活性炭孔结构对吸附性能影响的研究进展

合集下载

活性炭吸附法实验报告

活性炭吸附法实验报告

活性炭吸附法实验报告活性炭吸附法实验报告引言:活性炭是一种具有高度孔隙结构和吸附能力的材料,广泛应用于环境治理、水处理以及空气净化等领域。

本实验旨在探究活性炭吸附法在去除水中有机污染物方面的效果,并分析吸附过程中的影响因素。

实验方法:1. 实验材料准备:活性炭样品、去离子水、有机污染物溶液。

2. 实验仪器:烧杯、滴定管、磁力搅拌器、分光光度计等。

3. 实验步骤:a. 准备一定浓度的有机污染物溶液。

b. 在烧杯中加入一定量的活性炭样品。

c. 将有机污染物溶液加入烧杯中,并使用磁力搅拌器进行搅拌。

d. 在一定时间间隔内,取出一定量的溶液样品进行分析。

e. 使用分光光度计测定溶液中有机污染物的浓度。

实验结果:通过实验测定,我们得到了活性炭吸附有机污染物的吸附效果。

在一定时间范围内,随着活性炭样品的加入,有机污染物的浓度逐渐降低。

吸附效果与活性炭样品的质量、孔隙结构以及有机污染物的性质有关。

讨论:1. 活性炭的孔隙结构对吸附效果的影响:活性炭具有丰富的孔隙结构,包括微孔、介孔和宏孔。

微孔对小分子有机物具有较高的吸附能力,而介孔和宏孔则对大分子有机物具有较高的吸附能力。

因此,在选择活性炭样品时,需要考虑有机污染物的分子大小与活性炭孔隙结构的匹配程度。

2. 活性炭样品质量对吸附效果的影响:活性炭样品的质量与其表面积和孔隙体积密切相关。

表面积越大,孔隙体积越大,吸附效果越好。

因此,在实际应用中,选择具有较大表面积和孔隙体积的活性炭样品可以提高吸附效果。

3. 有机污染物性质对吸附效果的影响:不同的有机污染物具有不同的化学结构和性质,对活性炭的吸附能力也有所差异。

有机污染物的极性、分子大小以及溶解度等因素都会影响其与活性炭的相互作用。

因此,在实际应用中,需要根据有机污染物的性质选择合适的活性炭样品。

结论:通过本实验,我们验证了活性炭吸附法在去除水中有机污染物方面的有效性。

活性炭的孔隙结构、质量以及有机污染物的性质都对吸附效果有影响。

活性炭材料的制备及其吸附性能研究

活性炭材料的制备及其吸附性能研究

活性炭材料的制备及其吸附性能研究活性炭是一种高效的吸附材料,广泛应用于工业领域和环保中。

其制备过程复杂,其中关键是制备方法和材料特性的控制。

本文将介绍活性炭的制备及其吸附性能的研究进展。

一、活性炭的制备方法活性炭的制备方法多种多样,如物理法、化学法和物化法等。

物理法是利用高温和特殊气氛,将无机原材料直接聚集成炭,其制备过程简单,但性能相对差。

化学法是将有机高分子或碳素化合物在特定条件下进行裂解或氧化后,得到炭材料。

物化法是结合物理和化学原理,在制备过程中控制原料和反应条件,以获得理想的炭材料。

二、活性炭的制备材料活性炭的制备原料多种多样,包括木屑、竹材、果壳等天然原材料,也包括聚丙烯、聚氨酯、纤维素等人工高分子。

材料种类不同,会影响活性炭的孔径大小和吸附性能。

例如,天然原材料产生的活性炭多为微孔,吸附能力较强;而人工高分子制备的活性炭多为介孔或大孔,吸附能力相对较弱。

三、活性炭的吸附性能活性炭的吸附能力主要取决于其孔径分布、表面性质和晶体结构等因素。

不同孔径大小的活性炭对不同物质的吸附效果也不同。

例如,微孔活性炭对小分子有机物质具有较强的吸附作用,而介孔或大孔活性炭对大分子有机物具有更好的吸附性能。

此外,活性炭表面化学性质的不同也会导致其吸附性能的差异。

一般而言,具有氨基、羟基、羧基等官能团的活性炭吸附能力会更强。

四、活性炭的应用由于其吸附能力和环保性质,活性炭广泛应用于水处理、空气净化等领域,同时也被用作电容器、电极材料等电子制品中。

在水处理方面,活性炭可以去除水中的有害物质,如重金属离子、有机物、药物等,提高水的质量和纯度。

在空气净化方面,活性炭可以去除甲醛、苯、二氧化硫等有害气体,改善人们生活环境。

总之,活性炭材料的制备及其吸附性能的研究是一个重要的领域。

通过不断探索材料特性和优化制备工艺,可以获得更具吸附能力和应用价值的活性炭,促进其在各个领域的应用。

活性炭各种类型的孔隙在吸附过程中的作用

活性炭各种类型的孔隙在吸附过程中的作用

活性炭各种类型的孔隙在吸附过程中的作用活性炭的孔隙大小是不均匀的多分散体系,一般可分为三种类型的孔,即大孔、过渡孔和微孔。

了解每一种孔在吸附过程中的作用是非常重要的,它对活性炭的制造工艺研究、活性炭的应用研究和活性炭的静态和动态吸附理论研究都将起到指导作用。

也可以说研究活性炭(包括其他吸附剂)的各类孔隙在吸附过程中的作用,就是研究活性炭的最核心问题。

那么,在研究活性炭各种类型孔隙在吸附过程中的作用之前,首先我们应该搞清楚下列几个问题:1.活性炭的孔隙结构状况活性炭是多孔性的含碳吸附剂,在每粒活性炭中,都包含有大小不同的孔,这些孔是怎样分布的,有没有一定的规律性。

在这里我们可以形象地比喻活性炭中的孔隙分布好似一棵大树,过渡孔是大孔的分枝,微孔是过渡孔的分枝。

微孔的出口开于大孔和颗粒外表面的总分数,与微孔的出口开于过渡孔表面的分数相比,所占比例是非常小,甚至可以忽略不计。

下面举一例来说明这个问题。

对一般常用活性炭来讲,各类孔隙的比表面积和外表面积为:大孔比表面积 0.5~2m ²/g过渡孔比表面积 20~70m ²/g微孔比表面积 800~1000m ²/g而其外表面积也很小,我们可以用下列公式来进行计算: dp p p n n S 63)3(44==⋅••=γπγπγ式中 n 一颗粒个数P 一固体的密度,m/cm ³.设直径为1.5mm 的球形颗粒活性炭,固体密度为0.5g/cm ³,求它的外表面积:01.0008.015.015.066==⨯==dp S 从对活性炭的外表面积计算的结果来看,活性炭外表面积比起过渡孔和微孔的比表面积,更是微不足道的,即使加上大孔的比表面积,也是可以忽略的。

由此可见活性炭的孔隙结构确实成树枝结构体系。

2.关于活性炭各种孔隙类型的名称目前活性炭的各种类型孔隙名称,叫法很混乱,各种称谓都有。

为了在应用中不发生错误,在这里将它们归纳一下,供大家参考:微型孔,简称微孔,又叫吸附孔,小孔;过渡型孔,简称过渡孔,又称中孔,毛细孔以及输送孔;大型孔,简称大孔,又叫输送孔。

活性炭吸附实验报告

活性炭吸附实验报告

活性炭吸附实验报告
引言概述:
本实验旨在研究活性炭材料在吸附过程中的性能和效果。

活性炭是一种具有高孔隙度和高吸附能力的材料,广泛应用于水处理、空气净化、废气处理等领域。

通过实验确定活性炭的吸附性能,可以为其在工业和环境应用中提供科学依据。

正文内容:
1.活性炭的原理和特性
1.1活性炭的制备方法
1.2活性炭的物理特性和表面结构
1.3活性炭的吸附原理
2.实验设计和方法
2.1活性炭的选择和准备
2.2吸附试剂的选择和制备
2.3实验装置和操作流程
3.吸附实验结果与分析
3.1吸附平衡实验
3.1.1吸附剂用量对吸附效果的影响
3.1.2吸附剂颗粒大小对吸附效果的影响
3.1.3吸附剂pH值对吸附效果的影响
3.2吸附动力学实验
3.2.1吸附速率对吸附效果的影响
3.2.2吸附温度对吸附效果的影响
3.2.3吸附剂可重复使用性能的评估
4.吸附实验的结果讨论
4.1吸附平衡实验结果分析
4.2吸附动力学实验结果分析
4.3吸附剂的选择和应用前景
5.实验改进和未来研究方向
5.1实验方法的改进和优化
5.2活性炭的改良和性能提升
5.3活性炭在环境治理中的应用研究
总结:
通过本实验,我们对活性炭吸附过程的性能和效果进行了研究。

实验结果表明,活性炭吸附效果受到吸附剂用量、颗粒大小、pH值、吸附速率和温度等因素的影响。

活性炭作为一种有潜力的吸附材料,在水处理、空气净化、废气处理等领域具有广阔的应用前
景。

未来的研究可以着重于改进实验方法、提升活性炭的吸附性能,并进一步探索其在环境治理中的应用。

《活性炭孔结构对CO2和CH4吸附分离性能的影响》

《活性炭孔结构对CO2和CH4吸附分离性能的影响》

《活性炭孔结构对CO2和CH4吸附分离性能的影响》篇一一、引言随着工业化的快速发展,温室气体的排放问题日益严重,其中CO2和CH4是主要的温室气体之一。

为了有效控制温室气体的排放,研究并优化气体的吸附分离技术成为了一个重要的研究方向。

活性炭因其高比表面积、丰富的孔结构和良好的吸附性能,在气体吸附分离领域中发挥着重要作用。

本文着重探讨了活性炭的孔结构对CO2和CH4吸附分离性能的影响。

二、活性炭孔结构简介活性炭的孔结构是决定其吸附性能的关键因素之一。

其孔隙按照大小可大致分为微孔(小于2nm)、中孔(2nm-50nm)和大孔(大于50nm)。

这些不同尺寸的孔对气体的吸附分离具有显著影响。

三、CO2的吸附分离与活性炭孔结构的关系1. 微孔结构对CO2的吸附影响:由于CO2分子尺寸较小,微孔结构提供了大量的吸附位点,有利于CO2的物理吸附。

同时,微孔的尺寸与CO2分子尺寸相近,有利于CO2分子的扩散和吸附。

2. 中孔和大孔结构的作用:中孔和大孔为气体分子提供了通道和扩散空间,能够促进气体在活性炭内部的传输,提高吸附速率和效率。

同时,中孔和大孔也提供了一部分有效的吸附位点,特别是与CO2之间的范德华力相对较强。

四、CH4的吸附分离与活性炭孔结构的关系相较于CO2,CH4的分子尺寸较大,因此在微孔中的吸附量相对较少。

然而,中孔和大孔为CH4提供了更多的扩散空间和吸附位点。

此外,由于CH4是惰性气体,与活性炭之间的范德华力较弱,因此对孔结构的尺寸和形状较为敏感。

五、活性炭孔结构对CO2/CH4分离性能的影响1. 优先吸附效应:由于CO2分子尺寸小且与活性炭之间的相互作用力强于CH4,因此活性炭优先吸附CO2分子,使得两者能够达到有效的分离效果。

同时,良好的孔结构和适中的比表面积能显著提高CO2/CH4的选择性吸附。

2. 动力学扩散影响:合理的中孔和大孔结构有利于气体的扩散和传输,从而提高整体的气体分离效率。

六、结论活性炭的孔结构对CO2和CH4的吸附分离性能具有显著影响。

活性炭对CO_2的吸附与解吸研究进展

活性炭对CO_2的吸附与解吸研究进展

近年来 , 性炭 对 C 的吸 附及解 吸 在 工业 上 得 到广 泛 的应 用 。在 大气 环 境 保 护领 域 , 类 过 度 活 O 人 使用 煤炭 、 油和天 然气 等化 石 燃 料 , 且 直 接 排 放 大 量 的 C : 大 气 中 , 导 致气 候 变 暖 的 主要 原 石 并 O 到 是 因 J 】。但 同时 C , O 又具 有非 常重 要 的工 业应 用价值 , 能够广 泛应 用 于食 品 、 工 等领 域 , 如食 品 的生 化 例
产、 烟丝膨 胀剂 、 合成 尿 素和 甲醇 等 , 合成许 多化 工产 品 的工业 原 料气 , 是 因此对 C : O 进行 吸附分 离 、 回收 利用有 很 重要 的意义 , 性炭是 该 过程重 要 的吸 附剂 之 一 。在工 业应 用 领域 如 发 电 厂 、 成 氨 、 活 合
第4 6卷第 3期 21 0 2年 5月
生 物 质 化 学 工 程
Bima sCh mia g n e i g o s e c lEn i e rn
Vo . 146 No. 3 M a 01 v2 2

综 述 评论 — — 生物 质 材 料 ・
活性 炭 对 C O2的 吸 附与解 吸研 究 进展
简相 坤 ,刘石彩 ,边 轶
( 中国林业科 学研 究院 林产化 学工业研 究所 ; 生物质化学利用 国家工程 实验 室; 国家林业局 林产化 学工程重点开发 实验 室; 江苏省生物质能源与材料 重点实验 室,江苏 南京 2 04 ) 10 2 摘 要: 本文介绍 了工业上 C :的主要 来源及应 用, O 以及工业上分 离、 回收 C 2的常用方 法。 同时介 绍 了活性炭在 变压 O
a t ae ab n h ti f e c d t e p r r n e o d op in a d r c v r fC n a t ae a b n r e iwe . c i td c r o s ta n l n e h ef ma c fa s r t n e o e o O2o c i td c r o swee r ve d v u o o y v Ke r s a t ae a b n; a b n d o ie;d o p in; e o p in y wo d : ci t d c r o c r o ix d a s r t v o d s rt o

《2024年污泥活性炭对不同结构抗生素的吸附脱除性能及机理研究》范文

《2024年污泥活性炭对不同结构抗生素的吸附脱除性能及机理研究》范文

《污泥活性炭对不同结构抗生素的吸附脱除性能及机理研究》篇一一、引言随着人类社会的快速发展,抗生素的广泛使用已成为一个不可忽视的现象。

然而,抗生素的滥用和过度使用已经导致了水体中抗生素残留的问题,对生态环境和人类健康构成了严重威胁。

污泥活性炭作为一种环保、高效的吸附材料,在处理抗生素残留等环境问题中表现出强大的应用潜力。

本研究将深入探讨污泥活性炭对不同结构抗生素的吸附脱除性能及机理,以期为环境治理和人类健康提供有力的技术支持。

二、研究方法1. 材料与试剂本研究所用污泥活性炭由本实验室制备,实验中使用的抗生素包括β-内酰胺类、氟喹诺酮类、磺胺类等不同结构类型的抗生素。

2. 实验方法采用静态吸附法,将不同浓度的抗生素溶液与污泥活性炭进行混合,通过测量吸附前后溶液中抗生素浓度的变化,计算污泥活性炭对抗生素的吸附脱除性能。

同时,通过傅里叶变换红外光谱(FTIR)和X射线衍射(XRD)等手段,研究污泥活性炭的表面性质及其与抗生素之间的相互作用机理。

三、结果与讨论1. 污泥活性炭对不同结构抗生素的吸附脱除性能实验结果表明,污泥活性炭对不同结构类型的抗生素均表现出良好的吸附脱除性能。

其中,β-内酰胺类抗生素的吸附效果最为显著,其次是氟喹诺酮类和磺胺类抗生素。

这可能与污泥活性炭的表面性质和抗生素的结构特性有关。

2. 污泥活性炭表面性质分析FTIR和XRD分析结果表明,污泥活性炭表面含有丰富的含氧官能团(如羟基、羧基等),这些官能团可以与抗生素分子发生相互作用,从而促进抗生素在污泥活性炭表面的吸附。

此外,污泥活性炭的孔隙结构和比表面积也对抗生素的吸附脱除性能产生重要影响。

3. 吸附机理分析根据实验结果和文献报道,污泥活性炭对抗生素的吸附机理主要包括静电相互作用、氢键作用和疏水作用等。

不同结构类型的抗生素与污泥活性炭之间的相互作用机理存在差异,这可能与抗生素分子的极性、疏水性等性质有关。

例如,β-内酰胺类抗生素分子中含有较多的极性基团,与污泥活性炭表面的含氧官能团之间容易形成氢键作用;而氟喹诺酮类抗生素分子则主要通过疏水作用与污泥活性炭表面发生相互作用。

生物质活性炭的合成及其对染料吸附性能研究

生物质活性炭的合成及其对染料吸附性能研究

生物质活性炭的合成及其对染料吸附性能研究1. 引言1.1 背景在目前的染料行业中,染料废水成为一个严重的环境问题,传统的处理方法效率低且成本高。

而利用生物质活性炭对染料废水进行吸附处理,不仅可以有效去除染料颜料,还能实现资源再利用。

研究生物质活性炭的合成方法以及其对染料吸附性能的研究具有重要的理论和应用意义。

通过深入探究生物质活性炭对染料的吸附性能及机理,有助于优化活性炭的制备工艺,提高染料废水处理效率,推动环境保护和资源利用的发展。

1.2 研究目的本研究旨在探讨生物质活性炭的合成及其对染料吸附性能的影响,通过实验和分析研究生物质活性炭在染料吸附方面的应用潜力。

具体研究目的包括:1.探究不同生物质活性炭合成方法对其吸附性能的影响;2.研究生物质活性炭在染料吸附过程中的吸附机理及影响因素;3.评估生物质活性炭对染料吸附效果的表现,并与传统活性炭进行比较分析。

通过对生物质活性炭的合成及其对染料吸附性能的研究,旨在为环境保护与治理提供新的技术支持和方法。

2. 正文2.1 生物质活性炭的合成方法生物质活性炭的合成方法包括物理方法和化学方法两种主要类型。

在物理方法中,常用的有炭化、活化和炭化-活化联合法。

炭化是指将生物质原料在高温下缓慢加热,获得一定碳化度的炭材料,然后再进行活化处理,提高孔隙结构的发育程度,增加活性炭的比表面积和孔体积。

活化方法主要包括化学活化和气体活化两种。

化学活化是指在炭化过程中加入活化剂或者在炭材料上浸渍活化剂,经高温热解进行活化处理。

气体活化是通过气氛中的活化气体,如CO2、H2O等,对炭材料进行活化处理。

炭化-活化联合法是将炭化和活化过程结合起来,以获得具有高比表面积和合适孔结构的活性炭材料。

化学方法包括酸洗法、碱洗法和氧化法等,通过在生物质原料中引入特定的化学试剂对其进行预处理或者直接合成活性炭。

各种合成方法都有其优缺点,需要根据具体需求选择合适的合成方法。

2.2 生物质活性炭对染料吸附性能研究生物质活性炭的孔隙结构、比表面积、表面官能团等特性对染料吸附性能具有重要影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

碳材料孔控制研究进展简要说明炭材料孔的形成、分类和描述,之后评述了控制碳材料孔结构技术的的重要性。

评述了四种碳材料成孔机理和多种孔描述技术的优略,然后从VOC处理及回收利用、水净化、汽车尾气处理、CO2的可逆不可逆吸附和电极材料5个方面来说明在碳材料中孔结构控制的重要性。

最后介绍了孔结构控制技术,包括大孔控制、中孔控制、微孔控制。

Abstract: Techniques for controlling the pore structure and its importance in carbon materials are reviewed after a brief explanation on formation mechanism and classification and characterization of pores. The understanding of four kinds of pore-forming processes are reviewed and then five application areas are presented to show the importance of pore structure control in carbon materials, which included VOC treatment and recycling,Water purification,gasoline vapor adsorption, CO2 capture, and carbon electrodes for electric double layer capacitors. Pore structure control techniques are shown, including the macroporous control, mesoporous control and micropore control.活性炭是一种具有丰富内部孔隙结构、高空隙率和较高比表面积的六方晶格型碳。

因活性炭性价比高、化学稳定性好[1]、吸附性能优良、热稳定性好及便于再生利用和相当的硬度等优点而成为吸附技术中首选的吸附剂材料。

活性炭广泛应用于食品、医药、电池、催化、电能储存、黄金提取和多成份有机气体分离[2]等,。

对环境安全和污染控制关注的提高为活性炭吸附的应用开辟了新的领域,在很多化工厂,如印刷,涂料,纺织印染,聚合物加工等。

活性炭孔隙分布规律性差,活性炭工业制作无法实现控制孔径大小及分布,当今科学、工程和技术一个特殊的应用需要一个特殊的孔结构[3–6],有文献报道,当孔隙大小为吸附分子的2~4倍时最有利于吸附,可以根据吸附质分子选择吸附性能最好的活性炭,但一般活性炭的孔径并不均一,选择性吸附效果差。

因此,精确控制活性炭的孔结构在不同应用领域有很强的需求。

常规活性炭主要包含小孔,小孔也被IUPAC定义为微孔,即使他们只有纳米级尺寸(小于2nm),也已经吸引了注意和努力在孔尺寸和数量的控制。

在最近的一些应用上即使较大的孔,被称为中孔(2~50nm)和大孔(大于50nm)都对活性炭的功能应用起作用,例如中孔在催化、净化、能源储存和碳化硅结构陶瓷制备等[3–13],大孔在重油吸附上的应用等。

并且,孔的数量和尺寸、同种尺寸和形态孔也需要控制。

为满足特殊应用的特殊需求,相关学者提出很多方法和技术用于创造拥有特定孔结构的活性炭材料,控制孔的尺寸和数量。

这些技术措施可分为一下三种:一是选择特殊原料实现活性炭特殊孔隙结构及孔尺寸,二是通过活性炭制作过程控制孔的尺寸和数量,形成特殊孔隙结构。

三是对制作完成的活性炭用修饰或填充等措施改变活性炭原有性质实现控制孔隙结构、孔的尺寸和数量孔。

这些提出的工程和技术工艺似乎可以满足在孔结构方面的需求,但是这些技术应用于工业生产还需要一些突破。

1 孔的形成机理及分类1.1 活化法成孔机理活化反应属于气固相系统的多相反映,活化过程括物理和化学两个过程,整个过程包括气相中的活化剂向炭化材料外表面扩散、活化剂向炭化料内表面的扩散、活化剂被炭化料内表面吸收、炭化料表面发生反应生成中间产物(表面络合物)、中间产物分解成反应产物、反应产物脱附、脱附下来的反应产物由炭化料内表面向外表面扩散等过程[14]。

1.1.1 气体活化法物料在炭化过程中以形成了类似石墨的基本微晶结构,在微晶之间形成了初级空隙结构,不过由于这些初级孔隙结构被炭化过程中生成的一些无序的无定形碳或焦油馏出物所堵塞或封闭,因此炭化料的比表面积很小。

气体活化的过程就是用活化气体与C发生氧化还原反应,侵蚀炭化物的表面,同时去除焦油类物质及未炭化物,使炭化料的微细孔隙结构发达的过程。

杜比宁(Dubinin)理论认为,烧失率小于50%时,得到的是微孔活性炭;烧失率大于75%时,得到的是大孔活性炭;烧失率在50%~75%时,得到的是具有混合结构的活性炭。

活化反应通过以下三个阶段最终达到活化造孔的目的。

第一阶段:开放原有的闭塞孔。

即高温下,活化气体首先与无序碳原子及杂原子发生反应,将炭化时已形成但却被无序碳原子及杂原子所堵塞的孔隙打开,暴露出基本微晶表面。

第二阶段:扩大原有孔隙。

在此阶段,暴露出来的基本微晶表面上的C原子与活化气体发生氧化反应被烧失,使得打开的孔隙不断扩大、贯通及向纵深发展。

第三阶段:形成新的孔隙。

微晶表面C原子的烧失是不均匀的,同炭层平行方向的烧失速率高于垂直方向,微晶边角和缺陷位置的C原子即活化位更易与活化气体反应。

同时,随着活化反应的不断进行,新的活性位暴露于微晶表面,新的活化点又能同活化气进行反应。

微晶表面这种不均匀的燃烧不断地导致新孔隙形成。

随着活化反应的进行,孔隙不断扩大,相邻孔隙之间的孔壁被完全烧失而形成较大的孔隙,导致中孔和大孔孔容增加,从而形成了活性炭大孔、中孔和微孔相连接的孔隙结构如图1 所示,具有发达的比表面积。

图1 活性法成孔图气体活化法其主要化学反应式如下:2222279.6C H O H CO KJ +−−→+-22542.1C H O H CO KJ +−−→+-22712.7C CO CO KJ +−−→-从上述三个化学反应式可以看出,三个反应均是吸热反应,即随着活化反应的进行,活化炉的活化反应区域温度将逐步下降,如果活化区域的温度低于800℃上述活化反应就不能正常进行,所以在活化炉的活化反应区域需要同时通入部分空气与活化产生的煤气燃烧补充热量,或通过补偿外加热源,以保证活化炉活化反应区域的活化温度。

1.1.2 化学药品活化法化学药品活化法通常要求含碳原料中的氧含量及氢含量要达到一定数值,因此化学活化法最适宜的原料主要为果壳、泥浆、木屑、木片等。

化学药品活化法的成孔过程与气体活化法截然不同,一般形成的孔结构与气体活化法产生的活性炭的孔结构有较大不同,产品主要以中孔为主,因此化学药品活化法生产的活性炭主一般用于液相脱色精制,诸如医药行业、食品行业等的脱色精制。

1.2 模板炭成孔机理在微孔碳中,最高表面积和孔体积可以分别达到4 000 m 2/g 和1.8mL/g ,它们均是在纳米沸石[15-26]通道中炭化碳前驱体而制作的活性炭,该种制作活性炭过程称为模板炭化技术。

由于沸石的渠道的大小和形状被其晶体结构严格界定,并且在复合而成的活性炭中形成的孔是继承沸石的渠道而来,因此在复合而成的活性炭中形成的微孔孔径和孔形态是均一的。

真空低温状态下向沸石通道中注入糠醇,接着利用三甲基苯清除粘在沸石颗粒表面多余的糠醇。

获得糠醇/沸石复合颗粒后在150℃下加热8小时使其聚合为糠醇/沸石聚合体。

聚合体在700℃下炭化,然后用46%-48%的氢氟酸冲洗溶解沸石模板。

沸石笼与活性炭中生成的孔隙的关系如原理图2 所示。

这些高比例微孔活性炭具体制作过程[27]有详细说明。

图2 沸石模板活性炭形成示意图1.3 共混聚合物成孔机理共混聚合物法[28-29]被提出用来制作多种类型的活性炭,混合两种不同的聚合物,一种具有高的碳产率,如糠醇聚合物等,一种有具有低的碳产率,如乙烯聚合物。

两种聚合物混合方法的不同可以制成碳气球,碳颗粒和多孔碳等,其成孔机理见图3。

混合两种热稳定性不同聚合物,形成稳定混合物。

然后用高温处理,成碳聚合物炭化为碳,热解聚合物热解为气体排出,成为共混聚合物活性炭的孔隙,这样就形成了共混活性炭。

图3 共混聚合物成孔原理图1.4 气凝胶活性炭成孔机理气凝胶活性炭成孔主要是应用气凝胶原有孔隙性,经过高温炭化,把原有可变孔隙定型,成为有固定孔隙结构的活性炭。

1.5 分类活性炭中孔的分类,各学者依据不同的理论有不同的分类[30-31],固体中孔的分类如表1 ,颗粒内和颗粒间孔起源于自身,微孔、中孔和大孔依赖于自身的尺寸,开放孔和封闭孔依赖于自身的状态,刚性孔和可变孔依赖于自身的强度。

活性炭中存在大量的孔,在纳米级别上有多种尺寸,其中大部分是颗粒内微孔、中孔和大孔。

已知活性炭中的孔结构主要由碳化和活化过程中先导材料和活化制备条件(温度、加热速率、活化时间、气氛等等)形成。

此外活性炭中的微孔还被定义为超微孔和极微孔。

石墨六方晶格碳层之间可以成为颗粒内可变的裂缝形微孔,通过插入、接受各种原子离子甚至分子组成插入成分改变空隙宽度。

在玻璃状非石墨碳中,大多孔间刚性微孔是封闭的定型的,这些特征通过低容重和气抗渗性来表现。

封闭孔在小尺寸中是没有用的,当碳泡沫是由聚酰亚胺浸渍碳化制备成,以几个毫米大小的大孔为中心形成泡沫块,这样就有一个好处就是可浮于水上。

石墨在膨胀中,蠕虫状颗粒之间形成大孔,它可以很容易变形,一分钟的机械应力,甚至一个大量重油吸附,使他们的粒间孔隙灵活变化。

表1 活性炭孔分类表分类依据孔的种类尺寸/nm依据孔来源粒内孔隙内部粒内孔隙外部粒内孔隙粒间孔隙依据孔尺寸小孔极小微孔<0.7超小微孔0.7-2 中孔2-50 大孔>50依据孔状态开孔闭孔依据孔强度刚性孔可变孔活性炭吸附性能主要是归功于其孔隙特征,如高孔隙率和孔径[32,33]。

孔隙特征可以运用Langmuir和BET等关于氮的等温吸附理论分析[34,35],分析微孔材料[36]时t-plot及微孔分析(MP)的方法尤其有用。

关于蒸汽在固体微孔中的吸附,通过孔隙填充机制发生,由Dubinin 和Radushkevich提出的(DR)[37]理论分析。

DR理论认为对于某些吸附过程,微孔内的吸附不是一层一层地吸附在孔壁上,而是在吸附剂微孔内发生体积填充,因此,理论可以普遍适用于在微孔固体吸附气体。

Abe等[38]应用DR理论来阐明活性炭的孔隙结构对气体和液体吸附影响。

相关文档
最新文档