遥感应用模型10 地表温度反演模型
landsat遥感影像地表温度反演教程(大气校正法)

landsat遥感影像地表温度反演教程(⼤⽓校正法)基于辐射传输⽅程的Landsat数据地表温度反演教程⼀、数据准备Landsa 8遥感影像数据⼀景,本教程以重庆市2015年7⽉26⽇的=⾏列号为(128,049)影像(LC81280402016208LGN00)为例。
同时需提前查询影像的基本信息(详见下表)⼆、地表温度反演的总体流程三、具体步骤1、辐射定标地表温度反演主要包括两部分,⼀是对热红外数据,⼆是多光谱数据进⾏辐射定标。
(1)热红外数据辐射定标选择Radiometric Correction/Radiometric Calibration。
在File Selection对话框中,选择数据LC81230322013132LGN02_MTL_Thermal,单击Spectral Subset选择Thermal Infrared1(10.9),打开Radiometric Calibration⾯板。
Scale factor 不能改变,否则后续计算会报错。
保持默认1即可。
(2)多光谱数据辐射定标选择要校正的多光谱数据“LC81230322013132LGN02_MTL_MultiSpectral”进⾏辐射定标。
因为后续需要对多光谱数据进⾏⼤⽓校正,可直接单击Apply Flaash Settings,如下图。
注意与热红外数据辐射定标是的差别,设置后Scale factor值为0.1。
2、⼤⽓校正本教程选择Flaash 校正法。
FLAASH Atmospheric Correction,双击此⼯具,打开辐射定标的数据,进⾏相关的参数设置进⾏⼤⽓校正。
注意:如果在多光谱数据辐射定标时Scale factor值忘记设置,可在本步骤中打开辐射定标数时设置single scale faceor 值为0.1,若已设置,则默认值为1即可。
1)Input Radiance Image:打开辐射定标结果数据;2)设置输出反射率的路径,由于定标时候;3)设置输出FLAASH校正⽂件的路径,最优状态:路径所在磁盘空间⾜够⼤;4)中⼼点经纬度Scene Center Location:⾃动获取;5)选择传感器类型:Landsat-8 OLI;其对应的传感器⾼度以及影像数据的分辨率⾃动读取;6) 设置研究区域的地⾯⾼程数据;7)影像⽣成时的飞⾏过境时间:在layer manager中的Lc8数据图层右键选择View Metadata,浏览time字段获取成像时间;注:也可以从元⽂件“LC81230322013132LGN02_MTL.txt”中找到,具体名称:DATE_ACQUIRED = 2013-05-12;SCENE_CENTER_TIME = 02:55:26.6336980Z;8) ⼤⽓模型参数选择:Sub-Arctic Summer(根据成像时间和纬度信息选择);9) ⽓溶胶模型Aerosol Model:Urban,⽓溶胶反演⽅法Aerosol Retrieval:2-band(K-T);10) 其他参数按照默认设置即可。
基于卫星遥感数据的地表温度遥感反演与应用

基于卫星遥感数据的地表温度遥感反演与应用地表温度是地球表面的温度,它是地球气候系统中重要的参数之一。
随着卫星遥感技术的发展,利用遥感数据来反演地表温度的方法越来越受到关注,并在气候研究、环境监测、农业等领域得到广泛应用。
基于卫星遥感数据的地表温度反演主要利用热红外波段的遥感数据,如MODIS、Landsat等卫星传感器获取的热红外数据。
地表温度反演的基本原理是利用地表辐射热红外能量的辐射率与温度之间的关系,通过对热红外波段的辐射定量测量,推算出地表温度。
地表温度的反演方法主要包括基于辐射平衡原理的方法和基于物理模型的方法。
基于辐射平衡原理的方法是利用卫星遥感数据中的辐射率,通过辐射平衡方程计算地表温度。
基于物理模型的方法则是基于热辐射传输和能量平衡的物理原理,建立地表辐射和能量平衡方程,通过求解方程组来反演地表温度。
除了以上两种基础的反演方法,还有一些改进的算法被提出,如基于统计模型、基于遥感与气象资料联用等方法。
这些方法在提高地表温度反演精度和空间分辨率方面都具有一定的优势。
地表温度的遥感反演有着广泛的应用价值。
首先,在气候研究领域,地表温度是评估气候变化和研究城市热岛效应的重要指标之一。
通过对地表温度的长期观测和分析,可以揭示气候变化的趋势和规律,提供科学依据为气候预测和气候变化的评估。
其次,地表温度的反演可以应用于环境监测。
地表温度是环境质量和生态环境状况的重要反映指标之一。
通过对地表温度的监测和分析,可以评估土地利用变化对环境的影响,监测水资源的分布和变化,提供科学依据为环境保护和生态建设提供支持。
再次,在农业领域,地表温度的反演可以应用于农作物生长监测和病虫害预测。
由于农作物在不同生长阶段有不同的温度需求,通过观测地表温度可以评估农作物的生长状态和需水量,为农田水利管理提供科学依据;同时,通过地表温度的监测还可以预测农作物病虫害的发生程度,提前采取相应的防治措施,为农业生产提供技术支持和指导。
定量遥感_地表温度反演

可见光J 於L 外朋速大气^正地表真实温度反演魁1地表温度真实分布團Landsat TM 数据数据预处理可见光数据定标 热红外数抿定标工程区矢量数据地表正式温度反演熟红外液段辐射定标大气上行辐射热红外波段辐射亮度值四、具体步骤4.1、打开数据选择后缀为MTL的文件Eriiter Laridsdi MeLdDdt<± -ilendn es«Lang5flt4-1 7M • JOiOuglO导入后截图:3 Avaihbk Bard? list *=^ 回.File OptionsTM OddE T£t?lfFh|.rH4!?maO0t 1 JW1X 讣t9 Qiray Scal«RGB C□>!or■EM栄Mup Inf*同L51210J4_0 2 4201MSL i _HTL tztU TN IUI 削(B wid 1) (0. -labJ)口TN' Heta Osdl 凸(0 &&□□)口TN Ne-tn 3> OQ G5Q3]■- □ TW IU5 CBwid 4) OD 63035--□ TN Neia CBgdl 5J 〔1. G5EDJ-口TN Nftis. Ottj L d 7.) C2 2203);;l 斷Nltp Txfvad BedridW 也让®^id 63 fLl 4509):1^1211134,Mg 01T1 K 7061 (JJytsJ LBSQJ4.2、数据辐射定标:Q Landsaft Calibration Input FileFile InformationFile : FALan^at4-5 rM\£010Q910\L51?1034 Diifes : 61T1 K 7061 x. B Si^: [Md 65,535 bytts Fil« Typ« : Luiditt Mtttctt*Sumnqr Typp : Linds Tf Byte Order : Hast (Intel)Proj ection : ITU 」50 Hat thFinal: X Me i.ci >Datum ;帕S-&4Wavelength : 0- 4ES to E-茲 MicrcfnetersUpper Left Coa.ii.ei-:1, 1Bescriptioii : GEOTIFF File Imf ortsd into ENVI LSur. Hw 30 21; 18: 49EOK]. <3E0W - LI METAIATA.FILE, ACQWISITTO1I_IWTE = SMCbDAll,SPACESRAfT_n )= Lands atS, SEESM_ID -TN, SUW_ELSVATION - El.366773^Spitid Sublet Full SctnsSpectral Subset6/6 Bands3K ] C&hcd. | hr ・vimai~| [“如―]Select Iiqyut File :15121034 03^20100511 MTL. tit ISJ21034 03^01000.11 MTL. txt4.3、裁剪数据:定标后的数据需要进行影像裁剪处理, 选择需要分析的区域。
遥感反演地表温度

1、 裁剪出出济南市区2、 分别利用ENVI 、ERDAS 反演地表温度(LST )、NDVI ,对LST 进行彩色显示。
3、 分析LST 、NDVI 的关系。
反演公式具体流程:图像的DN 值 辐射亮度 辐射亮温 地表温度。
反演时从图像数值(DN )转换成绝对辐射亮度值时的公式、从辐射亮度值转成辐射亮温时的公式、从亮温转换成地表温度时的公式分别是:min min max 6255)(L L L DN L tm +-⨯=、 )1/ln(/12+=λL K K T 、 ερλl n )/(1T T T s += 其中:6tm L 为TM 传感器所接收到的辐射亮度(mW .cm -2s r-1.um -1),max L 、min L 分别是传感器所接收到的最大和最小的辐射强度,即对应于DN =255和DN =0时的最大和最小辐射强度。
对于Landsat5的TM 6波段,1K =60.77mW .cm -2s r-1.um -1,2K =1260.56K 。
S T 为地表温度(K );T 为辐射温度(K );λ为有效波谱范围内的最大灵敏度值,λ=11.5um ,ρ=/hc δ=1.438×10-2mk ,其中δ=1.38 ×10-23/J k ,为玻尔兹曼常数,h =6.626×10-34Js ,为Plank′s 常数,c =2.998 ×108/m s ,为光速。
一般地,有植被覆盖的地表取ε=0.95,没有植被覆盖的地表取ε=0.92(Weng ,2004[16])。
min L =0.1238255)(min max L L - =0.005632156 )1/ln(/12+=λL K K T 1260.56 / LOG ( 1 + 60.766 / $n8_fu )$n1_12736l / (1 + (0.0000115 * $n1_12736l /0.01438) * LOG (0.95 ) )。
遥感应用模型遥感反演土地变化检测

遥感应用模型遥感反演土地变化检测(总44页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除遥感应用模型实习报告学院:班级:学号:姓名:日期:指导老师:Part1大冶研究区土地使用情况分析1.监督分类最大似然法2009年影像分类结果:分了4类:建筑,水体,裸地,植被2010年影像分类结果:2.栅格转矢量3.变化检测-叠加分析(1)先提取2009年和2010年分类图的建筑用地:2009年 2010年(2)变化检测(叠加分析)Chang=2010-20094.空间查询变化图层Chang与建设用地红线进行查询5.提取结果效果图:批而未用:用而未尽:正规使用:越界开发:未批先用将变化矢量图与2010年影像叠加显示:Part2:遥感反演与建模1.数据预处理1.安装环境卫星数据处理补丁将补丁放在…\ITT\IDL\IDL80\products\envi48\save_add目录下。
2.数据读取和定标主菜单->File->Open External File->HJ-1A/1B Tools,打开环境卫星数据处理补丁后,选择CCD,Input path选择环境卫星数据文件夹,点Search,设置输出路径,勾选“Calibration”“Layer Stacking”,点Apply,如下图:3.工程区裁剪由于整景影像范围太大了,进行几何校正之前,裁剪出我们需要的太湖及其周边区域。
1.打开上一步处理好的数据:HJ1B-CCD1-2.完成太湖及其周边区域的裁剪主菜单->File->Save File As->ENVI Standard,弹出New File Builder面板,单击Import File,弹出 Create New File Input File面板,选中Select Input File面板中的数据,单击Spatial Subset,弹出Select Spatial Subset面板,单击image弹出Subset by Image对话框,在其中裁剪出太湖及其周边区域,在几个对话框中单击ok,在New File Builder面板中,单击choose,设置保存路径,输出文件名4.几何校正(1)打开基准影像,选择Map-> Registration ->Automatic Registration :Image to Image ,选择基准影像的波段4作为匹配波段(2)选择被配准影像,选择band4作为匹配波段,在提示是否手动选择同名点时,选择否后,弹出Automatic Registration Parameters面板(3)在Automatic Registration Parameters面板中,设置下图参数单击ok执行基于像元值自动寻找同名点。
基于卫星遥感技术的城市地表温度反演研究

总第23卷260期2021年4月大众科技Popular Science&TechnologyVol.23No.4April2021基于卫星遥感技术的城市地表温度反演研究陈湘楠耿莉(广西壮族自治区自然资源调查监测院,广西南宁530023)【摘要】随着我国空间规划的开展,需要能够掌握城市各地块的人类聚居和工业发展等指数,其中城市地表温度是衡量城市各地人类居住和发展状况一个有效的参考。
传统的手段统计分析地表低温宏观性差,且时效性不佳,因此需要一种能够快速分析城市地表气温方法。
研究以典型的南方城市——南宁市为例,利用Landsat8的多波段卫星遥感数据,通过热红外辐射到同温黑体辐射定标,快速分析城市地表温度差异,从而获得比较准确的城市地表温度分布图。
该研究成果对于未来南宁市空间规划和城市建设等领域,都有重要参考作用。
【关键词】温度反演;比辐射率;热辐射;Landsat8【中图分类号】X87【文献标识码】A【文章编号】1008-1151(2021)04-0029-04 Study of Urban Land Surface Temperature Retrieval Based onSatellite Remote Sensing TechnologyAbstract:With the development of China's spatial planning,we need to be able to grasp the index of h uman settlements and industrial development of each urban plot,in which the urban surface temperature is an efiective reference to measure the human living and development status in various parts of the city.The traditional method of statistical analysis of surface low temperature is poor in macroscopicity and timeliness,so it needs a fast method to analyze urban surface temperature.Taking Nanning,a typical southern city,as an example,using landsat8multi band satellite remote sensing data,through thermal infrared radiation to the same temperature blackbody radiometric calibration,the paper quickly analyzes the difference of urban surface temperature,so as to obtain a more accurate urban surface temperature distribution map.The research results have an important reference for the future of Nanning in the field of spatial planning and urban construction.Key words:temperature retrieval;emissivity;heat radiation;Landsat8引言城市是人类聚居地,是商业、工业、居住中心。
利用遥感技术的地表温度反演及时空演变分析

DOI :10.15913/ki.kjycx.2024.02.047利用遥感技术的地表温度反演及时空演变分析*胡干新,谢民民(江西理工大学土木与测绘工程学院,江西 赣州 341000)摘 要:随着城市的快速发展,城市热岛效应也越发受到人们的关注。
基于Landsat 系列卫星影像,采用辐射传输方程算法对南昌市地表温度进行反演,并利用均值-标准差法对地表温度进行热岛效应分级研究。
结果表明,南昌市热岛效应的区域面积不断增加,并存在低温区向高温区进行转换的现象;城市内植被和水体的合理布局对热岛效应具有一定的缓解作用,而不透水面的增加会加剧城市热岛效应。
关键词:城市热岛效应;温度反演;热岛分级;不透水面中图分类号:P413 文献标志码:A 文章编号:2095-6835(2024)02-0157-04——————————————————————————*[基金项目]江西省研究生创新专项资金项目(编号:YC2021-S561)城市热岛效应这一概念的出现,在一定程度上引起了人们对热岛现象的关注。
而热岛效应随着城市的发展越来越明显,对人类的生活影响也越来越显著,更加让人们意识到研究城市热岛效应的重要性。
周淑贞(1990)[1]曾利用上海10年内的气候资料,研究发现人口、建筑物和能源都是城市热岛效应越来越明显的主要影响因素。
但是对于形成热岛效应的影响因素较多、范围较广、方式较为复杂,以至于现今人们对于城市热岛效应的研究只能从单个方面或者几个方面去研究分析。
利用遥感技术研究城市热岛效应,具有获取数据方便、能同时获取研究区域的影像数据等优点,是目前主要的研究手段。
BORNSTEIN &LIN (2000)[2]及姚远等(2018)[3]通过研究发现,城市高温热场的存在会在一定程度上增加城市的温度,从而促成全球变暖。
又有中国学者姜允芳和黄静(2022)[4]、王煜等(2021)[5]、何泽能等(2022)[6]通过研究发现,热岛效应会改变城市的一些气候现象,如结霜日数及结霜量[7]。
遥感温度反演

实验三遥感温度反演
1.数据获取
TM/ETM影像
2•归一化植被指数计算
利用之前得出的植被指数NDVI,如下图所示:
图 1 1992 年NDVI 图 2 2001 年NDVI
3.比辐射率(Emissivity) 计算
地表比辐射率对地表温度反演精度影响很大,研究发现地表比辐射率与植被指数高度相关,建立关系模型:
E=1.0094+0.047ln(NDVI) ndvi € [0.157,0.727]
(1)比辐射率计算模型
(2)地表比辐射率模型图
图4
1992年
比辐射率图
4.温度反演
(1)温度反演一
图3地表比辐射率模型
图5 2001年比辐射率图
运用Planek方程计算亮度温度。
对于TM 数据,参考模型
丄如I 为1・隔M (n?如知 上t T 为0.77
为 I . 74 w/ (m 2 +>m -Sr )
图7 1992年温度反演图(1)图8 2001年温度反演图(1)
图5温度反演(1) 图6 温度反演(1)
(2)温度反演二
TM6中心波长11.457卩m反解Planek函数获取地表真实温度模
— 195
图10温度反演(2)图9 温度反演(2)
图11 1992温度反演⑵图12 2001 温度反演⑵
5. 结果与分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
?受环境辐射和大气辐射传输的影响,在星载传感 器上观测到的目标的辐射亮度为
辐射亮 光谱大气 比辐射率 下行 上行
度值
透过率Leabharlann ?因此,若想获得较精确的反演温度,必须考虑 3部 分:
?将DN值精确地转换为辐射亮度值
劈窗算法
?主要利用在一个大气窗口的 两个临近红外通道, 存在与大气影响密切相关的 大气吸收、散射信息 来进行大气纠正。
? 地表温度同亮度温度和发射率之间呈线性关系。 地表温度可以用相邻的两个波段的亮度温度来线 性表示,而表达式的系数是由通道发射率决定的 ,它们不依赖于大气状况。
?劈窗算法主要是针对 NOAA/AVHRR 开发的,最初用 在海面温度反演, 20世纪 80年代开始拓展到陆地 温度反演。
?目前遥感反演地表温度的方法主要有:
?单窗算法
?劈窗算法
?多通道算法
?自然界任何高于热力学温度的物体都不断地向外 发射具有一定能量的电磁波, 其辐射能量的强度 和波谱分布的位置是温度的函数 。随着温度的增 加,总辐射能量将相应增加,辐射能量的最大波 长也将逐渐变短。
?通常我们把物体的辐射亮度 Lg与相同温度下黑体 的辐射亮度 Lb的比值称为物体的 比辐射率 ?,用它 来表征物体的发射本领。
? 劈窗算法是当前热红外遥感反演地表温度中精度 较好、应用较广的算法,可以连续提供较高精度 、较高分辨率的海面温度场。
?进一步提高劈窗算法的精度主要是通过 修正大气 影响和地表发射率 来进行的。
?单窗算法所应用的数据 TM/ETM 与多通道 NOAA 、 MODIS 等数据相比,空间分辨率较高,并且对地 表发射率的敏感性较低,单从反演的技术及精度 来讲,具有较大优势,但如果反演大区域地表温 度则需要很大的资金投人。
? 劈窗算法的一般表达式通常如下:
式中Ts是地表温度, A 和B是参数, T4和T5分别是 AVHRR 通道 4和通道 5的亮度温度,它们单位是绝 对温度( K)。 ? 劈窗算法的另一常用表达式为:
其他表现形式
? 用NOAA9 /AVHRR 数据的局部劈窗算法
? 将视场角变化和大气水汽含量变化考虑在内,一 种适合于NOAA11/AVHRR 和MODIS的劈窗算法
?在几大地表时空多变要素中, 地表温度是最基本的 参数, 大多数遥感模型中都需要 地表温度作为输入 参数。
?因此,如何获取准确的地表温度是一个值得研究的 问题。
?传统的地表温度测量方式主要是利用 地表温度计
? 一般分为地面温度计、直管地温计、曲管地温计 、直角地温表四种类型。
普通直管地温计
数显直管地温计
?劈窗算法是目前应用最广、最成熟的方法,精度 较高。相对而言,它不需要输入大气廓线值。但 是,劈窗算法还不完善,例如只限于晴空大气条 件下的反演,对于混合像元只能给出有效平均温 度,而没有考虑亚像元问题。
?热红外遥感机理的复杂性。 在地表热量平衡方程中 ,除了辐射通量外,还有大气湍流通量、水汽蒸发 通量和土壤热通量的作用项,给获取具有时空代表 性的真实地表温度造成了困难;
?大气对热辐射的衰减很严重 ,在热红外波段 1012.5um的窗口,卫星与地面的差异可达到 10K。
?大气窗口有 8-14um ,10-11.5um ,10-12.5um 等,劈 窗算法利用 两个相邻热红外通道 对大气吸收作用的 不同,通过两个通道测量值的各种组合来剔除大气 的影响,进行大气和地表比辐射率的修正。
?准确获取这些 大气参数 (如温度廓线、水汽廓线等 )非常困难,而且难以保证精度,从而降低了大气 辐射传输模拟的准确性;
?海洋表面比较均一,而陆地表面状况比较复杂,对 于目标物的观测所得到的辐射亮度很容易收到周围 环境辐射亮度的影响。 现有的热红外遥感地表温度 反演算法大都是需要假设环境辐射已知或者为 0,这 样不可避免地增加了观测辐射亮度的误差。
?精确地 校正大气 影响,包括获取精确的大气透 过率,大气上行辐射亮度和大气下行辐射亮度
?获取更精确的 地物比辐射率
单窗算法
?单窗算法适用于只有一个热波段的遥感数据,主 要用于 TM6 数据进行地表温度反演。
?通常用来从 TM6 数据中反演地表温度,这一方法 需要估计大气热辐射和大气对地表热辐射传导的 影响,计算过程很复杂,误差也较大,在实际中 应用不多
?该算法已经成为 MODIS 温度产品的官方算法之一 ,在大多数情况下,温度反演的精度可以控制在 1K以内。
MODIS 地表温度的劈窗算法
其中: Ts是地表温度, T31 、T32分别是 MODIS 第 31、32通道的亮温。
亮温值计算
大气透过率计算
ρ19 和 ρ2 分别是 MODIS 第 19 和第2波段的地面反射率
第五章 热红外遥感
本章主要内容
? 地表温度反演模型
地表温度反演模型
?地表温度( LST)是地球资源监测和地表生态环境系 统研究的重要指标之一,对水文、生态、环境和生 物地球化学等研究有重要意义。
?土壤水分的调查、森林火灾的检测、地热位置的判 别、军事伪装的应用、石油和铀矿的寻找等都离不 开陆地表面温度。
直角地温计
?传统获取地表温度的做法是采用温度计测量,所 测的结果只代表观测点的局部温度。
?遥感可以提供 二维陆面温度分布信息 并且可以 快 速同步地获取大面积区域 地表温度。
?因此利用卫星数据演算地表温度,探讨 卫星热通 道的理论及其实际应用方法 ,已经成为遥感科学 的一个重要领域。
?热红外遥感 记录的是地物发射的热辐射能量,具 有不破坏地表热力学状态的特点,用其反演陆面 温度早已被科学家重视
比辐射率计算
?在MODIS 1km的像元尺度下,像元可以粗略视作由 水体、植被和裸土 3种类型构成。
εw 、 εv 、 εs 分别为水体、植被和裸地的地表比辐 射率, 31波段为 0.992、0.9844、0.9731;32波段为 0.989、0.9851、0.9832
Pw和Pv分别为水面和植被的构成比例,水体纯像元 时, Pw=1 ,不为纯水体时 Pw=0 ,Pv按照植被覆盖 率计算。