landsat 遥感影像地表温度反演教程
landsat遥感影像地表温度反演教程(大气校正法)

基于辐射传输方程的Landsat数据地表温度反演教程一、数据准备Landsa 8遥感影像数据一景,本教程以重庆市2015年7月26日的=行列号为(128,049)影像(LC81280402016208LGN00)为例。
同时需提前查询影像的基本信息(详见下表)二、地表温度反演的总体流程三、具体步骤1、辐射定标地表温度反演主要包括两部分,一是对热红外数据,二是多光谱数据进行辐射定标。
(1)热红外数据辐射定标选择Radiometric Correction/Radiometric Calibration。
在File Selection对话框中,选择数据LC81230322013132LGN02_MTL_Thermal,单击Spectral Subset选择Thermal Infrared1(10.9),打开Radiometric Calibration面板。
Scale factor 不能改变,否则后续计算会报错。
保持默认1即可。
(2)多光谱数据辐射定标选择要校正的多光谱数据“LC81230322013132LGN02_MTL_MultiSpectral”进行辐射定标。
因为后续需要对多光谱数据进行大气校正,可直接单击Apply FlaashSettings,如下图。
注意与热红外数据辐射定标是的差别,设置后Scale factor值为0.1。
2、大气校正本教程选择Flaash 校正法。
FLAASH Atmospheric Correction,双击此工具,打开辐射定标的数据,进行相关的参数设置进行大气校正。
注意:如果在多光谱数据辐射定标时Scale factor值忘记设置,可在本步骤中打开辐射定标数时设置single scale faceor 值为0.1,若已设置,则默认值为1即可。
1)Input Radiance Image:打开辐射定标结果数据;2)设置输出反射率的路径,由于定标时候;3)设置输出FLAASH校正文件的路径,最优状态:路径所在磁盘空间足够大;4)中心点经纬度Scene Center Location:自动获取;5)选择传感器类型:Landsat-8 OLI;其对应的传感器高度以及影像数据的分辨率自动读取;6) 设置研究区域的地面高程数据;7)影像生成时的飞行过境时间:在layer manager中的Lc8数据图层右键选择View Metadata,浏览time字段获取成像时间;注:也可以从元文件“LC81230322013132LGN02_MTL.txt”中找到,具体名称:DATE_ACQUIRED = 2013-05-12;SCENE_CENTER_TIME = 02:55:26.6336980Z;8) 大气模型参数选择:Sub-Arctic Summer(根据成像时间和纬度信息选择);9) 气溶胶模型Aerosol Model:Urban,气溶胶反演方法Aerosol Retrieval:2-band(K-T);10) 其他参数按照默认设置即可。
基于大气校正法的Landsat8TIRS反演地表温度

基于大气校正法的Landsat8TIRS反演地表温度(2015-07-02 08:22:53)转载▼标签:分类:遥感解决方案landsat8地表温度热红外遥感(Infrared Remote Sensing)是指传感器工作波段限于红外波段范围之内的遥感。
即利用星载或机载传感器收集、记录地物的热红外信息,并利用这种热红外信息来识别地物和反演地表参数如温度、湿度和热惯量等。
目前有很多的卫星携带了热红外传感器,包括ASTER、AVHRR、MODIS、TM/ETM+/ TIRS等。
目前,地表温度反演算法主要有以下三种:大气校正法(也称为辐射传输方程:Radiative Transfer Equation——RTE)、单通道算法和分裂窗算法。
本实例是基于大气校正法,利用Landsat8 TIRS反演地表温度。
基本原理:首先估计大气对地表热辐射的影响, 然后把这部分大气影响从卫星传感器所观测到的热辐射总量中减去, 从而得到地表热辐射强度, 再把这一热辐射强度转化为相应的地表温度。
具体实现为:卫星传感器接收到的热红外辐射亮度值Lλ由三部分组成:大气向上辐射亮度L↑,地面的真实辐射亮度经过大气层之后到达卫星传感器的能量;大气向下辐射到达地面后反射的能量。
卫星传感器接收到的热红外辐射亮度值Lλ的表达式可写为(辐射传输方程):Lλ = [εB(T S) + (1-ε)L↓]τ+ L↑(1.1)式中,ε为地表比辐射率,T S为地表真实温度(K),B(T S)为黑体热辐射亮度,τ为大气在热红外波段的透过率。
则温度为T的黑体在热红外波段的辐射亮度B(T S)为:B(T S) = [Lλ - L↑- τ(1-ε)L↓]/τε(1.2)T s可以用普朗克公式的函数获取。
T S = K2/ln(K1/ B(T S)+ 1) (1.3)对于TM,K1 =607.76 W/(m2*µm*sr),K2 =1260.56K。
landsat遥感影像地表温度反演教程(大气校正法)

基于辐射传输方程的Landsat数据地表温度反演教程一、数据准备Landsa 8遥感影像数据一景,本教程以市2015年7月26日的=行列号为(128,049)影像(LC81280402016208LGN00)为例。
同时需提前查询影像的基本信息(详见下表)注:基本信息在影像头文件中均可查询到,采集时间为格林尼治时间。
二、地表温度反演的总体流程三、具体步骤1、辐射定标地表温度反演主要包括两部分,一是对热红外数据,二是多光谱数据进行辐射定标。
(1)热红外数据辐射定标选择Radiometric Correction/Radiometric Calibration。
在File Selection对话框中,选择数据LC81230322013132LGN02_MTL_Thermal,单击Spectral Subset选择Thermal Infrared1(10.9),打开Radiometric Calibration面板。
(2)多光谱数据辐射定标选择要校正的多光谱数据“LC81230322013132LGN02_MTL_MultiSpectral”进行辐射定标。
Scale factor 不能改变,否则后续计算会报错。
保持默认1即可。
因为后续需要对多光谱数据进行大气校正,可直接单击Apply Flaash Settings,如下图。
注意与热红外数据辐射定标是的差别,设置后Scale factor值为0.1。
2、大气校正本教程选择Flaash 校正法。
FLAASH Atmospheric Correction,双击此工具,打开辐射定标的数据,进行相关的参数设置进行大气校正。
注意:如果在多光谱数据辐射定标时Scale factor值忘记设置,可在本步骤中打开辐射定标数时设置single scale faceor 值为0.1,若已设置,则默认值为1即可。
1)Input Radiance Image:打开辐射定标结果数据;2)设置输出反射率的路径,由于定标时候;3)设置输出FLAASH校正文件的路径,最优状态:路径所在磁盘空间足够大;4)中心点经纬度Scene Center Location:自动获取;5)选择传感器类型:Landsat-8 OLI;其对应的传感器高度以及影像数据的分辨率自动读取;6) 设置研究区域的地面高程数据;7)影像生成时的飞行过境时间:在layer manager中的Lc8数据图层右键选择View Metadata,浏览time字段获取成像时间;注:也可以从元文件“LC81230322013132LGN02_MTL.txt”中找到,具体名称:DATE_ACQUIRED = 2013-05-12;SCENE_CENTER_TIME =02:55:26.6336980Z;8) 大气模型参数选择:Sub-Arctic Summer(根据成像时间和纬度信息选择);9) 气溶胶模型Aerosol Model:Urban,气溶胶反演方法Aerosol Retrieval:2-band(K-T);10) 其他参数按照默认设置即可。
landsat5地表温度反演步骤

landsat5地表温度反演步骤
Landsat 5地表温度反演步骤如下:
1. 获取Landsat 5卫星遥感数据:从美国地质调查局(USGS)或其他相关机构获取相应的Landsat 5地表温度遥感数据。
2. 辐射校正:对遥感数据进行辐射校正,将数字计数值转换为辐射亮度。
3. 大气透过率校正:通过大气透过率模型校正遥感数据,去除大气影响。
4. 辐射温度计算:根据温度-辐射关系模型,将辐射亮度转换为辐射温度。
5. 地表辐射温度计算:考虑地表辐射率、植被覆盖、水汽含量等因素,将辐射温度转换为地表温度。
6. 数据剔除和补全:根据质量控制指标剔除无效数据,并进行缺失数据的补全。
7. 结果验证与分析:对反演结果进行验证和分析,与实地观测数据进行比较,并考虑地形、土壤类型等因素对结果进行解释和讨论。
8. 结果输出和应用:将地表温度反演结果输出为栅格数据或矢量数据,用于环境监测、气候研究、农业生产等应用领域。
需要注意的是,地表温度反演是一个复杂的过程,需要综合考虑多个因素,如大气状况、地表材料、遥感数据质量等,以确保反演结果的准确性和可靠性。
Landsat8 TIRS 地表温度反演

热红外遥感(Infrared Remote Sensing)是指传感器工作波段限于红外波段范围之内的遥感。
即利用星载或机载传感器收集、记录地物的热红外信息,并利用这种热红外信息来识别地物和反演地表参数如温度、湿度和热惯量等。
目前有很多的卫星携带了热红外传感器,包括ASTER、AVHRR、MODIS、TM/ETM+/ TIRS等。
目前,地表温度反演算法主要有以下三种:大气校正法(也称为辐射传输方程:Radiative Transfer Equation——RTE)、单通道算法和分裂窗算法。
本实例是基于大气校正法,利用Landsat8 TIRS反演地表温度。
基本原理:首先估计大气对地表热辐射的影响, 然后把这部分大气影响从卫星传感器所观测到的热辐射总量中减去, 从而得到地表热辐射强度, 再把这一热辐射强度转化为相应的地表温度。
具体实现为:卫星传感器接收到的热红外辐射亮度值Lλ由三部分组成:大气向上辐射亮度L↑,地面的真实辐射亮度经过大气层之后到达卫星传感器的能量;大气向下辐射到达地面后反射的能量。
卫星传感器接收到的热红外辐射亮度值Lλ的表达式可写为(辐射传输方程):Lλ = [εB(T S) + (1-ε)L↓]τ+ L↑(1.1)式中,ε为地表比辐射率,T S为地表真实温度(K),B(T S)为黑体热辐射亮度,τ为大气在热红外波段的透过率。
则温度为T的黑体在热红外波段的辐射亮度B(T S)为:B(T S) = [Lλ - L↑- τ(1-ε)L↓]/τε(1.2)T s可以用普朗克公式的函数获取。
T S = K2/ln(K1/ B(T S)+ 1) (1.3)对于TM,K1 =607.76 W/(m2*µm*sr),K2 =1260.56K。
对于ETM+,K1=666.09 W/(m2*µm*sr),K2 =1282.71K。
对于TIRS Band10,K1= 774.89 W/(m2*µm*sr),K2 = 1321.08K。
遥感辐射反演 实验课说明文档

(1)辐射定标
辐射定标:
对于Landsat7 ETM+热红外波段辐射定标,采用下式:
Lλ=gain∙DN+bias
式中,Lλ为辐射强度值,单位为W•m-2•s-1•μm-1;DN为影像的灰度值;gain和bias分别为增益和偏移,在影像头文件中获取。
式中L(λ)为TM遥感器所接收到的辐射强度(W·m-2·sr-1·μm-1),Qmax为最大的DN值,即Qmax=255,Qdn为TM数据的像元灰度值,Lmax(λ)和Lmin(λ)为TM遥感器所接收到的最大和最小辐射强度,即相对应于Qdn=255和Qdn=0时的最大和最小辐射强度。
TM传感器的热波段TM6的中心波长为11.475μm。发射前已预设TM6的常量为,当Lmin(λ)=0.1238 W·m-2·sr-1·μm-1时Qdn=0;当Lmax(λ)=1.56W·m-2·sr-1·μm-1时,Qdn=255。因此,热辐射强度与灰度值之间的关系可进一步简化为
当大气水分含量w在1. 6~3. 0之间时τ= 1.053710 - 0. 14142w
w为卫星过境时地面附近(大约2m高度)的大气水分含量,单位为g/ cm2。w可从当地的气象资料中查到。
其他说明:
1.软件不限,ARCGIS、Envi、ERDAS、PCI等软件都可,自己编程实现亦可。
2.波段运算(bandmath)工具中常用的函数
C = ε×τ
D = (1-τ) [1 + (1-ε)τ]
式中,ε为地表比辐射率;τ为大气透射率。
3.1地表亮温
亮度温度是指辐射出与观测物体相等的辐射能量的黑体温度。
基于LandsatTM影像的南京地区地表温度反演

本科毕业设计题目: 基于Landsat TM影像的地区地表温度反演学院:专业:班级:学号:学生:指导教师: 职称:二○一年月日基于Landsat TM影像的地区地表温度反演摘要城市地表温度的监测是当前的热点问题之一,其应用如城市热岛效应和城市冷岛效应。
但是传统的技术方法存在较大的缺点如周期长、效率低等问题而运用热红外遥感,进展城市地表温度监测,具有客观、准确、简便、时效性强的特点。
本文利用Landsat5 TM 遥感影像,基于其第6波段的然红外数据进展地区地表温度的反演。
1 遥感影像的预处理,提取研究区。
其过程如下,首先经过大气校正、辐射校正的遥感影像,把影像的DN值转换为辐射值,接着基于可见光多光谱数据,提取研究区归一化植被指数〔NDVI〕,然后根据NDVI制作植被覆盖度图,然后计算研究区的地表比辐射率,最后计算一样温度下黑体的辐射亮度值,并转换为地表的真实温度。
结果说明:研究区地表温度分布差异比拟明显,且随着地表覆盖类型的变化而呈现不均匀的分布形态,其中道路和城市中心出现温度的高值〔大于30℃),城市边缘及城乡结合部,江心洲区域温度较高(26-30℃),耕地及城市绿化用地温度低(20-26℃),植被温度较低〔16-20℃〕,河流温度更低〔10-16℃〕,湖水和坑塘的温度最低(低于20℃)。
计算的结果符合地表水热关系。
本文设计的方法能较好地反演出城市地表温度的分布状况。
关键词:热红外遥感;Landsat TM;植被覆盖度;辐射亮度Surface Temperature Inversion of Nanjing Based on TMLandsat ImageABSTRACTThe monitoring of urban surface temperature is one of the hot issues,such as urban heat island effect and urban cold island effect.. But the traditional technology and methods exist great disadvantages such as long period,low efficiency and the use of thermal infrared remote sensing,monitoring of urban surface temperature,is objective,accurate,convenient,timeliness strong characteristics. In this paper,the TM Landsat5 remote sensing image is used,and the surface temperature inversion of the Nanjing area is based on the sixth band of the natural data.. 1 preprocessing of remote sensing image and extracting research area. The processis as follows,first after atmospheric correction,radiometric correction of remote sensing images,the image of DN value conversion value for the radiation,then based on visible multi spectral data,extract the study area normalized difference vegetation index (NDVI),then according to NDVI vegetation coverage map,and then count to calculate the surface emissivity,finally calculated under the same temperature blackbody radiance,and converted to the true surface temperature. The results showed that of mainland surface temperature obvious difference in distribution and with land cover type changes showed uneven distribution,the roads and urban center temperature of high value (more than 30 DEG C) and marginal urban and urban and rural bination,Jiangxinzhou area high temperature (26-30 degrees C),cultivated land and urban greening in low temperature (20-26 degrees C),low temperature / vegetation (16-20 DEG C),River lower temperatures (10-16 DEG C),the temperature of the water of the lakes and ponds minimum (less than 20 DEG C). The results were in accord with the thermal relationship of surface water.. The method of this paper can well show the distribution of urban surface temperature.Key words:Thermal Infrared remote sensing; TM Landsat,Vegetation Coverage;Rradiant brightness目录1引言- 1 -1.1 选题背景与意义- 1 -1.2 设计容- 2 -1.3 技术路线- 3 -2 数据与软件- 5 -2.1数据源- 5 -2.1.1数据源分析- 6 -2.1.2研究所用软件简介- 7 -2.2遥感图像预处理- 8 -2.2.1提取研究区- 8 -2.2.2 辐射校正- 10 -2.2.3 大气校正- 11 -3地表比辐射率与辐射亮度值计算- 13 -3.1地表比辐射率的计算- 13 -3.1.1植被覆盖度计算- 13 -3.1.2 地表比辐射率的计算- 19 -3.2辐射亮度值计算- 20 -3.2.1计算方法- 20 -3.2.2获取参数- 20 -3.3辐射亮度值计算- 21 -4反演地表温度与制图- 22 -4.1地表温度反演- 22 -4.2 图的整饰与输出- 24 -结论- 28 -1引言1.1选题背景与意义地表温度的监测地球资源环境动态变化研究的重要容之一。
landsat-遥感影像地表温度反演教程

基于辐射传输方程的Landsat数据地表温度反演教程一、数据准备Landsa 8遥感影像数据一景,本教程以重庆市2015年7月26日的二行列号为(128,049)影像(LC81280402016208LGN00)为例。
同时需提前查询影像的基本信息(详见下表)注:基本信息在影像头文件中均可查询到,采集时间为格林尼治时间二、地表温度反演的总体流程三、具体步骤1、辐射定标地表温度反演主要包括两部分,一是对热红外数据,二是多光谱数据进行辐射定标。
(1)热红外数据辐射定标选择 Radiometric Correction/Radiometric Calibration 。
在 File Selection 对话框中, 选择数据 LC81230322013132LGN02_MTL_Thermal ,单击 Spectral Subsets 择 ThermalInfrared1 ( 10.9),打开 Radiometric Calibration 面板。
0 r ad-:■ C td tn-■*[ fhpljr C41O and CSTsei J ftiti.iijshtr L . nn icidkile心 fUiA 田 ^TiCiiT±i*Ti = C -_Trerli ~-riJ-ifiOOldt A11KEW3KTiC CQTTKtlCflL <J0UAC ) i^allhra 弓 E iTHFJl TTtfS—-2-Tr Belt IlliTikitllocn C srrwtlon *2 E-arl Euk ir«ct l<?h timUT PilUMnf—T ; ivl 17 41 匚lie Sea 5di.Hl £ 奄:Ehlsjlvl. 1X HonallzAllcci ■ Eninivil RHerer^e CMwtl▲、悶柿IlhkH ),■42Tifi ii -il Arbciflpherl< r.irrei iw 」 I Hajter Hanj^nentF L 册土士 Cokplex L B -I -AV Frinvwt InnerleavcCreate CDOE-diritc Sjrst KI trLnc ■* crtatf mi File• TLo>er11a~5pe E L fl c UtEl 5t ies W £cstripe■CilibrciticrL Typ e K^dlanceOutput Interleave EILOutput FiLenaie:[•二Dlsul[iy result6oiCancel(2)多光谱数据辐射定标选择要校正的多光谱数据“ LC81230322013132LGN02_MTL_MultiSpectral 进行辐射定标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于辐射传输方程的Landsat 数据地表温度反演教程
一、数据准备
Landsa 8遥感影像数据一景,本教程以重庆市2015年7月26日的=行列号为(128,049)影像(LC8LGN00)为例。
同时需提前查询影像的基本信息(详见下表)
二、地表温度反演的总体流程
三、具体步骤
1、辐射定标
地表温度反演主要包括两部分,一是对热红外数据,二是多光谱数据进行辐射定标。
(1)热红外数据辐射定标
选择Radiometric Correction/Radiometric Calibration 。
在File Selection 对话框中,选择数据LC8LGN02_MTL_Thermal ,单击Spectral Subset 选择Thermal Infrared1(),打开Radiometric Calibration 面板。
(2)多光谱数据辐射定标
选择要校正的多光谱数据“进行辐射定标。
Settings ,如下图。
2、大气校正
本教程选择Flaash 校正法。
FLAASH Atmospheric Correction,双击此工具,打开辐射定标的数据,进行相关的参数设置进行大气校正。
注意:如果在多光谱数据辐射定标时Scale factor值忘记设置,可在本步骤中打开辐射定标数时设置single scale faceor 值为,若已设置,则默认值为1即可。
1)Input Radiance Image:打开辐射定标结果数据;
2)设置输出反射率的路径,由于定标时候;
3)设置输出FLAASH校正文件的路径,最优状态:路径所在磁盘空间足够大;
4)中心点经纬度Scene Center Location:自动获取;
5)选择传感器类型:Landsat-8 OLI;其对应的传感器高度以及影像数据的分辨率自动读取;
6) 设置研究区域的地面高程数据;
7)影像生成时的飞行过境时间:在layer manager中的Lc8数据图层右键选择View Metadata,浏览time字段获取成像时间;
注:也可以从元文件“”中找到,具体名称:DATE_ACQUIRED = 2013-05-12;SCENE_CENTER_TIME = 02:55:;
8) 大气模型参数选择:Sub-Arctic Summer(根据成像时间和纬度信息选择);
9) 气溶胶模型Aerosol Model:Urban,气溶胶反演方法Aerosol Retrieval:2-band(K-T);
10) 其他参数按照默认设置即可。
11) 多光谱参数设置中,
K-T反演选择默认模式:Defaults->Over-Land Retrieval standard (600:2100)
波谱响应函数:默认指向..
\Program Files\Exelis\ENVI51\classic\filt_func\
把它重新指向:..\Program Files\Exelis\ENVI51\resource\filterfuncs\
注:这是因为版本的一个小bug,即Classic中的L8的波谱响应函数不正确,另外一个一劳永逸的方法是:将
“\Exelis\ENVI51\resource\filterfuncs”中的和两个文件拷贝覆盖:“...\ENVI51\classic\filt_func”中的两个文件。
否则SWIR1波段大气校正后的结果全为0。
见下图
12) 高级参数设置:根据内存大小设置Tile Size(Mb):100(8g物理内存),其他参数默认即可,详细见下图
经过FLAASH校正的影像基本去除了空气中水汽颗粒等因子的影响,植被的波谱曲线趋于正常。
3、地表比辐射率计算
(1)植被覆盖度计算
计算植被覆盖度Fv采用的是混合像元分解法,将整景影像的地类大致分为水体、植被和建筑,具体的计算公式如下:
FV = (NDVI- NDVIS)/(NDVIV - NDVIS)
其中,NDVI为归一化差异植被指数,取NDVIV = 和NDVIS = ,且有,当某个像元的NDVI大于时,FV取值为1;当NDVI小于,FV取值为0。
利用ENVI主菜单->Basic Tools->Band Math,在公式输入栏中输入:
(b1 gt *1+(b1 lt *0+(b1 ge and b1 le *(/选择NDVI图像
(2)地表比辐射率计算
根据前人的研究,将遥感影像分为水体、城镇和自然表面3种类型。
本专题采取以下方法计算研究区地表比辐射率:水体像元的比辐射率赋值为,自然表面和城镇像元的比辐射率估算则分别根据下式进行计算:
εsurface = + -
εbuilding = + -
式中,εsurface和εbuilding分别代表自然表面像元和城镇像元的比辐射率。
利用ENVI主菜单->Basic Tools->Band Math,在公式输入栏中输入:
(b1 le 0)*+(b1 gt 0 and b1 lt * + *b2 - *b2*b2)+(b1 ge * + *b2 -
*b2*b2)
b1:NDVI值;
b2:植被覆盖度值。
得到地表比辐射率数据。
4、计算相同温度下黑体的辐射亮度值
卫星传感器接收到的热红外辐射亮度值Lλ由三部分组成:大气向上辐射亮度L↑,地面的真实辐射亮度经过大气层之后到达卫星传感器的能量;大气向下辐射到达地面后反射的能量。
卫星传感器接收到的热红外辐射亮度值的表达式可写为(辐射传输方程):
Lλ = [ε·B(T S ) + (1-ε)L↓]·τ + L↑
这里,ε为地表辐射率,T S 为地表真实温度,B(T S )为普朗克定律推到得到的黑
体在T S 的热辐射亮度,τ为大气在热红外波段的透过率。
则温度为T 的黑体在
热红外波段的辐射亮度B(T S )为:
B(T S ) = [Lλ - L↑- τ·(1-
ε)L↓]/τ·ε
在NASA 官网(中输入成影时间以及中心经纬度,则会提供上式中所需要的参数。
本专题输入的数据是重庆市地区2016年7月26日格林尼治时间时间03:26,平均气温 ℃,气压 MP ,相对湿度%,Landsat 8 OLI 影像,影像中心的经纬度为: N,
:
τ为, L↑为 W/(m2·sr·μm),
大气向下辐射亮辐射亮度b1:60m 分辨率的地表比辐射率值;
b2:表示热红外波段的辐射定标值。
得到了温度为T 的黑体在热红外波段的辐射亮度值。
5、反演地表温度
在获取温度为T
的黑体在热红外波段的辐射亮度后,根据普朗克公式的反函
S
:
数,求得地表真实温度T
S
T S= K2/ln(K1/ B(T S)+ 1)
对于landsat 8,K1 = W/(m2·sr·μm),K2 = K。
利用ENVI主菜单->Basic Tools->Band Math,在公式输入栏中输入:()/alog(b1 +1)-273
b1:温度为T的黑体在热红外波段的辐射亮度值。
得到真实的地表温度值,单位是摄氏度。