x) = f(-x)即可判断是否为偶函数。

- 奇函数:验证函数f(x)是否满足f(x) = -f(-x)即可判断是否为奇函数。

- 周期函数:通过周期函数的定义,验证函数f(x)是否满足f(x+T) = f(x)即可判断是否为周期函数。

2.2 函数对称性的应用函数对称性在数学分析、物理学、工程学等领域中有着广泛的应用。

以下是函数对称性的一些应用场景:- 在积分计算中,利用函数的对称性可以简化积分的计算。

函数对称性公式大总结

函数对称性公式大总结

函数对称性公式大总结1. 引言在数学中,函数对称性是指函数在某种变换下保持不变的特性。

函数对称性广泛应用于各个数学分支,如代数、几何和微积分等。

本文将对常见的函数对称性公式进行总结,以帮助读者更好地理解和应用这些公式。

2. 对称轴对称轴是函数对称性的一个重要概念。

对称轴是指函数图像关于某一直线对称。

对称轴上的点与其对称点关于对称轴对称。

对称轴的方程可以通过观察函数的特性或运用特定的公式来确定。

2.1 y轴对称性若函数满足f(x) = f(-x),则函数具有y轴对称性。

对于奇函数来说,其图像关于y轴对称;对于偶函数来说,其图像与y 轴重合。

常见的函数对称于y轴的公式有:•奇函数的定义:f(x) = -f(x)•偶函数的定义:f(x) = f(-x)2.2 x轴对称性若函数满足f(x) = -f(x),则函数具有x轴对称性。

对于奇函数来说,其图像关于x轴对称;对于偶函数来说,其图像与x 轴重合。

常见的函数对称于x轴的公式有:•奇函数的定义:f(x) = -f(x)•偶函数的定义:f(x) = f(-x)3. 极限和导数对称性在微积分中,极限和导数也可以与函数的对称性相关联。

3.1 极限对称性若函数f(x)在某一点x=a的极限存在,并且与x=a的对称点x=-a的极限相等,即lim(x->a) f(x) = lim(x->-a) f(x),则函数具有极限对称性。

常见的函数具有极限对称性的公式有:•正弦函数的极限对称性:lim(x->0) sin(x) = lim(x->0) sin(-x)•余弦函数的极限对称性:lim(x->0) cos(x) = lim(x->0) cos(-x)3.2 导数对称性若函数f(x)在某一点x=a可导,并且其导数与x=a的对称点x=-a的导数相等,即f’(a) = f’(-a),则函数具有导数对称性。

常见的函数具有导数对称性的公式有:•正弦函数的导数对称性:(sin(x))’ = cos(-x)•余弦函数的导数对称性:(cos(x))’ = -sin(-x)4. 对称性的应用函数对称性是解决许多数学问题的重要工具。

函数对称性

函数对称性

函数的对称性:y=f(|x|)是偶函数,它关于y轴对称,y=|f(x)|是把x轴下方的图像对称到x轴的上方,但无法判断是否具备对称性。

例如,y=|lnx|没有对称性,而y=|sinx|却有对称性。

函数的对称性公式推导1.对称性f(x+a)=f(b-x)记住此方程式是对称性的一般形式.只要x有一个正一个负.就有对称性.至于对称轴可用吃公式求X=a+b/2如f(x+3)=f(5_x)X=3+5/2=4等等.此公式对于那些未知方程,却知道2方程的关系的都通用.你可以去套用,在此不在举例.对于已知方程的要求对称轴的首先你的记住一些常见的对称方程的对称轴.如一原二次方程f(x)=ax2+bx+c对称轴X=b/2a原函数与反函数的对称轴是y=x.而对于一些函数如果不加限制条件就不好说它们的对称轴如三角函数,它的对称轴就不仅仅是X=90还有…(2n+!)90度等等.因为他的定义为R.f(x)=|X|他的对称轴则是X=0,还应该注意的是一些由简单函数平移后要求的对称轴就只要把它反原成出等的以后在加上平移的数量就可以了.如f(x-3)=x-3。

令t=x-3,则f(t)=t。

可见原方程是由初等函数向右移动了3个单位。

同样对称轴也向右移3个单位X=3(记住平移是左加右减的形式,如本题的X-3说明向由移)2,至于周期性首先也的从一般形式说起f(x)=f(x+T)注意此公式里面的X都是同号,而不象对称方程一正一负.此区别也是判断对称性还是周期性的关键.同样要记住一些常见的周期函数如三角函数什么正弦函数,余弦函数正切函数等.当然它们的最小周期分别是2π,2π,π,当然他们的周期不仅仅是这点只要是它们最小周期的正数倍都可以是题目的周期.如f(x)=sinX,T=2π(T=2π/W)但是如果是f(x)=|sinx|的话它的周期就是T=π因为加了绝对值之后Y轴下面的图形全被翻到上面去了,由图不难看出起最小对称周T =π.y1=(sinx)^2=(1-cos2x)/2上面的2个方程T=π(T=2π/W)而对于≥2个周期函数方程的加减复合方程,如果他们的周期相同,则它的周期还是相同的周期.如y=sin2x+cos2x因为他们有一个公共周期T =π所以它的周期为T=π而对于不相同的周期则它的周期为它们各个周期的最小公倍数.如y=sin3πx+cos2πx,T1=2/3,T2=1则T=2/3对称函数在对称函数中,函数的输出值不随输入变数的排列而改变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的对称性
一、教学目标
函数图象的对称性是一类函数的特性,是函数性质的重要方面,它包括自身对称和两个函数图象之间的对称,理解掌握函数对称性,对数学问题的解决有很大的帮助,对也是数形结合思想的重要体现。

1.自身对称函数,函数图象本身具有对称轴或是对称中心,该函数的图象是轴对称图形或是中心对称图形,奇函数与偶函数是最典型的两类函数,其它自身对称的函数都可以由奇偶函数平移得到;
2.两个函数图象的对称,是指两个图形之间的关系,它们之间存在某种关联,即它们关于某一点对称或是关于某一条直线对称,研究其中一个函数的性质就可知另一个函数的特点(互为反函数的两个函数图象)。

二、举例分析
例1. 设()f x 是定义在R 上的函数,
(1)若对任意x R ∈,都有()()f a x f b x -=+成立,则函数()f x 的图象关于直线2
a b x +=对称; (2)若对任意x R ∈,都有()()22f x f a x b +-=,则函数()f x 的图象关于点(),a b 成中心对称。

选题目的:通过此题的学习,让学生明白一个道理,函数()f x 的图象是轴对称或是中心对称,函数解析式()f x 应满足一关系式是什么,并能通过奇偶函数的平移获得理解这种关系式的钥匙。

思路分析:
(1)要证明()f x 图象上任意一点()00,P x y 关于直线2
a b x +=对称的点()00,Q a b x y +-也在()f x 的图象上。

事实上,()()()()00000y f x f a a x f b a x f a b x ==--=+-=+-⎡⎤⎡⎤⎣⎦⎣⎦,即得点()00,Q a b x y +-也在()f x 的图象上。

特别地,当,a b 都为0时,就是偶函数的特征了。

(2)要证明()f x 图象上任意一点()00,A x y 关于点(),a b 的对称点()002,2B a x b y --也在()f x 的图象上。

事实上,由()00,A x y 在的图象上及()()22f x f a x b +-=可得,()00y f x =及()()0022f x f a x b +-=,则有()()000222b y b f x f a x -=-=-,从而得到()002,2B a x b y --也在()f x 的图象上。

特别地,当,a b 都为0时,就是奇函数的特征了。

例2.对于定义在R 上的函数()f x 有下列命题:
(1)若()f x 是奇函数,则函数()1f x -的图象关于点()1,0对称;
其中正确命题的个数是--------------------------------------------------( )
A.1
B.2
C.3
D.4
选题目的:学生通过此题学习,加深理解图象具有对称性函数的特征,掌握图象平移后的形状保持不变,所变的是对称位置;另外要清楚是函数图象本身的对称特征还是两个函数图象的对称关系。

思路分析:(1)、(2)两小题较为简单,就是平移后图象问题;
(3)是函数()f x 自身的对称问题,函数()f x 满足关系: ()()22f x f x -+=,由例1中的结论知, 函数()f x 图象关于点()1,1成中心对称。

也可以从对应点的关系中获取,设图象上任意点()(),P x f x ,则图象上必存在与之对应的点()()
2,2Q x f x --,则P 、Q 的中点为定点()1,1,即为对称中心。

(4)首先要清楚这是两个函数图象的对称问题,它们都是由函数()y f x =图象变换得到的;()y f x =图象?
−−→()1y f x =-的图象;
()y f x =图象?−−→()y f x =-?−−→()1y f x =-
例3.如图,正比例函数和反比例函数的图象相交于A 、B 两
点。

分别以A 、B 两点为圆心,画出与y 轴相切的两个圆。

若点A 的坐标为(1,2),则图中两个阴影部分面积的和是
___________。

选题目的:充分运用正比例函数和反比例函数的图象都是关于坐标原点成中
心对称的特点,注重图形的割补法来求解;
思路分析:分别求两个阴影部分面积显然不可行。

由于正比例函数与反比例函数图象都关于原点对称,可知A 、B 两点关于原点对称。

从而⊙A 与⊙B 也关于原点对称,故阴影部分面积和等于⊙A (或⊙B )的面积。

⊙A 与y 轴相切,则⊙A 的半径为1,故阴影部分的面
积和等于π=⨯π21。

例4.曲线C 的方程是3y x x =-,将C 沿X 轴、Y 轴的正向分别平移,t s 个单位长度后得到
曲线1C ,求证:曲线C 与1C 关于点,22t s A ⎛⎫ ⎪⎝⎭
对称。

选题目的:学会证明两曲线的对称的方法,培养运算能力;
思路分析:两条曲线的对称问题证明必须是双向的,即曲线C 上的任意一点关于点A 的对称点在曲线1C 上;曲线1C 上的任意一点关于点A 的对称点也在曲线C 上。

三、巩固练习
1.已知函数()1
a x f x x a -=--图象的对称中心为()3,1-,则的值为 A .4- B .2- C .2 D .3
2.二次函数()f x 满足:()()22f x f x +=-,且()()21,03f f ==。

若在区间[]0,m 上有最小值1,最大值3,则的取值范围是
A .02m <≤
B .2m ≥
C .0m >
D .24m ≤≤
3.定义在R 上的非常数函数()f x 满足:()10f x +是偶函数,且()()55f x f x -=+,则()f x 一定
A .是偶函数且是周期函数
B .是偶函数但不是周期函数
C .是奇函数且是周期函数
D .是奇函数但不是周期函数
4.()f x 是R 上的函数,若()1f x +与()1f x -都是奇函数,则()3f x +的奇偶性是
A .奇函数
B .偶函数
C .既是奇函数又是偶函数
D .既不是奇函数也不是偶函数
5.函数()f x 满足:1344f x f x ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭
,且方程()0f x =有三个不同的根,则这三个根的和等于 ;
6.设方程35x x =+的根为1x ,方程3log 5x x =+的根为2x ,则12x x +的值为 ;
10.研究函数()()32
0f x ax bx cx d a =+++≠的对称性。

(1)()3
3f x x x =-; (2)()32133
f x x x x =-- 上述两个函数的对称性给我们什么启示,能否得出()()320f x ax bx cx d a =+++≠对称
性的一般结论。

相关文档
最新文档