2021年最新高考数学复习-平面向量与解析几何
2021年高考数学 考点汇总 考点19 平面向量的数量积、平面向量应用举例(含解析)

2021年高考数学 考点汇总 考点19 平面向量的数量积、平面向量应用举例(含解析) 一、选择题 1. (xx ·湖南高考文科·T10)与(xx ·湖南高考理科·T16)相同 在平面直角坐标系中,为原点,,,,动点满足,则的取值范围是( )A. B.C. D.【解题提示】把拆分为,再利用求解。
【解析】选D.()++=+++OA OB OD OA OB OC CD2. (xx ·上海高考文科·T17)(1,2,7)(1,2,7)i i i AB AP i ==如图,四个边长为1的小正方形排成一个大正方形,AB 是大正方形的一条边,P 是小正方形的其余顶点,则的不同值的个数为( )(A)7 (B)5 (C)3 (D)2 【解题提示】根据向量数量积的定义可得. 【解析】2511351470cos 2cos i i i i i i i i i i i i i iP P P AB AP AP P P P P AB AP AB AP BAP AB AP AB AP AP AB P P P AB AP AB AP BAP AB AP AP •=•=<>=••=•=•=<>=••当取,时,,当取,,时,当取,时,24.AB ==所以取值共有三个3. (xx ·浙江高考文科·T9)设为两个非零向量,的夹角,已知对任意实数,是最小值为1() A .若确定,则唯一确定 B .若确定,则唯一确定C.若确定,则唯一确定 D.若确定,则唯一确定【解题提示】由平面向量的数量积、模列出不等式,利用二次函数求最值.【解析】选B.依题意,对任意实数,恒成立,所以恒成立,若为定值,则当为定值时,二次函数才有定值.4. (xx·山东高考文科·T7)已知向量.若向量的夹角为,则实数=( )A、B、C、D、【解题指南】本题考查了平面向量的数量积的运算,利用数量积的坐标运算即可求得. 【解析】()33cos,2923a ba b a b a bm⋅=+⋅==+∴+==答案:B5.(xx·安徽高考文科·T10)10.设为非零向量,,两组向量和均由2个和2个排列而成,若所有可能取值中的最小值为,则与的夹角为()A. B. C. D.0【解题提示】对的可能结果进行讨论,根据各选项分别判断。
2021年高考数学分项汇编 专题5 平面向量(含解析)理

2021年高考数学分项汇编专题5 平面向量(含解析)理一.基础题组1. 【xx全国卷Ⅰ,理6】设a、b、c是单位向量,且a·b=0,则(a-c)·(b-c)的最小值为()A.-2B.C.-1D.【答案】:D2. 【xx全国1,理3】在中,,.若点满足,则()A.B.C.D.【答案】A.3. 【xx课标Ⅰ,理15】已知为圆上的三点,若,则与的夹角为_______.【答案】.4. 【xx全国,理13】已知向量a,b夹角为45°,且|a|=1,|2a-b|=,则|b|=__________.【答案】:5. 【xx高考新课标1,理7】设为所在平面内一点,则()(A) (B)(C) (D)【答案】A【考点定位】平面向量的线性运算二.能力题组1. 【xx全国,理9】设平面向量a1,a2,a3的和a1+a2+a3=0.如果平面各量b1,b2,b3满足│b i│=2│a i│,且a i的顺时针旋转后与b i同向,其中i-1,2,3,则()(A)-b1+b2+b3=0 (B)b1-b2+b3=0(C)b1+b2-b3=0 (D)b1+b2+b3=0【答案】D2. 【xx课标全国Ⅰ,理13】已知两个单位向量a,b的夹角为60°,c=t a+(1-t)b.若b·c=0,则t =__________.【答案】:2三.拔高题组1. 【2011全国,理12】设向量a,b,c满足|a|=|b|=1,,〈a-c,b-c〉=60°,则|c|的最大值等于( )A.2 B. C. D.1【答案】:A20493 500D 倍 gT25851 64FB 擻24874 612A 愪35674 8B5A 譚35228 899C 覜 31294 7A3E 稾n33973 84B5 蒵36567 8ED7 軗&。
2021年数学新高考一卷知识点分布

2021年数学新高考一卷知识点分布2021年新高考一卷数学试卷的知识点分布是根据教育部对数学教育的要求和考试大纲进行设计的。
下面就逐个模块来进行详细说明。
一、函数模块函数模块是数学新高考一卷中的重点和难点模块,主要包括函数的性质、初等函数的图像与性质、函数的应用等。
1.函数的性质:包括函数的定义、定义域、值域、奇偶性、周期性等基本性质,以及函数的极限、连续性等进阶性质。
2.初等函数的图像与性质:主要包括线性函数、二次函数、指数函数、对数函数、幂函数、三角函数等的图像与性质,包括定义域、值域、最值、增减性、单调性等。
3.函数的应用:主要涉及到数理统计、概率论、数列与数学归纳法、排列与组合等数学概念的应用,经常与实际问题相结合。
二、解析几何模块解析几何模块是新高考一卷数学试卷中的另一个重点,主要包括计算向量的模长、向量的点乘、向量的夹角、平面方程、直线的方程等。
1.向量的模长与夹角:主要包括向量的模长计算、向量夹角的计算、两向量垂直或平行的判断等内容。
2.向量的点乘:主要包括向量的点乘的计算、向量夹角的计算、向量垂直或平行的判断等内容。
3.平面方程与直线方程:主要包括平面的点法式方程、一般式方程、直线的点向式方程、一般式方程等内容。
三、数列与数学归纳法模块数列与数学归纳法是考察学生对数列及其性质的理解和掌握程度的模块。
1.数列的基本概念:主要包括数列的定义、常数数列、等差数列、等比数列等数列的基本概念。
2.数学归纳法:主要包括数学归纳法的基本原理、数学归纳法的应用等。
3.数列的应用:主要与实际问题结合,涉及到等差数列、等比数列的应用等。
四、概率模块概率模块是考察学生对概率及其计算的理解和应用能力的模块。
1.事件与概率:主要包括事件的基本概念、事件的运算与性质、概率的定义与性质等。
2.条件概率与独立性:主要包括条件概率的计算、条件概率的性质、事件的独立性等。
3.排列与组合与概率:主要包括排列与组合的基本概念、概率与排列组合的结合等。
2021年高考数学(理)总复习专题27 平面向量的应用(课件)

(2)①∵A→B·A→C=cbcos A,C→A·C→B=bacos C, ∴bccos A=abcos C, 根据正弦定理,得 sin Ccos A=sin Acos C, 即 sin Acos C-cos Asin C=0,sin(A-C)=0, ∴∠A=∠C,即 a=c. 则△ABC 为等腰三角形. ②由①知 a=c,由余弦定理,得 A→B·A→C=bccos A=bc·b2+2cb2c-a2=b22. A→B·A→C=k=2,即b22=2,解得 b=2. 【点评】三角函数与向量综合往往以向量运算构
A.-1 C.12
B.-12 D.2
(2)在△ABC 中,角 A、B、C 的对边分别为 a,b, c.若A→B·A→C=C→A·C→B=k(k∈R).
①判断△ABC 的形状; ②若 k=2,求 b 的值.
【解析】(1)B→D+B→E·B→E-C→E=B→D+B→E·B→C= 2B→C·B→C=2|B→C|2,显然|B→C|的长度为半个周期,周期 T =2ππ=2,∴|B→C|=1,所求值为 2,故选 D.
造问题的题设条件,因此依据向量知识转化为三角函
数问题是问题求解的切入点.
二、向量背景下的函数问题
例2(1)已知非零向量 a,b 满足|a|= 3|b|,若函数
f(x)=13x3+|a|x2+2a·bx+1 在 x∈R 上有极值,θ为 a,
b 的夹角,则 θ 的取值范围是( D )
A.0,π6 C.π6 ,π2
【知识要点】
1.向量在平面几何中的应用 平面向量在平面几何中的应用主要是用向量的线性
运算及数量积解决平面几何中的平行、垂直、平移、全
等、相似、长度、夹角等问题.
(1)证明线段平行或点共线问题,包括相似问题,常
2021版新高考数学一轮复习讲义:第四章第一讲平面向量的概念及其线性运算(含解析)

为 AB 的中点,点 E 满足
→ 2CE
+
B→E
=0,则
A→E=
(
A
)
A
.
23A→B-
2→ 3CD
B
.
2→ 3AB
+23C→D
C.
23A→B-
1→ 3CD
D .13A→B+23C→D
(2)如图所示,已知 AB 是圆 O 的直径,点 C,D 是半圆弧的两个三等分点,
b,则
→ AD
=(
D
)
→ AB
=a,A→C
→ → 5- 1 → → → →
→ → 5-1 →
→
SD+ RD, 2 CR=RS= RD-SD,若 AT+BQ= 2 CR,则 SD=0,不合题意,所以 D 错
误.故选 A .
名师点拨 ?
平面向量线性运算问题的常见类型及解题策略
(1)考查向量加法或减法的几何意义.
(2)求已知向量的和或差.一般共起点的向量求和用平行四边形法则,求差用三角形法则;
求首尾相连的向量的和用三角形法则.
(3)与三角形综合,求参数的值.求出向量的和或差,与已知条件中的式子比较,求得参
数.
(4)与平行四边形综合,研究向量的关系.画出图形,找出图中的相等向量、共线向量,
将所求向量转化到同一个平行四边形或三角形中求解.
〔变式训练 1〕
(1)已知三角形
ABC
是等边三角形, D
∴A, B, D 三点共线.
(2)∵ka+ b 与 a+ kb 共线,
∴存在实数 λ,使 ka+ b= λ(a+ kb),
即 ka+ b= λa+ λkb.
∴(k- λ)a= (λk-1)b.
2021年高考数学压轴题复习:平面向量在解析几何中的运用

2021年高考数学压轴题复习平面向量在解析几何中的应用一.方法综述利用平面向量解决解析几何问题主要体现在以下两个方面:(1)用向量的数量积解决有关角的问题;(2)用向量的坐标表示解决共线问题.本专题重点说明平面向量在解析几何中的应用.二.解题策略类型一 与平行或角度有关的问题【例1】【2020广西柳州高级中学线上测】已知椭圆()22122:10x y C a b a b +=>>的左、右焦点分别为1F 、2F ,椭圆的离心率为12,过椭圆1C 的左焦点1F ,且斜率为1的直线l ,与以右焦点2F 为圆心,的圆2C 相切.(1)求椭圆1C 的标准方程;(2)线段MN 是椭圆1C 过右焦点2F 的弦,且22MF F N λ=u u u u r u u u u r ,求1MF N ∆的面积的最大值以及取最大值时实数λ的值.【解析】(1)设()1,0F c -,()()2,00F c c >,Q 直线l 斜率为1,且过椭圆1C 的左焦点1F .∴直线l 的方程为:y x c =+,即0x y c -+=. Q 直线l 与圆2C 相切,∴圆心2F 到直线l 的距离为d ==解得1c =. Q 椭圆1C 的离心率为12,即112e e a a ===, 解得:2a =,根据:222413b a c =-=-=∴椭圆1C 的方程为22143x y +=. (2)由(1)得()11,0F -,()21,0F , Q 22MF F N λ=u u u u r u u u u r∴直线MN 的斜率不为0,∴设直线MN 的方程为:()1x ty t R =+∈,将直线MN 的方程与椭圆方程联立可得:221143x ty x y =+⎧⎪⎨+=⎪⎩消掉y 可得:()2243690t y ty ++-=, ()223636430t t ∆=++>恒成立, 设()11,M x y ,()22,N x y ,则1y ,2y 是上述方程的两个不等根, 根据韦达定理可得:122643t y y t -∴+=+,122943y y t-=+. 1MF N ∴∆的面积:1121212MF N S F F y y ∆=⋅⋅- 1212122y y y y =⨯⨯-=-===m =,则m 1≥,221t m =-, ∴223431t m +=+可得:121231MF N m S m =⨯+V .。
2021版新高考数学一轮复习讲义:第四章第四讲平面向量的综合应用(含解析)

垂直问题
数量积的运算性质
a⊥ b? __a·b= 0__? __x1x2+ y1y2=0__, 其中 a= (x1 ,y1 ), b= (x2,y2),且 a, b 为 非零向量
夹角问题
数量积的定义
a·b cos θ= __|a||b|__(θ为向量 a, b 的夹角 ), 其中 a, b 为非零向量
双基自测
题组一 走出误区
1.(多选题 )下列命题正确的是 ( ACD )
A
.若
→ AB
∥
A→C,则
A, B, C 三点共线
→→ B.在△ ABC 中,若 AB ·BC<0 ,则△ ABC 为钝角三角形
C.向量 P→A,P→B, P→C中三终点 A、 B、C 共线,则存在实数 α, β,使得 P→A= αP→B+βP→C,
2x- y+ 5= 0, 由
x2+ y2= 50,
x=- 5,
x=1,
解得
或
y=- 5
y= 7.
︵ 令 M (- 5,- 5),N(1,7) ,由 2x- y+ 5≤ 0 得 P 点在圆左边弧 MN 上, 结合限制条件- 5 2
≤ x≤ 5 2,可得点 P 横坐标的取值范围为 [- 5 2, 1].
A . ±1
B.± 2
C. ± 3
D . ±2
[解析 ] 因为 A,B, C 均为圆 x2+ y2=2 上的点,
故|O→A|= |O→B|= |O→C|= 2,
因为
→ OA
+
→ OB
=
O→C,所以
→ (OA
+
→ OB)
2=
→ OC
2,
即
→ OA
2+
高考复习资料:平面向量与解析几何

第18讲 平面向量与解析几何在高中数学新课程教材中,学生学习平面向量在前,学习解析几何在后,而且教材中二者知识整合的不多,很多学生在学习中就“平面向量”解平面向量题,不会应用平面向量去解决解析几何问题。
用向量法解决解析几何问题思路清晰,过程简洁,有意想不到的神奇效果。
著名教育家布鲁纳说过:学习的最好刺激是对所学材料的兴趣,简单的重复将会引起学生大脑疲劳,学习兴趣衰退。
这充分揭示方法求变的重要性,如果我们能重视向量的教学,必然能引导学生拓展思路,减轻负担。
一、知识整合平面向量是高中数学的新增内容,也是新高考的一个亮点。
向量知识、向量观点在数学、物理等学科的很多分支有着广泛的应用,它具有代数形式和几何形式的“双重身份”,能融数形与一体,能与中学数学教学内容的的许多主干知识综合,形成知识交汇点。
而在高中数学体系中,解析几何占有着很重要的地位,有些问题用常规方法去解决往往运算比较繁杂,不妨运用向量作形与数的转化,则会大大简化过程。
二、例题解析例1、(2000年全国高考题)椭圆14922=+y x 的焦点为F ,1F 2,点P 为其上的动点,当∠F 1PF 2为钝角时,点P 横坐标的取值范围是___。
解:F 1(-5,0)F 2(5,0),设P (3cos θ,2sin θ)21PF F ∠ 为钝角∴ 123cos ,2sin )3cos ,2sin )PF PF θθθθ⋅=-⋅-( =9cos 2θ-5+4sin 2θ=5 cos 2θ-1<0解得:55cos 55<<-θ ∴点P 横坐标的取值范围是(553,553-) 点评:解决与角有关的一类问题,总可以从数量积入手。
本题中把条件中的角为钝角转化为向量的数量积为负值,通过坐标运算列出不等式,简洁明了。
例2、已知定点A(-1,0)和B(1,0),P 是圆(x-3)2+(y-4)2=4上的一动点,求22PA PB +的最大值和最小值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面向量与解析几何在高中数学新课程教材中,学生学习平面向量在前,学习解析几何在后,而且教材中二者知识整合的不多,很多学生在学习中就“平面向量”解平面向量题,不会应用平面向量去解决解析几何问题。
用向量法解决解析几何问题思路清晰,过程简洁,有意想不到的神奇效果。
著名教育家布鲁纳说过:学习的最好刺激是对所学材料的兴趣,简单的重复将会引起学生大脑疲劳,学习兴趣衰退。
这充分揭示方法求变的重要性,如果我们能重视向量的教学,必然能引导学生拓展思路,减轻负担。
一、知识整合平面向量是高中数学的新增内容,也是新高考的一个亮点。
向量知识、向量观点在数学、物理等学科的很多分支有着广泛的应用,它具有代数形式和几何形式的“双重身份”,能融数形与一体,能与中学数学教学内容的的许多主干知识综合,形成知识交汇点。
而在高中数学体系中,解析几何占有着很重要的地位,有些问题用常规方法去解决往往运算比较繁杂,不妨运用向量作形与数的转化,则会大大简化过程。
二、例题解析例1、(2000年全国高考题)椭圆14922=+y x 的焦点为F ,1F 2,点P 为其上的动点,当∠F 1P F 2为钝角时,点P 横坐标的取值范围是___。
解:F 1(-5,0)F 2(5,0),设P (3cos θ,2sin θ)21PF F ∠ 为钝角∴123cos ,2sin )3cos ,2sin )PF PF θθθθ⋅=-⋅-(=9cos 2θ-5+4sin 2θ=5 cos 2θ-1<0解得:55cos 55<<-θ ∴点P 横坐标的取值范围是(553,553-) 点评:解决与角有关的一类问题,总可以从数量积入手。
本题中把条件中的角为钝角转化为向量的数量积为负值,通过坐标运算列出不等式,简洁明了。
例2、已知定点A(-1,0)和B(1,0),P 是圆(x-3)2+(y-4)2=4上的一动点,求22PA PB +的最大值和最小值。
分析:因为O 为AB 的中点,所以2,PA PB PO +=故可利用向量把问题转化为求向量OP 的最值。
解:设已知圆的圆心为C ,由已知可得:{1,0},{1,0}OA OB =-= 0,1OA OB OA OB ∴+=⋅=-又由中点公式得2PA PB PO += 所以222()2PA PB PA PB PA PB +=+-⋅=2(2)2()(PO OA OP OB --⋅- =22422PO OA OB OP -⋅-+=222OP + 又因为{3,4}OC = 点P 在圆(x-3)2+(y-4)2=4上, 所以5,2,OC CP == 且OP OC CP =+ 所以OC CP OP OC CP OC CP -≤=+≤+即37OP ≤≤ 故2222022100PA PB OP ≤+=+≤ 所以22PA PB +的最大值为100,最小值为20。
点评:有些解几问题虽然没有直接用向量作为已知条件出现,但如果运用向量知识来解决,也会显得自然、简便,而且易入手。
例3、(2003年天津高考题)O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足(OA OP ++=λ,[)∞∈+,0λ,则P 的轨迹一定通过△ABC 的( )(A )外心 (B )内心 (C )重心 (D )垂心分析:因为||||AB AC AB AC AB AC 、分别是与、同向的单位向量,由向量加法的平行四边形则知||||AB AC AB AC +是与∠ABC 的角平分线(射线)同向的一个向量,又()ABACOP OA AP AB AC λ-==+,知P 点的轨迹是∠ABC 的角平分线,从而点P 的轨迹一定通过△ABC 的内心。
反思:根据本题的结论,我们不难得到求一个角的平分线所在的直线方程的步骤;(1) 由顶点坐标(含线段端点)或直线方程求得角两边的方向向量12v v 、;(2) 求出角平分线的方向向量1212v v v v v =+(3) 由点斜式或点向式得出角平分线方程。
{直线的点向式方程:过P (00,x y ),其方向向量为(,)v a b ,其方程为00x x y y a b--=} 例4、(2003年天津)已知常数0>a ,向量(0,)(1,0)c a ==,i ,经过原点O 以c i λ+为方向向量的直线与经过定点),0(a A 以2i c λ-为方向向量的直线相交于点P ,其中R ∈λ.试问:是否存在两个定点F E 、,使得PE PF +为定值,若存在,求出F E 、的坐标;若不存在,说明理由.(本小题主要考查平面向量的概念和计算,求轨迹的方法,椭圆的方程和性质,利用方程判定曲线的性质,曲线与方程的关系等解析几何的基本思想和综合解题能力.)解:根据题设条件,首先求出点P 坐标满足的方程,据此再判断是否存在两定点,使得点P 到两定点距离的和为定值. ∵(0,)(1,0)c a ==,i , ∴c i λ+=(λ,a ),2i c λ-=(1,-2λa ). 因此,直线OP 和AP 的方程分别为 ax y =λ 和ax a y λ2-=-. 消去参数λ,得点),(y x P 的坐标满足方程222)(x aa y y -=-.整理得 .1)2()2(81222=-+a a y x ……① 因为,0>a 所以得:(i )当22=a 时,方程①是圆方程,故不存在合乎题意的定点E 和F ; (ii )当220<<a 时,方程①表示椭圆,焦点)2,2121(2a a E -和)2,2121(2a a F --为合乎题意的两个定点; (iii )当22>a 时,方程①也表示椭圆,焦点))21(21,0(2-+a a E 和))21(21,0(2--a a F 为合乎题意的两个定点. 点评:本题以平面向量为载体,考查求轨迹的方法、利用方程判定曲线的性质、曲线与方程的关系等解析几何的基本思想和综合解题能力。
去掉平面向量的背景,我们不难看到,本题即为下题:在△OAP 中,O (0,0)、A (0,a )为两个定点,另两边OP 与AP 的斜率分别是(0),2a a λλλ≠-,求P 的轨迹。
而课本上有一道习题(数学第二册(上)第96页练习题4): 三角形ABC 的两个顶点A 、B 的坐标分别是(-6,0)、(6,0),边AC 、BC 所在直线的斜率之积等于49-,求顶点C 的轨迹方程。
通过本例可见高考题目与课本的密切关系。
例5.(2004年天津卷理22)椭圆的中心是原点O ,它的短轴长为22,相应于焦点F (c ,0)(0>c )的准线l 与x 轴相交于点A ,|OF|=2|FA|,过点A 的直线与椭圆相交于P 、Q 两点.(1)求椭圆的方程及离心率;(2)若0=⋅,求直线PQ 的方程;(3)设λ=(1>λ),过点P 且平行于准线l 的直线与椭圆相交于另一点M ,证明λ-=.分析:本小题主要考查椭圆的标准方程和几何性质,直线方程,平面向量的计算,曲线和方程的关系等解析几何的基本思想方法和综合解题能力.(1)解:由题意,可设椭圆的方程为)2(12222>=+a y ax . 由已知得⎪⎩⎪⎨⎧-==-).(2,2222c c a c c a 解得2,6==c a 所以椭圆的方程为12622=+y x ,离心率36=e .(2)解:由(1)可得A (3,0).设直线PQ 的方程为)3(-=x k y .由方程组⎪⎩⎪⎨⎧-==+)3(,12622x k y y x 得062718)13(2222=-+-+k x k x k依题意0)32(122>-=∆k ,得3636<<-k .设),(),,(2211y x Q y x P ,则13182221+=+k k x x , ① 136272221+-=k k x x .② 由直线PQ 的方程得)3(),3(2211-=-=x k y x k y .于是]9)(3[)3)(3(2121221221++-=--=x x x x k x x k y y . ③ ∵0=⋅OQ OP ,∴02121=+y y x x . ④由①②③④得152=k ,从而)36,36(55-∈±=k . 所以直线PQ 的方程为035=--y x 或035=-+y x (2)证明:),3(),,3(2211y x AQ y x AP -=-=.由已知得方程组 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=-=-.126,126,),3(3222221212121y x y x y y x x λλ 注意1>λ,解得λλ2152-=x 因),(),0,2(11y x M F -,故),1)3((),2(1211y x y x -+-=--=λ),21(),21(21y y λλλλ--=--=. 而),21(),2(222y y x FQ λλ-=-=,所以FQ FM λ-=. 三、总结提炼由于向量具有几何形式和代数形式的“双重身份”,使向量与解析几何之间有着密切联系,而新课程高考则突出了对向量与解析几何结合考查,这就要求我们在平时的解析几何教学与复习中,应抓住时机,有效地渗透向量有关知识,树立应用向量的意识。
应充分挖掘课本素材,在教学中从推导有关公式、定理,例题讲解入手,让学生去品位、去领悟,在公式、定理的探索、形成中逐渐体会向量的工具性,逐渐形成应用向量的意识,在教学中还应注重引导学生善于运用一些问题的结论,加以引申,使之成为解题方法,体会向量解题的优越性,在教学中还应注重引导学生善于运用向量方法解题,逐步树立运用向量知识解题的意识。