二次函数的应用2 导学案
二次函数导学案(全章)

第1课时 二次函数的概念【进修目的】1.阅历摸索,剖析和树立两个变量之间的二次函数关系的进程,进一步体验若何用数学的办法描写变量之间的数目关系;2.摸索并归纳二次函数的界说;3.可以或许暗示简略变量之间的二次函数关系. 【进修重点】控制二次函数的概念并能应用概念解答相干的题型. 【课时类型】概念课 【进修进程】 一.进修预备1.函数的界说:在某个变更进程中,有两个变量x 和y,假如给定一个x 值,响应地就肯定了一个y 值,那么我们称是的函数,个中是自变量,是因变量.2.一次函数的关系式为y=(个中k.b 是常数,且k≠0);正比例函数的关系式为y =(个中k 是的常数);反比例函数的关系式为y=(k 是的常数).二.解读教材——数学常识源于生涯3.某果园有100棵橙子树,每一棵树平均结600个橙子.现预备多种一些橙子树以进步产量,但是假如多种树,那么树之间的距离和每一棵树所接收的阳光就会削减.依据经验估量,每多种一棵树,平均每棵树就会少结5个橙子.假设果园增种x 棵橙子树,那么果园共有棵橙子树,这时平均每棵树结个橙子,假如果园橙子的总产量为y 个,那么y=.4.假如你到银行存款100元,设人平易近币一年按期储蓄的年利率是x,一年到期后,银行将本金和利钱主动按一年按期储蓄转存.那么你能写出两年后的本息和y(元)的表达式(不斟酌利钱税)吗?. 5.可否依据适才推导出的式子y=5x2+100x+60000和y=100x2+200x+100猜测出二次函数的界说及一般情势吗?一般地,形如y =ax2+bx+c(a,b,c 是常数,a ≠0)的函数叫做x 的二次函数.它就是二次函数的一般情势,例1 下列函数中,哪些是二次函数?(1)2321x y +-=(2)112+=x y(3)x y 222+= (4)251t t s ++=(5)22)3(x x y -+= (6)210r s π=即时演习:下列函数中,哪些是二次函数?(1)2x y =(2)252132+-=x x y (3))1(+=x x y (4)1132--=)(x y (5)cax y -=2(6)12+=x s 三.发掘教材6.对二次函数界说的深入懂得及应用 例2 若函数1232++=+-kx x y k k 是二次函数,求k 的值.剖析:x 的最高次数等于2,即k23k+2=2,求出k 的值即可.解:即时演习:若函数1)3(232++-=+-kx x k y k k 是二次函数,则k 的值为.四.反思小结1.我们经由过程不雅察.思虑.合作,交换,归纳出二次函数的概念,并从中领会函数的建模思惟.2.界说:一般地,形如y=ax²+bx+c(a,b,c 是常数,a≠0)的函数叫做x 的二次函数.3.二次函数y=ax²+bx+c(a,b,c 是常数,a≠0)的几种不合暗示情势:(1) y=ax² (a≠0); (2) y=ax²+c (a≠0且c≠0); (3) y=ax²+bx (a≠0且b≠0).4.二次函数界说的焦点是症结字“二”,即必须知足自变量最高次项的指数为_____,且______项系数不为_____的整式. 【达标测评】1.下列函数不属于二次函数的是( ) A .y=(x -1)(x+2)B .y=21(x+1)2 C .y=2(x+3)2-2x2 D .y=1-3x22.在边长为6 cm 的正方形中央剪去一个边长为x cm(x<6)的小正方形,剩下的四方框形的面积为y,则y 与x 之间的函数关系是.3.用总长为60m 的篱笆围成矩形场地,场地面积S(m²)与矩形一边长a(m)之间的关系式是,它是函数.4.正方形的边长是5,若边长增长x,面积增长y,则y 与x 之间的函数表达式为.5.当m=时,22)2(--=m x m y 是二次函数;若函数m m x m y --=2)2(是二次函数,则m= .6.已知函数y=ax2+bx +c (个中a,b,c 都是常数):当a 时,它是二次函数;当a,b 时,它是一次函数;当a,b,c 时,它是正比例函数. 7.若函数y=(k2-4)x2+(k+2)x+3是二次函数,则k.,【进修难点】可以或许应用描点法作出函数的图象,并能依据图象熟悉和懂得二次函数y =ax2的性质. 【进修进程】 一.进修预备1.正比例函数y=kx(k≠0)是图像是. 2.一次函数y=kx+b(k≠0)的图像是. 3.反比列函数y=k x(k≠0)的图像是.4.当我们还不懂得一种函数图像的外形时,只能用描点法研讨,描点法的一般步调是:,,. 二.解读教材5.试作出二次函数y =x2的图象.(1)画出图象:①列表:(留意选择恰当的y值)②描点:(在右图坐标系中描点)③连线:(应留意用滑腻的曲线衔接各点) (2)依据图像,进行小结:①y=x2的图像是,且启齿偏向是 .②它是对称图像,对称轴是轴.在对称轴的左侧(x>0),y 随x 的增大而;在对称轴的右侧(x<0),y 随x 的增大而.③图像与对称轴有交点,称为抛物线的极点,的最低点,此时,坐标为(,).④因为图像有最低点,所以函数有最值,当x=0.小结:①y=x2的图像是,且启齿向 .②对称轴是,在对称轴阁下的增减性分离是:在对称轴左侧,y 随x 的增大 ,在对称轴的右侧,y 随x 的增大.③极点坐标是:(,),且从图像看出它有最点,所以函数有最值.当x=0时,.7.变式练习2作出y =2x2,y =0.5x2的图像.三.发掘教材8.依据上面的图象,从图象的启齿偏向.对称轴.增减性.极点坐标.最同时,a 决议图象在统一向角坐标系中的启齿偏向,|a|越小图象启齿. 9.例 已知:抛物线102-+=m m mx y ,当x>0时,y 随x 的增大而增大,求m 的值.10.已知抛物线y=ax2经由点A (2,8),(1)求此抛物线的函数解析式;(2)断定点B (1, 4)是否在此抛物线上;(3)求出此抛物线上纵坐标为6的点的坐标. 四.反思小结二次函数的y =ax2(a≠0)的图象与性质:五个方面懂得:,,,,. 【达标测评】1.抛物线y=2x2的极点坐标是,对称轴是,在侧,y 跟着x 的增大而增大;在侧,y 跟着x 的增大而减小.当x=时,函数y 的值最小,最小值是.抛物线y=2x2的图象在方(除极点外).2.函数y =x2的极点坐标为,若点(a,4)在其图象上,则a 的值是. 3.函数y =x2与 y =x2的图象关于对称,也可以以为y =x2 是函数y=x2的图象绕扭转得到的.4.求出函数y=x+2与函数y =x2的图象的交点坐标.5.若a>1,点(a1,y1),(a,y2),(a+1,y3)都在函数y =x2的图象上,断定y1,y2,y3的大小关系是.; 【进修难点】懂得二次函数y =ax2与y =ax2+k 的关系. .小结:①y=2x2+1的图像是,且启齿向.②对称轴是,在对称轴阁下的增减性分离是:在对称轴左侧,y随x的增大而;在对称轴的右侧,y随x的增大而.③极点是:(,),且从图像看它有最点,则函数y有最值,即当x=时y有最值是.3.在统一向角坐标系中,作出二次函数y=②对称轴是,当a>0时,在对称轴左侧,y随x侧,y随x的增大而. 且函数y当x=0时ymin=.当a<时,在对称轴左侧,y随x的增大而,在对称轴的右侧,y随x 的增大而.且函数y当x=0时ymax=.③极点坐标是(,).④y=x2的极点坐标是( , ),y=x2+2的极点坐标是( , )所以y=x2向平移个单位即可以得到y=x2+2.y=x22的极点坐标是( , )所以y=x2+2向平移个单位即可以得到y=x22.4.变式练习1二次函数y=54x2+3的图像是线,启齿向,极点坐标是,对称轴是;当x>0时,y随x的增大而.当x=时,y有最值为.三.发掘教材抛物线y=ax2+k可以由抛物线y=ax2经由向上(k>0)或向下(k<0)平移|k|个单位得到.5.函数y=2x2的图像向下平移3个单位,就得到函数;函数y=4+32x2的图像可以看作函数y=3x2的图像向平移个单位而得到.2的图像有一个6.已知:二次函数y=ax2+1的图像与反比列函数y=kx公共点是(1,1).(1)求二次函数及反比例函数解析式;(2)在统一坐标系中画出它们的图形,解释x取何值时,二次函数与反比例函数都随x的增大而减小.四.反思小结:1.填表回想2.抛物线y=ax2+k 可以由抛物线y=ax2经由向(k>0)或向 (k<0)平移个单位得到.【达标测评】1.抛物线y=x25可以看作是抛物线经由向平移个单位得到.2.抛物线y=x2+4 的启齿向,对称轴是,在对称轴左侧,y随x的增大而,在对称轴的右侧,y随x的增大而;极点坐标是,当x=时,y有最值为. 3.抛物线y=3x2上有两点A(x,27),B(2,y),则x=,y=.4.抛物线y=3x2与直线y=kx+3的交点为(2,b),则k=,b=.第4课时二次函数y=a(xh)2和y=a(xh)2+k的图象与性质【进修目的】1.可以或许作出函数y=a(xh)2和y=a(xh)2+k的图象,并能懂得它与y=ax2的图象的关系,懂得a,h,k对二次函数图象的影响;2.可以或许准确说出二次函数的极点式y=a(xh)2+k图象的启齿偏向.对称轴和极点坐标.【进修重点】可以或许作出函数y=a(xh)2和y说出y =a(xh)2+k 【进修进程】一.进修预备1.说出下列函数图象的启齿偏向,对称轴, (1)y=2x² (2)y=2x²+12.请说出二次函数y=ax²+c 与y=ax²的关系.3.我们已知y=ax²,y=ax²+c 的图像及性质,如今同窗们可能想探讨y=ax²+bx 的图像,那我们就着手绘图像.列表.描点.连线. 二.解读教材4.由进修预备可知,我们假如知道一条抛物线的极点坐标,那么绘图像就比较简略,所以我们可以先配成完整平方法构造.如今我们画二次函数y=3(x1)2+2不雅察后得到:二次函数y =3x2,y=3(x1)2,y=3(x1)2+2的图象都是抛物线.并且外形雷同,启齿偏向雷同,只是地位不合,极点不合,对称轴不合,将函数y =3x2的图象向右平移1个单位,就得到函数y=3(x1)2的图象;再向上平移2个单位,就得到函数y=3(x1)2+2的图象.三.发掘教材5.抛物线的极点式y=a(xh)2+k在前面的进修中你发明二次函数y=a(xh)2+k中的a,h,k 决议了图形什么?用本身的说话整顿得:即时演习:直接说出抛物线x+1)²,y=0.5(x+1)²1 的启齿偏向.对称轴.极点坐标.6.例已知:抛物线y=a(xh)2+kx=2时,函数有最大值3,求a,h,k的值.即时演习已知抛物线的极点坐标是(3,5)且经由点A(2,5),请你求出此抛物线的解析式.7.例二次函数()2221y x=-+的极点坐标是,把它的图像向右平移2个单位再向下平移2个单位此时得到的抛物线极点坐标为,它的解析式为.四.反思小结1.一般地,平移二次函数y=ax2的图象即可得到二次函数为y=ax2+c,y =,右正左负)2y=的图象是轴对称图形,对称轴为x=h,极点坐标为, a>0时,启齿向上,有最小值k; a<0时,启齿向下,有最大值k.【达标测评】y = axh )2= a( x–h )2 + ky1.指出下面函数的启齿偏向,对称轴,极点坐标,最值.(4) y=2(x2)2+5 (5) y=0.5(x+4)2+2 (6) y=0.75(x3)22.函数y= x2的图象向平移个单位得到y=x2+3的图象;再向平移个单位得到y =(x1)2+3的图象.,;【进修重点】会用公式求二次函数c bx ax y ++=2的极点坐标,对称轴. 【进修难点】懂得用配办法推导公式的进程. 【课时类型】公式轨则进修 一.进修预备2.二次函数25(3)2y x =--的极点坐标是,对称轴是. 二.解读教材3.公式推导——二次函数c bx ax y ++=2图象的极点坐标,对称轴公式.由上一节课,我们看到一个二次函数经由过程配方化成极点式k h x a y +-=2)(来研讨了二次函数中的a.h.k 对二次函数图象的影响.但我以为,如许的恒等变形运算量较大,并且轻易出错.那么这节课,我们就研讨一般情势的二次函数图象的作法和性质.例1 求二次函数c bx ax y ++=2图象的极点坐标,对称轴. 解:c bx ax y ++=2=2()b c a x x a a++ =222[2()()]222b b b c a x x a a a a++-+ =224()24b ac b a x a a-++二次函数c bx ax y ++=2的极点坐标是(24,24b ac b a a--),对称轴是直线2bx a=-. 4.公式应用——用公式求函数c bx ax y ++=2的极点坐标,对称轴.(1)分离用配办法,公式法肯定下列二次函数的极点坐标,对称轴并比较其解值.①221213y x x =-++ ②2252y x x =-+ 5.现实操纵——画二次函数c bx ax y ++=2的图象 (2)已知:二次函数2463y x x =-+①指出函数图象的极点坐标,对称轴.②画出所给函数的草图,并研讨它的性质.三.发掘教材——二次函数c bx ax y ++=2的性质6.抛物线c bx ax y ++=2(0a ≠)经由过程配方可变形为y=224()24b ac b a x a a-++(1)启齿偏向:当0a >时,启齿向;当0a <时,启齿向. (2)对称轴是直线;极点坐标是.(3)最大(小)值:当0a >,2bx a=-时,ymin=244ac b a -;当0a <,2bx a =-时,ymax=. (4)增减性:当0a >时,对称轴左侧(2b x a<-),y 随x 增大而;对称轴右侧(2bx a>-),y 随x 增大而;当0a <时,对称轴左侧(2b x a<-),y 随x 增大而;对称轴右侧(2bx a>-),y 随x 增大而;【达标测评】依据公式法指出下列抛物线的启齿偏向.极点坐标,对称轴.最值和增减性.①422+-=x x y ②1422++-=x x y ③221y x x =-++④2516y x x =-+题.【进修进程】 一.进修预备1.已学二次函数的哪两种表达式? 2.分化因式:x22x3;3.解方程:x2 2x3=0 二.解读教材4.一元二次方程的两根x1,x2在哪里?在坐标系中画出二次函数y= x2 2x3的图象,,你发明了什么?再找一个一元二次方程和二次函数试一试吧! 5.二次函数的两根式(交点式) 二次函数)0(2≠++=a c bx ax y 的另一种表达式:叫做二次函数的两根式又称交点式. 演习:将下列二次函数化为两根式: (1)y=x2+2x15; (2)y= x2+x2;(3)y=2x2+2x12;(4)y=3(x1)23 (5)y=4x2+8x+4; (6)y=2(x3)2+8x 三.发掘教材6.抛物线)0(2≠++=a c bx ax y 与x 轴是否有交点?例 你能应用 a.b.c 之间的某种关系断定二次函数)0(2≠++=a c bx ax y 的图象与x 轴何时有两个交点,何时一个交点,何时没有交点吗?即时练习:(1)已知二次函数y=mx22x+1的图象与x 轴有两个交点,则k 的取值规模为.(2)抛物线y=x2(m4)xm 与x 轴的两个交点y 轴对称,则其极点坐标为. (3)抛物线y=x2(a+2)x+9与x 轴相切,则a=.7.弦长公式:抛物线与xAB ).例 求抛物线y= x2 2x3与x 轴两个交点间的距离. 总结:已知抛物线)0(2≠++=a c bx ax y 与x B (x2,0),那么抛物线的对称轴x=,AB=21x x -=221)(x x -=.即时练习:抛物线y=2(x2)(x +5)的对称轴为,与x 轴两个交点的距离为.四.反思小结——二次函数与一元二次方程的关系常识点1.二次函数y=ax2+bx +c 的图象与x 轴的交点有三种情形,,,交点横坐标就是一元二次方程ax2+bx +c=0的.常识点2.二次函数y=ax2+bx +c 的图象与x 轴的弦长公式:. 【达标测评】1.抛物线y=9(x4)(x +6)与x 轴的交点坐标为.2.抛物线y=2x2+8x +m 与x 轴只有一个交点,则m=.3.二次函数y=kx2+3x -4的图象与x 轴有两个交点,则k 的取值规模. 4.抛物线y=3x2+5x 与两坐标轴交点的个数为( )A .3个B .2个C .1个D .0个5.与x 轴不订交的抛物线是( )A .y=3x24 B .y=2x26 C .y=x26 D .y=31(x+2)216.已知二次函数y=x2+mx +m -2.求证:无论m 取何实数,抛物线总与x 轴有两个交点.7.抛物线y=mx2+(3-2m)x +m -2(m≠0)与x 轴有两个不合的交点. (1)求m 的取值规模; (2)断定点P(1,1)是否在此抛物线上? 8.二次函数y=x2-(m -3)x -m 的图象如图所示.(1)试求m 为何值时,抛物线与x 轴的两个交点间的距离是3? (2)当m 为何值时,方程x2-(m -3)x -m=0的两个根均为负数? (3)设抛物线的极点为M,与x 轴的交点P.Q,求当PQ 最短时△MPQ 的面积.第7课时 刷图练习【进修目的】据二次函数系数a.b.c 画出抛物线的须要前提:启齿偏向.对称轴.极点坐标与坐标轴的交点坐标.【进修重点】二次函数一般式与极点式.交点式的互化;找特别点的坐标.【候课朗读】 【进修进程】 一.进修预备1.二次函数的一般式为:y=(个中0a ≠,a.b.c 为常数);极点式为:y=,它的极点坐标是,对称轴是;交点式为:(个中1x ,2x 是0y =时得到的一元二次方程20ax bx c ++=的根).2.函数2y ax bx c =++(0a ≠)中,a 肯定抛物线的启齿偏向:当a >0时,当a <0时;a 和b 肯定抛物线的对称轴的地位:当a .b 同号时对称轴在y轴的侧;当a .b 异号时对称轴在x 轴的侧;(可记为“左同右异” )c 肯定抛物线与的交点地位:当c >0时交于y 轴的半轴;当c <0时交于y 轴的负半轴. 二.浏览懂得3.界说:抛物线的草图:能大致表现抛物线的启齿偏向.对称轴.极点坐标.与y 轴的交点.x 轴上的两根为整根的抛物线叫抛物线的草图. 4.在抛物线的三种解析式的图象信息:教授教养跋文x一般式能直接表现启齿偏向.与y 轴的交点;极点式能直接表现启齿偏向.对称轴.极点坐标;两根式能直接表现启齿偏向.与x 轴的两个交点.是以,它们各有好坏,个中以极点式为最佳. 5①1,a b ==偶,例1 作出函数242y x x =-+解:242y x x =-+②1,a b ==奇,例2 作出函数253y x x =-+解:∴552212b a --=-=⨯③1a ≠(公式法) 例3 作出函数2241y x x =-+的大致图象.解:∵4124b a -=-=, 24816148ac b a --==-,∴则大致图象是:(在空白处绘图)即时演习:在右边空白处作出函数222y x x =-+-④两根式(先转化为一般式,再转换成极点式)例4 作出函数()()212y x x =-+的大致图象. 解:()()212y x x =-+219222x ⎛⎫=-- ⎪⎝⎭ 则大致图象是:6.含有参数的抛物线中的图象信息 例5作出函数22y x x m =-+-的大致图象.即时演习:在右边空白处画出函数y=-x2+n 的大致图象. 变式练习:画出函数y=-x2+mx+3的大致图象.x三.巩固练习:作出下列函数的大致图象 ①232y x x =-+- ②244y x x =-- ③221y x =+ ④()()1122y x x =-+:轴是__________,极点坐标是. 二.典例示范例 1 已知函数2y ax bx c =++的图象如图所示,1x =为该图象的对称轴,依据图象信息,你能得到关于系数a b c 、、解:由图可得:⑴a >0; ⑵1-<c <0; ⑶123b a -=,即又2ba-<1而a >0则得b -<2a ,∴2a+b>0;⑷由⑴⑵⑶得abc >0;⑸斟酌1x =时y <0,所以有a b c ++<0; ⑹斟酌1x =-时y >0,所以有a b c -+>0;⑺斟酌2x =时y >0,所以有42a b c ++>0,同理2x =-时,42a b c -+>0; ⑻图象与x 轴有两个交点,所以24b ac ->0.例2 如图是二次函数2y ax bx c =++图像的一部分,图像过点A ()3,0-,对称轴1x =-,给出四个结论: ①2b >4ac ,②20a b +=,③0a b c -+=,④5a <b ,个中( )A.②④B.①④C.②③D.①③剖析:由图象可以知道a <0;抛物线与x 轴有两个交点,∴24b ac ->0,即2b >4ac ;又对称轴1x =-,即12ba-=-,∴2a b =,b <0; ∴20a b -=,a 、b 均为负数,5a <b ;当1x =-时,∴a b c -+>0;综上,准确的是①④,故选B.例3 如图所示的抛物线是二次函数223y ax x a =-+_____.剖析:由图象可知:a <0;当0x =时1y =,即21a =,∴1a =±,但是a <0,故1a =-.三.巩固练习1.抛物线2y ax bx c =++如图所示,则( )A.a >0,b >0,c >0B.a >0,b <0,c <0C.a >0,b >0,c <0D.a >0,b <0,c >02.已知二次函数2y ax bx c =++的图像如图所示,下列结论中准确的个数是( )①a b c ++<0,②a b c -+>0,③abc >0,④2b a =A.4个B.3个C.2个D.1个3x c +的部分图像如图所示,则c0,当x_____时,y 随x 4ax b +则关于抛物线23y ax bx =-+(1x =;③当a <0时,其极点的纵坐标的最小值为3, ) A.0 B.1 C.2 D.35.已知二次函数()20y ax bx c a =++≠的图象如图所示,当y <0时,x 的取值规模是( )A.-1<x <3B.x >3C.x <1D.x >3或x <16.抛物线c bx ax y ++=2的图象与x 轴的一个交点是()2,0-,极点是()1,3,下列说法中不准确的是( )A.抛物线的对称轴是1x =B.抛物线启齿向下C.抛物线与x 轴的另一个交点是()2,0D.当1x =时,y 有最大值是3 7.已知二次函数的图象如图所示,则这个二次函数的表达式为( ) A.223y x x =-+ B.223y x x =--223y x x =+-2第第第3题8.在直角坐标系中画一个二次函数y=ax2+bx+c的图象,且知足b<0,c<0..9.已知y=x2+ax+a1的图象如图所示,则a的取值规模是.10.据图抛物线y=ax2+bx+c肯定式子符号:①a0,②b0,③c0,④b24ac0,⑤a+b+c0,⑥ab+c0.11.若函数y=ax2+bx+c的对称轴x=1如图所示,则下列关系成立的是:()A.abc>0B.a+b+c<0C.a2>abacD.4acb2>0;2.控制已知极点及一点或对称轴或函数的最值,用极点式求函数的表达式.3.控制已知两根及一点,用两根式求函数解析式.【进修重点】用一般式.极点式求函数的表达式.【进修难点】用极点式和两根式求函数的表达式.【进修进程】一.进修预备:1.已知一次函数经由点(1,2),(1,0),则一次函数的解析式为 . 2.二次函数的一般式为,二次函数的极点式,二次函数的两根式(或交点式)为.二.办法探讨(一)——已知三点,用一般式求函数的表达式.3.例1 二次函数的图象经由(0,2),(1,1),(3,5)三点,求二次函数的解析式.4.即时演习已知抛物线经由A(1,0),B(1,0),C(0,1)三点,求二次函数的解析式.三.办法探讨(二)——已知极点及一点或对称轴或函数的最值,用极第5题第6题第7题第点式求出函数的解析式.5.例2 已知抛物线的极点坐标为(2,3),且经由点(1,7),求函数的解析式.解:设抛物线的解析式为2()y a x h k =-+.把极点(-2,3),即h=2 , k=3 代入表达式为 再把(-1,7)代入上式为 解得4a =所以函数解析式为24(2)3y x =++ 即241619y x x =++6.即时演习(1)抛物线经由点(0,-8),当1x =-时,函数有最小值为-9,求抛物线的解析式.(2)已知二次函数2()y a x h k =-+,当2x =时,函数有最大值2,其过点(0,2),求这个二次函数的解析式.四.办法探讨(三)——已知两根及一点或对称轴或函数的最值,用两根式求出函数的解析式.7.例3 已知抛物线经由(-1,0),(3,0),且过(2,6)三点,求二次函数的表达式.解:设抛物线的解析式为12()()y a x x x x =--把抛物线经由的(-1,0),(3,0)两点代入上式为: 再把(2,6)带入上式为6(21)(3)a x =+- 解得2a =-所以函数的解析式为2(1)(3)y x x =-+- 即2246y x x =-++8.即时演习已知抛物线经由A (2,0),B (4,0),C(0,3),求二次函数的解析式.五.反思小结——求二次函数解析式的办法 1.已知三点,求二次函数解析式的步调是什么?2.用极点式求二次函数的解题思绪是:已知极点及一点或对称轴或函数的最值,用极点式求解析式比较简略.3.用两根式求二次函数的解题思绪是:已知两根及一点或对称轴或函数的最值,用两根式求解析式比较简略. 【达标测评】求下列二次函数的解析式:1.图象过点(1,0).(0,2)和(2,3). 2.当x=2时,y 最大值=3,且过点(1,3).3.图象与x 轴交点的横坐标分离为2和4,且过点(1,10)第10课时 求二次函数的解析式(二)【进修目的】1.懂得二次函数的三种暗示方法;2.会灵巧地应用恰当的办法求二次函数的解析式.【进修重点】灵巧地应用恰当的办法求二次函数的解析式. 【进修进程】 一.进修预备1.函数的暗示方法有三种:法,法,法. 2.二次函数的表达式有:.,.二.典范例题——用恰当的办法求出二次函数的表达式3.例1 已知抛物线2(0)y ax bx c a =++≠与x 轴的两个交点的横坐标是-1,3,极点坐标是(1,-2),求函数的解析式(用三种办法) 4.即时演习:用恰当的办法求出二次函数的解析式.一条抛物线的外形与2y x =雷同,且对称轴是直线12x =-,与y 轴交于点(0,1),求抛物线的解析式.5.例 2 已知如图,抛物线b ax ax y ++-=22与x 轴的一个交点为A(1,0),与y 轴的正半轴交于点C.⑴直接写出抛物线的对称轴,及抛物线与x 轴的另一个交点B 的坐标; ⑵当点CO=3时,求抛物线的解析式.6.即时演习:已知直线y=2x4与抛物线y=ax2+bx+c 的图象订交于A (2,m ),B(n,2)两点,且抛物线以直线x=3为对称轴,求抛物线的解析式.三.反思小结——求二次函数解析式的办法1.已知三点或三对x.y 的对应值,通经常应用2(0)y ax bx c a =++≠. 2.已知图象的极点或对称轴,通经常应用2()(0)y a x h k a =-+≠. 3.已知图象与x 轴的交点坐标,通经常应用12()()(0)y a x x x x a =--≠. 四.巩固练习1.已知二次函数图象的极点坐标为C(1,0),该二次函数的图象与x 轴教授教养跋文交于A.B 两点,个中A 点的坐标为(4,0). (1)求B 点的坐标(2)求这个二次函数的关系式;2.如图,在平面直角坐标系中,直线y =-x交于点C ,抛物线2(0)y ax x c a =+≠经由A B C ,,(1)求过A B C ,,三点抛物线的解析式并求出极点F (2)在抛物线上是否消失点P ,使ABP △出P 点坐标;若不消失,请解释来由.【进修重点】用“数形联合”的思惟懂得公式,并能应用公式解决现实问题.【进修难点】剖析和暗示现实问题中变量之间的二次函数关系. 【进修进程】一.进修预备1.二次函数y=ax2+bx+c 的图像是一条____________,它的对称轴是直线x=-ab2,极点是______________. 2.二次函数y=2x2+3x1的图象启齿______,所以函数有最_______值,即当x=时,ymax =_________. 二.解读教材3.例1某商经营T 恤衫,已知成批购置时的单价是5元.依据市场查询拜访,发卖量与发卖单价知足如下关系:在一段时光内,单价是15元时,发卖量是500件,而单价每下降1元,就可以多售200件.问发卖价是若干时,可以获利最多?剖析:若设发卖单价为x(x≤15)元,所获利润为y元,则:(1)发卖量可以暗示为______________________________;(2)发卖额可以暗示为____________________________;(3)发卖成本可以暗示为____________________________;(4)所获利润可暗示为y=_________________________.解:设____________________依据题意得关系式:y=____________________,即y=.∵a=<0,∴y有最值.即当x=_______________=______________时,ymax=_________________=__________________.答:办法小结:解决此类问题的一般步调是:(1)设——设出问题中的两个变量(即设未知数);(2)列——用含变量的代数式暗示出等量关系,列出函数解析式;(3)自——找出自变量的取值规模;(4)图——作出函数图像(留意自变量的取值规模);(5)最——在自变量的取值规模内,取函数的最值;(6)答——依据请求作答.4.即时演习某市肆购置一批单价为20元的日用品,假如以单价30元发卖,那么半月内可以售出400件.据发卖经验,进步发卖单价会导致发卖量的削减,即发卖单价每进步一元,发卖量响应削减20件.若何进步发卖价,才干在半月内获得最大利润?三.发掘教材5.例2某商经营T恤衫,已知成批购置时的单价是5元.依据市场查询拜访,发卖量与发卖单价知足如下关系:在一段时光内,单价是15元时,发卖量是500件,而单价每下降1元,就可以多售于10元,问发卖价是若干时,可以获利最多?6.即时演习求二次函数y= x22x3在2≤x≤0时的最大.最小值.四.反思小结1.二次函数是解决现实问题中“最值”问题类较好的数学模子;2.留意解决此类问题的一般步调——“设”,“列”,“自”,“图”,“最”,“答”. 【达标测评】1.某市肆购置一批单价为8元的商品,假如以单价10元发卖,那么天天可以售出100件.据发卖经验,发卖单价每进步1元,发卖量响应削减10件.将发卖价定为若干,才干使天天获得最大利润?最大利润是若干?2.某观光社组团旅游,30人起组团,每人单价800元,每团乘坐一辆准载50人的大客车.观光社对超出30人的团赐与优惠,即每增长一人,每人的单价下降10元.你能帮忙盘算一下,当一个观光团的人数是若干时,观光社可以获得最大营业额?=ab ac 442-解决现实问题中的最大(小)值问题.【进修重点】 应用二次函数的有关常识解决现实问题. 【进修进程】一.进修预备1.函数y=ax2+bx+c(a≠0)中,若a>0,则当x=ab2时,y( )=;若a<0,则当x=时,y( )=.2.在二次函数y=2x28x+9中当x=时,函数y 有最值等于.3.如图,在边BC 长为20cm,高AM 为16cm 的△ABC 它的一边FG 在△ABC 的边BC 上,E.F 分离在AB.AC 请用x 的代数式暗示EH.解:∵矩形EFGH, ∴EH∥BC∴ △AEH∽___________.x D E CBA 又∵BC 上的高AM 交EH 于T. ∴AMAT =_______,即1616x=________. ∴EH=.二.解读教材4.在上题图中,若要使矩形EFGH 获得最大面积,那么它的长和宽各是若干?最大面积是若干?解:设矩形面积为y,而EF=x,EH=,则y==.∵a=45<0 则y 有最_______值.∴当x=______时,则y 最大值=______________.此时EH=.答:.5.想一想:活动4经由过程设EH 为xcm 能解决问题吗?(试一试吧!)6.即时演习:(1)在Rt△的内部作内接矩形ABCD,个中AB 和AD 分离在两条直角边上,点C 在斜边上.①设矩形ABCD 的边AB =x m,那么AD 边的长度若何暗示?②设矩形的面积为y m2,当x 取何值时,y 的值最大?最大值是若干? 解:(2)将(1)题变式:其它前提和图形都不变,设AD 边的长为x m,则问题又如何解决呢? 三.发掘教材:7.在Rt△QMN 的内部作内接矩形ABCD,点A 和D 分离在两直角边上,BC 在斜边MN 上.①设矩形的边BC=xm,则AB 边的长度若何暗示?②设矩形的面积为ym2,当x 取何值时,y 的最大值是若干?8.即时演习 如图,某村修一条沟渠,横断面是等腰梯形,底角∠C=120°,两腰与下底AD 的和为4m.当沟渠深(x )为何值时,横断面积(S )最大?最大值为若干? 解:四.反思小结:经由过程进修上节和本节解决问题的进程,你能总结一下解决此类问题的根本思绪吗?应用类似三角形性质和矩形面积公式列出二次函数,应用其性质解决.40m30m D N OABCM。
二次函数的应用(2)(九下)

九(下)教学设计6.4 二次函数的应用(2)葛武初中数学教研组教学目标:1. 体验从实际问题中抽象出函数关系式的过程,体会二次函数是一类最优化问题的数学模型.2.掌握实际问题中变量之间的二次函数关系,并运用二次函数的性质和图象解决实际问题.教学重点: 运用二次函数的性质和图象解决实际问题. 教学难点: 能正确理解题意,找准数量关系.教学方法: 在教师的引导下自主教学.教学过程:一、情境创设在平原上,一门迫击炮发射的一发炮弹飞行的高度y (m )与飞行时间x (s )的关系满足y=-51x 2+10x .(1)经过多长时间,炮弹达到它的最高点?最高点的高度是多少?(2)经过多长时间,炮弹落在地上爆炸?分析与反思:先由实际问题抽象转化为数学问题(建立数学模型——图象),再运用数学知识解决问题。
二、例题教学解决课本27页问题2:某喷灌设备的喷头B 高出地面1.2m ,如果喷出的抛物线形水流的水平距离x (m )与高度y (m )之间的关系为二次函数 y=a(x-4) +2。
求水流落地点D 与喷头底部A 的距离(精确到0.1m)。
问题1:你能结合实际画出图象吗?问题2:求AD 的距离实际是求 点的坐标?问题3:如何求函数关系式?三、尝试与交流(学生自主学习,相互探究解决问题的方案。
)如图所示,桃河公园要建造圆形喷水池.在水池中央垂直于水面处安装一个柱子OA,O 恰在水面中心,OA=1.25m.由柱子顶端A 处的喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在离OA 距离为1m 处达到距水面最大高度2.25m.(1) 如果不计其它因素,那么水池的半径至少要多少m,才能使喷出的水流不致落到池外?(2) 若水流喷出的抛物线形状与(1)相同,水池的半径为3.5m,要使水流不落到池外,此时水流的最大高度应达到多少m(精确到0.1m)?四、随堂练习:1. 如果一条抛物线与抛物线y=-31x 2+2的形状相同,且顶点坐标是(4,-2),则它的表达式是2. 课本28页 练习题3.(选做)如图,抛物线n x x y ++-=52经过点A(1,0),与y 轴交于点B.⑴ 求抛物线的解析式;⑵ P 是y 轴正半轴上一点,且△PAB 是以AB 为腰的等腰三角形,试求P 点坐标.五、评价与小结:小结本节课你有那些收获?与大家交流六、作业:第30页4.5题。
初中数学《二次函数的应用》教案

初中数学《二次函数的应用》教案 2.3二次函数的应用教学目标设计1.知识与技能:通过本节学习,巩固二次函数y=ax2+bx+c〔a0〕的图象与性质,理解顶点与最值的关系,会用顶点的性质求解最值问题。
能力训练要求1、能够分析实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大〔小〕值发展学生解决问题的能力,学会用建模的思想去解决其它和函数有关应用问题。
2、通过观察图象,理解顶点的特殊性,会把实际问题中的最值转化为二次函数的最值问题,通过动手动脑,提高分析解决问题的能力,并体会一般与特殊的关系,培养数形结合思想,函数思想。
情感与价值观要求1、在进行探索的活动过程中发展学生的探究意识,逐步养成合作交流的习惯。
2、培养学生学以致用的习惯,体会体会数学在生活中广泛的应用价值,激发学生学习数学的兴趣、增强自信心。
教学方法设计由于本节课是应用问题,重在通过学习总结解决问题的方法,故而本节课以〝启发探究式〞为主线开展教学活动,解决问题以学生动手动脑探究为主,必要时加以小组合作讨论,充分调动学生学习积极性和主动性,突出学生的主体地位,达到〝不但使学生学会,而且使学生会学〞的目的。
为了提高课堂效率,展示学生的学习效果,适当地辅以电脑多媒体技术。
教学过程导学提纲设计思路:最值问题又是生活中利用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富,学生比较感兴趣,对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,而面积问题学生易于理解和接受,故而在这儿作此调整,为求解最大利润等问题奠定基础。
从而进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。
目的在于让学生通过掌握求面积最大这一类题,学会用建模的思想去解决其它和函数有关应用问题,此部分内容既是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的理论和思想方法基础。
初中数学《二次函数的应用》教案

初中数学《二次函数的应用》教案2.3二次函数的应用教学目标设计1.知识与技能:通过本节学习,巩固二次函数y=ax2+bx+c(a0)的图象与性质,理解顶点与最值的关系,会用顶点的性质求解最值问题。
能力训练要求1、能够分析实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值发展学生解决问题的能力,学会用建模的思想去解决其它和函数有关应用问题。
2、通过观察图象,理解顶点的特殊性,会把实际问题中的最值转化为二次函数的最值问题,通过动手动脑,提高分析解决问题的能力,并体会一般与特殊的关系,培养数形结合思想,函数思想。
情感与价值观要求1、在进行探索的活动过程中发展学生的探究意识,逐步养成合作交流的习惯。
2、培养学生学以致用的习惯,体会体会数学在生活中广泛的应用价值,激发学生学习数学的兴趣、增强自信心。
教学方法设计由于本节课是应用问题,重在通过学习总结解决问题的方法,故而本节课以“启发探究式”为主线开展教学活动,解决问题以学生动手动脑探究为主,必要时加以小组合作讨论,充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的。
为了提高课堂效率,展示学生的学习效果,适当地辅以电脑多媒体技术。
教学过程导学提纲设计思路:最值问题又是生活中利用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富,学生比较感兴趣,对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,而面积问题学生易于理解和接受,故而在这儿作此调整,为求解最大利润等问题奠定基础。
从而进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。
目的在于让学生通过掌握求面积最大这一类题,学会用建模的思想去解决其它和函数有关应用问题,此部分内容既是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的理论和思想方法基础。
二次函数(导学案)九年级数学上册同步备课系列(人教版)(解析版)

22.1.1二次函数学习目标:1)从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,经一步体验如何用数学的方法去描述变量之间的数量关系。
2)理解二次函数的概念,掌握二次函数的形式。
学习重点:二次函数的概念和解析式。
学习难点:用数学的方法去描述变量之间的数量关系。
1)学习过程一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.目前,我们已经学习了哪种类型的函数?问题一正方体的六个面是全等的正方形,设正方体的棱长为a,表面积为S,则S与a之间有什么关系?问题二n个球队参加比赛,每两队之间进行一场比赛。
比赛的场次数m与球队数有什么关系?问题三某工厂一种产品现在的年产量是20吨,计划今后两年增加产量。
如果每一年都比上一年的产量增加x倍,那么两年后,这种产品的产量y与x之间的关系应怎样表示?观察这三个式子你发现了什么?等号左边是函数,右边是关于自变量x的二次式,x的最高次数是22)归纳小结一般地,形如�=ax2+푏 +�(a、b、c是常数,a≠0)的函数叫做二次函数。
二次函数的特殊形式:1)当b=0时,y=ax2+c2)当c=0时,y=ax2+bx3)当b=0,c=0时,y=ax23)自我测试(基础)1.一台机器原价100万元,若每年的折旧率是x,两年后这台机器约为y万元,则y与x 的函数关系式为()A.y=100(1﹣x)B.y=100﹣x2C.y=100(1+x)2D.y=100(1﹣x)2【详解】解:根据题意知y=100(1﹣x)2,故选:D.2.线段AB=5.动点以每秒1个单位长度的速度从点出发,沿线段AB运动至点B,以线段AP为边作正方形APCD,线段PB长为半径作圆.设点的运动时间为t,正方形APCD周长为y,⊙B的面积为S,则y与t,S与t满足的函数关系分别是()A.正比例函数关系,一次函数关系B.一次函数关系,正比例函数关系C.正比例函数关系,二次函数关系D.反比例函数关系,二次函数关系【详解】解:依题意:AP=t,BP=5-t,故y=4t,S=(5-t)2故选择:C3.下列函数表达式中,一定为二次函数的是()A.y=2x﹣5B.y=ax2+bx+c C.h=t22D.y=x2+1x【详解】解:A.是一次函数,故此选项错误;B.当a≠0时,是二次函数,故此选项错误;C.是二次函数,故此选项正确;D.含有分式,不是二次函数,故此选项错误;故选:C.4.对于y=ax2+bx+c,有以下四种说法,其中正确的是()A.当b=0时,二次函数是y=ax2+c B.当c=0时,二次函数是y=ax2+bxC.当a=0时,一次函数是y=bx+c D.以上说法都不对【详解】A.当b=0,a≠0时.二次函数是y=ax2+c,故此选项错误;B.当c=0,a≠0时,二次函数是y=ax2+bx,故此选项错误;C.当a=0,b≠0时.一次函数是y=bx+c,故此选项错误;D.以上说法都不对,故此选项正确.故选D.5.设a,b,c分别是二次函数y=﹣x2+3的二次项系数、一次项系数、常数项,则()A.a=﹣1,b=3,c=0B.a=﹣1,b=0,c=3C.a=﹣1,b=3,c=3D.a=1,b=0,c=3【详解】解:二次函数y=﹣x2+3的二次项系数是a=﹣1,一次项系数是b=0,常数项是c=3;故选:B.6.y=mx m2+1是二次函数,则m的值是()A.m≠0B.m=±1C.m=1D.m=﹣1【详解】解:∵y=mx m2+1是二次函数,∴m≠0且m2+1=2,解得:m=±1.故选:B.7.已知函数y=m−2x m2−2+2x−7是二次函数,则m的值为()A.±2B.2C.-2D.m为全体实数【详解】解:∵函数y=m−2x m2−2+2x−7是二次函数∴m-2≠0,m2−2=2,解得:m=-2.故选:C.4)巩固练习(提高)8.一个二次函数y=(k−1)x k2−3k+4+2x−1.(1)求k的值.(2)求当x=3时,y的值?【详解】解:(1)依题意有k2−3k+4=2k−1≠0,解得:k=2,∴k的值为2;(2)把k=2代入函数解析式中得:y=x2+2x−1,当x=3时,y=14,∴y的值为14.5)本节课的收获、体会及存在问题。
《二次函数》教案8篇(二次函数应用教案设计)

《二次函数》教案8篇(二次函数应用教案设计)下面是整理的《二次函数》教案8篇(二次函数应用教案设计),欢迎参阅。
《二次函数》教案1教学目标掌握二次函数y=ax2+bx+c的图象与x轴的交点个数与一元二次方程ax2+bx+c=0的解的情况之间的关系。
重点、难点:二次函数y=ax2+bx+c的图象与一元二次方程ax2+bx+c=0的根之间关系的探索。
教学过程:一、情境创设一次函数y=x+2的图象与x轴的交点坐标问题1.任意一次函数的图象与x轴有几个交点?问题2.猜想二次函数图象与x轴可能会有几个交点?可以借助什么来研究?二、探索活动活动一观察在直角坐标系中任意取三点A、B、C,测出它们的纵坐标,分别记作a、b、c,以a、b、c为系数绘制二次函数y=ax2+bx+c的图象,观察它与x轴交点数量的情况;任意改变a、b、c值后,观察交点数量变化情况。
活动二观察与探索如图1,观察二次函数y=x2-x-6的图象,回答问题:(1)图象与x轴的交点的坐标为A(,),B(,)(2)当x=时,函数值y=0。
(3)求方程x2-x-6=0的解。
(4)方程x2-x-6=0的解和交点坐标有何关系?活动三猜想和归纳(1)你能说出函数y=ax2+bx+c的图象与x轴交点个数的其它情况吗?猜想交点个数和方程ax2+bx+c=0的根的个数有何关系。
(2)一元二次方程ax2+bx+c=0的根的个数由什么来判断?这样我们可以把二次函数y=ax2+bx+c的图象与x轴交点、一元二次方程ax2+bx+c=0的实数根和根的判别式三者联系起来。
三、例题分析例1.不画图象,判断下列函数与x轴交点情况。
(1)y=x2-10x+25(2)y=3x2-4x+2(3)y=-2x2+3x-1例2.已知二次函数y=mx2+x-1(1)当m为何值时,图象与x轴有两个交点(2)当m为何值时,图象与x轴有一个交点?(3)当m为何值时,图象与x轴无交点?四、拓展练习1.如图2,二次函数y=ax2+bx+c的图象与x轴交于A、B。
九年级数学下册二次函数的应用教案

课题:2.4二次函数的应用教学目标:1.经历探究长方形和窗户透光最大面积问题的过程,进一步获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学知识的应用价值.2.能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题中的最大(小)值问题.3.能够对解决问题的基本策略进行反思,形成个人解决问题的风格.进一步体会数学与人类社会的密切联系.教学重点与难点:重点:经历探究矩形和窗户透光最大面积问题的过程,进一步获得利用数学方法解决实际问题的经验,并进一步感受数学模型思想和数学的应用价值.难点:能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数的知识解决实际问题.课前准备:导学案,多媒体课件.教学过程:一、创设情境,导入新课活动内容:(利用导学案)探究活动:以小组为单位,用长1米的绳子围成不同的图形,看哪个小组围成的图形最多,并估算出所围成的这些图形中,哪个图形的面积最大?处理方式:学生先把答案写在导学案上,然后小组内交流,班级内比较的到当场合款相等时面积最大.设计意图:增加学生的动手能力和小组合作探究能力,同时也为了复习图形的面积公式,会用估算的方法比较这些图形的面积大小,探究其中的规律,为本节课学习最大面积问题做好铺垫.二、探究学习,感悟新知活动内容:(多媒体展示)问题一:探究两边在直角三角形直角边上内接矩形的最大面积 如图,在一个直角三角形的内部作一个长方形ABCD ,其中AB 和AD 分别在两直角边上.(1)设长方形的一边AB =x m ,那么AD 边的长度如何表示?(2)设长方形的面积为y m 2,当x 取何值时,y 的值最大?最大值是多少?解:(1)∵BC ∥AD , ∴△EBC ∽△EAF .∴EB BCEA AF=. 又AB =x ,BE =40-x , ∴404030x BC-=.∴BC =34(40-x ). ∴AD =BC =34(40-x )=30-34x . (2)y =AB ·AD =x (30-34x )=-34x 2+30x =-34(x 2-40x +400-400) =-34(x 2-40x +400)+300 =-34(x -20)2+300. 当x =20时,y 最大=300.即当x 取20m 时,y 的值最大,最大值是300m 2.处理方式:学生讨论交流,在导学案上完成后,学生之间互相展示结果讨论补充,教师适时点评,并在多媒体上展示正确结果.设计意图:从矩形的面积公式入手,利用相似三角形的性质表示出另外一条边,才能列出函数表达式,这一过程先由学生独立思考后,分组合作探究、交流,帮助个别存在困难的同学解决.此题的思路也是解决矩形最大面积问题最常用的方法.问题二:探究一边在直角三角形斜边上内接矩形的最大面积(多媒体展示)如图,在一个直角三角形的内部作一个矩形ABCD ,其中BC 在斜边上,,A D 在直角边上.如果设矩形的一边m AD x =,那么AB 边的长度如何表示?当x 取何值时,矩形面积y 的值最大?最大值是多少?解:设矩形的一边m AD x =,由GAD ∆GFD ∆,得AD GMEF GN=, 即5024x GM=, ∴1225GM x =.∴122425AB MN GN GM x ==-=-. 21212(24)242525ABCDS AD AB x x x x ==-=-+矩形.当24251222()25b x a =-=-=⨯-时,y 有最大值,最大值为224300124()25y -==⨯-最大值 处理方式:在有了前面解答问题的经验之后,让学生自主探究,寻求变量与不变量之间的关系,仿照第一种情况,再一次体验解决此类问题的步骤和方法,本环节相当于对问题1的巩固练习,学生在认真听讲的前提下完成应该没有问题,提醒学生计算要认真. 设计意图:在上一道题的基础上,利用相似三角形的性质表示出矩形的另一条边长,列出二次函数表达式,但此题上了难度,难度在于利用的是相似三角形对应高的比等于相似比这一性质,而且还要用到等积法求直角三角形斜边上的高.充分发挥学生的主动探究能力,并由个别程度较好的学生讲解,最后再板书进行反思总结.三、例题解析,新知应用 活动内容:(多媒体出示例题)某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有黑线的长度和)为15m .当x 等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?解:∵7x +4y +πx =15, ∴y =1574x xπ--.设窗户的面积是S (m 2),则S =12πx 2+2xy=12πx 2+2x ·1574x x π-- =12πx 2+(157)2x x x π-- =-3.5x 2+7.5x=-3.5(x 2-157x ) =-3.5(x -1514)2+1575392. ∴当x =1514≈1.07时, S 最大=1575392≈4.02. 即当x ≈1.07m 时,S 最大≈4.02m 2,此时,窗户通过的光线最多. 答案:.02.407.12m S m x =≈最大时,处理方式:本题含有两个图形的面积计算,主要是想进一步提高学生分析问题和解决问题的能力,巩固训练列二次函数表达式和求最值的方法.让学生理解通过窗户光线多少与窗户面积大小有关.此题处理起来比较繁琐,教师要给予学生及时的指导和帮助,同时也告诉学生数学基本运算也是培养大家做事严谨、有耐心的一个很好的途径.设计意图:在学生已有的探究“面积最大值”经验获取的体会中,让学生继续沿着这条探究路线走下去,既能巩固前面的探究方法,又能让学生再次感受“数学来源于生活”.方法提炼:我们已经做了不少用二次函数知识解决实际问题的例子,现在大家能否根据前面的例子作一下总结,解决此类问题的基本思路是什么呢?与同伴进行交流.(学生讨论,教师多媒体展示)(1)理解问题;(2)分析问题中的变量和常量以及它们之间的关系; (3)用数学的方式表示它们之间的关系; (4)做函数求解;(5)检验结果的合理性,拓展等.设计意图:趁热打铁,及时进行小结,总结做题的方法及思路,抓住这种题目的本质,达到举一反三的目的和效果.四、拓展提升,学以致用一养鸡专业户计划用116m 长的竹篱笆靠墙围成一个长方形鸡舍,怎样设计才能使围成的长方形鸡舍的面积最大?最大为多少?解:设AB 长为x m ,则BC 长为(116-2x )m ,长方形面积为S m 2. 根据题意得S =x (116-2x )=-2x 2+116x=-2(x 2-58x +292-292)=-2(x -29)2+1682.当x =29时,S 有最大值1682,这时116-2x =58.即设计成长为58m ,宽为29m 的长方形时,能使围成的长方形鸡舍的面积最大,最大面积为1682m 2.处理方式:学生通过思考并交流讨论,探索出需要利用本节课学的知识解决题目,教师利用多媒体展示答案. 活动的设计意在通过问题的变式促使学生灵活运用知识,在解决实际问题中,重视知识的发展,有利于后续学习兴趣的培养.设计意图:让同学们通过刚才的学习和体验后进行练习,深入浅出地对题目进行分析和理解并解决问题,虽然并不要求他们在以后都用这样的方法解题,但对于培养他们形成良好的心理素质和培养他们分析问题、解决问题的能力是很有帮助的.五、回顾反思,提炼升华师:同学们,通过这节课的学习,你有哪些收获?那些疑惑?有何感想?学会了哪些方法?先想一想,再分享给大家.(1)通过本节课掌握了利用相似三角形的性质表示矩形的另一边,是列矩形面积函数关系式的关键.(2)图形最大面积问题,实质上是二次函数的最值问题.(3)解决此类问题,首先要理解问题,分析问题中的变量和常量,以及它们之间的关系是难点,用数学的方式表示它们间的关系是关键,化归为二次函数运用公式求解是易错点,要做对做全需要我们一定基本功扎实,养成良好的数学素养!处理方式:学生畅谈自己的收获,教师补充.设计意图:课堂总结是知识沉淀的过程,使学生对本节课所学进行梳理,养成反思与总结的习惯,进一步培养学生总结归纳的能力与合作互助的意识.六、达标检测,反馈提高师:通过本节课的学习,同学们的收获真多!收获的质量如何呢?请完成导学案中的达标检测题.(同时多媒体出示)1.如图,已知△ABC 是一等腰三角形铁板余料,其中AB=AC=20cm,BC=24cm.若在△ABC 上截出一矩形零件DEFG,使EF 在BC 上,点D 、G 分别在边AB 、AC 上.问矩形DEFG 的最大面积是多少?2.如图,△ABC 中,∠B=90°,AB=6cm,BC=12cm.点P 从点A 开始,沿AB 边向点B 以每秒1cm 的速度移动;点Q 从点B 开始,沿着BC 边向BQCAF E BG D C A点C 以每秒2cm 的速度移动.如果P,Q 同时出发,问经过几秒钟△PBQ 的面积最大?最大面积是多少?参考答案1.过A 作AM⊥BC 于M,交DG 于N,则AM=222012-=16cm. 设DE=x cm,S 矩形=y cm 2,则由△ADG∽△ABC,故AN DG AM BC =,即161624x DG-=,故DG=32(16-x ). ∴y =DG ·DE=32(16-x )x =-32(x 2-16x)=-32(x -8)2+96,从而当x =8时,y 有最大值96.即矩形DEFG 的最大面积是96cm 2.2.设第t 秒时,△PBQ 的面积为y cm 2.则∵AP=t cm,∴PB=(6-t )cm;又BQ=2t.∴y =12PB ·BQ=12(6-t )·2t =(6-t )t =-t 2+6t =-(t -3)2+9,当t =3时,y 有最大值9.故第3秒钟时△PBQ 的面积最大,最大值是9cm 2.处理方式:学生做完后,教师出示答案,指导学生校对,并统计学生答题情况.学生根据答案进行纠错.设计意图:学以致用,当堂检测及时获知学生对所学知识掌握情况,并最大限度地调动全体学生学习数学的积极性,使每个学生都能有所收益、有所提高,明确哪些学生需要在课后加强辅导,达到全面提高的目的.七、布置作业,课堂延伸必做题:课本47页,习题2.8第1、2、3题. 选做题:课本48页,习题2.8第4题. 结束语:师:同学们,本节课的学习你们给我留下了深刻的印象,同时也给了我太多的感动与惊喜,谢谢你们!就让我把这份感动与惊喜埋在心底“一生一世”,相信你们的明天会更美好!祝愿同学们:象雄鹰一样飞的更高,飞的更远!(多媒体播放歌曲“飞的更高”结束本课)2.4.1二次函数的应用一、教学目标1.掌握长方形和窗户透光最大面积问题,体会数学的模型思想和数学应用价值.2.学会分析和表示不同背景下实际问题中的变量之间的二次函数关系,并运用二次函数的知识解决实际问题.二、课时安排 1课时 三、教学重点掌握长方形和窗户透光最大面积问题,体会数学的模型思想和数学应用价值. 四、教学难点运用二次函数的知识解决实际问题. 五、教学过程 (一)导入新课引导学生把握二次函数的最值求法: (1)最大值: (2)最小值: (二)讲授新课 活动1:小组合作如图,在一个直角三角形的内部作一个矩形ABCD ,其中AB 和AD 分别在两直角边上. (1)设矩形的一边AB=xm,那么AD 边的长度如何表示?(2)设矩形的面积为ym 2,当x 取何值时,y 的值最大?最大值是多少?解:()31AD bm,b x 30.4==-+设易得 ()2332(30)3044y xb x x x x==-+=-+()2320300.4x =--+ 24:20,300.24b ac b x y a a-=-===最大值或用公式当时活动2:探究归纳先将实际问题转化为数学问题,再将所求的问题用二次函数关系式表达出来,然后利用顶点坐标公式或者配方法求出最值,有时必须考虑其自变量的取值范围,根据图象求出最值.(三)重难点精讲例题:某建筑物的窗户如图所示,它的上半部是半圆,下半部是矩形,制造窗框的材料总长(图中所有黑线的长度和)为15m.当x 等于多少时,窗户通过的光线最多(结果精确到0.01m)?此时,窗户的面积是多少?解:4715.yx x ++π=由 157.4x x y --π=得2215722()242x x x x S xy x π--ππ=+=+窗户面积271522x x =-+ 2715225().21456x =--+2b 154ac b 225x 1.07,s 4.02.2a 144a 56-=-=≈==≈最大值当时即当x ≈1.07m 时,窗户通过的光线最多.此时窗户的面积为4.02m 2. (四)归纳小结“最大面积” 问题解决的基本思路: 1.阅读题目,理解问题.2.分析问题中的变量和常量,以及它们之间的关系.3.用数量的关系式表示出它们之间的关系.4.根据二次函数的最值问题求出最大值、最小值.5.检验结果的合理性.(五)随堂检测1.(包头·中考)将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是 cm2.2.(芜湖·中考)用长度为20m的金属材料制成如图所示的金属框,下部为矩形,上部为等腰直角三角形,其斜边长为2x m.当该金属框围成的图形面积最大时,图形中矩形的相邻两边长各为多少?请求出金属框围成的图形的最大面积.3.(潍坊·中考)学校计划用地面砖铺设教学楼前的矩形广场的地面ABCD,已知矩形广场地面的长为100米,宽为80米,图案设计如图所示:广场的四角为小正方形,阴影部分为四个矩形,四个矩形的宽都是小正方形的边长,阴影部分铺设绿色地面砖,其余部分铺设白色地面砖.(1)要使铺设白色地面砖的面积为5 200平方米,那么矩形广场四角的小正方形的边长为多少米?(2)如图铺设白色地面砖的费用为每平方米30元,铺设绿色地面砖的费用为每平方米20元,当广场四角小正方形的边长为多少米时,铺设广场地面的总费用最少?最少费用是多少?4.(南通·中考)如图,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B,C重合).连接DE,作EF⊥DE,EF与线段BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式.(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若12y m=,要使△DEF 为等腰三角形,m 的值应为多少?5.(河源·中考)如图,东梅中学要在教学楼后面的空地上用40米长的竹篱笆围出一个矩形地块作生物园,矩形的一边用教学楼的外墙,其余三边用竹篱笆.设矩形的宽为x ,面积为y .(1)求y 与x 的函数关系式,并求出自变量x 的取值范围. (2)生物园的面积能否达到210平方米?说明理由.【答案】 1.12.52. 2x m 矩形的一边长是2xm,其邻边长为((20422x1022x,2-+=-(121022222S x x x x ⎡⎤=•-++⎣⎦所以该金属框围成的面积302,.322x ==-+当时金属框围成的图形面积最大 )((()2x 60402m ,10221032210210m .=--⨯-=此时矩形的一边长为另一边长为()2S3002002m.=-最大3.解; (1)设矩形广场四角的小正方形的边长为x米,根据题意得:4x2+(100-2x)(80-2x)=5 200,整理得x2-45x+350=0,解得x1=35,x2=10,经检验x1=35,x2=10均适合题意,所以,要使铺设白色地面砖的面积为5 200平方米,则矩形广场四角的小正方形的边长为35米或者10米.(2)设铺设矩形广场地面的总费用为y元,广场四角的小正方形的边长为x米,则y=30[4x2+(100-2x)(80-2x)]+20[2x(100-2x)+2x(80-2x)] 即y=80x2-3 600x+240 000,配方得y=80(x-22.5)2+199 500,当x=22.5时,y的值最小,最小值为199 500,所以当矩形广场四角的小正方形的边长为22.5米时,铺设矩形广场地面的总费用最少,最少费用为199 500元.4. ⑴在矩形ABCD中,∠B=∠C=90°,∴在Rt△BFE中,∠1+∠BFE=90°,又∵EF⊥DE,∴∠1+∠2=90°,∴∠2=∠BFE,∴Rt△BFE∽Rt△CED,∴BF BECE CD=, ∴8y xx m-=即28x x ym-=⑵当m=8时,28,8x x y -=化成顶点式: ()21428y x =--+ (3)由12y m =,及28x x y m -=得关于x 的方程:28120x x -+=,得1226x x ==,∵△DEF 中∠FED 是直角,∴要使△DEF 是等腰三角形,则只能是EF=ED , 此时, Rt △BFE ≌Rt △CED ,∴当EC=2时,m=CD=BE=6;当EC=6时,m=CD=BE=2. 即△DEF 为等腰三角形,m 的值应为6或2. 5. 解:(1)依题意得:y=(40-2x)x . ∴y=-2x 2+40x .x 的取值范围是0< x <20.(2)当y=210时,由(1)可得,-2x 2+40x=210. 即x 2-20x+105=0. ∵ a=1,b=-20,c=105, ∴2(20)411050,--⨯⨯<∴此方程无实数根,即生物园的面积不能达到210平方米. 六.板书设计2.4.1二次函数的应用探究: 例题:“最大面积” 问题解决的基本思路: 1.阅读题目,理解问题.2.分析问题中的变量和常量,以及它们之间的关系.3.用数量的关系式表示出它们之间的关系.4.根据二次函数的最值问题求出最大值、最小值.5.检验结果的合理性. 七、作业布置 课本P47练习练习册相关练习八、教学反思课题:2.4.2二次函数的应用教学目标:知识与技能1.经历探索T恤衫销售中最大利润等问题的过程,体会二次函数是一类最优化问题的数学模型,并感受数学的应用价值.2.能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,发展解决问题的能力.过程与方法经历销售中最大利润问题的探究过程,让学生认识数学与人类生活的密切联系及对人类历史发展的作用,发展学生运用数学知识解决实际问题的能力.情感态度与价值观1.体会数学与人类社会的密切联系,了解数学的价值。
二次函数(2)导学案

二次函数(2)导学案一、学习目标1.使学生会用描点法画出二次函数c bx ax y ++=2的图象; 2.使学生能结合图象确定抛物线c bx ax y ++=2的对称轴与顶点坐标; 二、课前准备:(一) 自主学习: 下面通过画二次函数216212+-=x x y 的图像,讨论一般的怎样画二次函数)0(2≠++=a c bx ax y 的图像。
配方可得:216212+-=x x y )()(+=221x y由此可知,抛物线216212+-=x x y 开口向 ,顶点坐标是 ,对称轴是利用对称性画21612+-=x x y 的图像。
(二)交流合作:(1)列表时选值,应以 为中心,函数值y 可由对称性得到. (2)描点画图时,要根据已知抛物线的特点,一般先找出 ,并用虚线画 ,然后再对称描点,最后用平滑曲线顺次连结各点.探索:对于二次函数c bx ax y ++=2,你能用配方法求出它的对称轴和顶点坐标吗?配方可得:c bx ax y ++=2 )()(+=2xa y 由此可知,抛物线c bx ax y ++=2对称轴 ,顶点坐标 .(三)尝试运用:1.二次函数x x y 22--=的对称轴是 . 2.二次函数1222--=x x y 的图象的顶点是 , 当x 时,y 随x 的增大而减小.3.抛物线642--=x ax y 的顶点横坐标是-2,则a = .4.抛物线c x ax y ++=22的顶点是)1,31(-,则a = .c= .(四)性质归纳:(1)c bx ax y ++=2(a ≠0)的图象的开口方向、对称轴、顶点坐标(2)抛物线c bx ax y ++=2(a ≠0)的图象上: ①当a>0时,抛物线c bx ax y ++=2开口向 .对称轴左侧(即x ), 函数值y 随x 的增大而 .对称轴右侧(即x ), 函数值y 随x 的增大而 . 函数有最 值,最 值y= .②当a<0时,抛物线c bx ax y ++=2开口向 .对称轴左侧(即x ), 函数值y 随x 的增大而 . 对称轴右侧(即x ), 函数值y 随x 的增大而 . 函数有最 值,最 值y= . (五)尝试运用:1.抛物线顶点为(2,3)过(3,1),求抛物线方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
组别:_____班第组号姓名:
课题二次函数中的利润最大问题时间
课型新授课授课人
学习目标1.通过学习巩固二次函数y=ax2+bx+c(a≠0)的图象与性质,理解顶点与最值的关系,会用顶点的性质求解最值问题;
2.会把实际问题中的最值转化为二次函数的最值问题,提高分析解决问题的能力;
3.通过探索、讨论和交流,建立合作意识、提高探索能力,体会二次函在生活中广
泛的应用价值。
学习过程
一、温故知新
1.二次函数y=ax2+bx+c(a≠0)的定义域是,图象是,具有
对称性,对称轴是,顶点坐标是。
当a>0时,抛物线开口向,当x= 时,二次函数有最值y= ; 当a<0时,抛物线开口向,当x= 时,二次函数有最值y= 。
2.根据图象说出二次函数的最值和增减性。
3.(1)求函数y=x2+2x-3的最值。
(2)求函数y=x2+2x-3的最值。
(0≤x ≤ 2)
小结:二次函数的最值一般在。