第47届国际数学奥林匹克竞赛题目和答案

合集下载

2006年第47届国际数学奥林匹克竞赛试题及答案

2006年第47届国际数学奥林匹克竞赛试题及答案

ACB)=∠IBC+∠
四点共圆.但由内外角平分线相垂直知
的中点O为圆心.由于
,PO=IO,故
与圆周的交点即P=I时成立.
的一条对角线称为好的,如果它的两端点将
1
-+,其中
2x

()(((())))Q x P P P x =,其中 P 出现k 次.证明,最多存在 n 个整数t ,使得()Q t t =.
证:若Q 的每个整数不动点都是 P 的不动点,结论显然成立.
设有整数0x 使得00()Q x x =,00()P x x ≠.作递推数列 1()(012)i i x P x i +==,,.它
以 k 为周期.差分数列1(12)i i i x x i -∆=-=,
,的每一项整除后一项.由周期性及10∆≠,所有||i ∆ 为同一个正整数u .令
121111min{}m k m m m m m m x x x x u x x x x x x -++-==-=-=,,,,,.
数列的周期为 2.即0x 是 P 的2-周期点.
设 a 是P 的另一个2-周期点,() b P a =(允许b =a ).则0a x -与1b x -互相整除,故01||||a x b x -=-,同理01||||b x a x -=-.展开绝对值号,若二者同取正号,推出01x x =,矛盾.
故必有一个取负号而得到01a b x x +=+.记01x x C +=,我们得到:Q 的每个整数不动点都是方程 ()P x x C +=的根.由于P 的次数n 大于 1,这个方程为n 次.故得本题结论.。

国际数学奥林匹克(IMO)竞赛试题(第47届)及答案

国际数学奥林匹克(IMO)竞赛试题(第47届)及答案

1.△ABC的内心为I,三角形内一点P满足∠PBA+∠PCA=∠PBC+∠PCB.求证,AP ≥AI,而且等号当且仅当P=I时成立.证:∠PBC+∠PCB= 12(∠ABC+∠ACB)=∠IBC+∠ICB,故∠PBI=∠PCI,从而P,B,C,I四点共圆.但由内外角平分线相垂直知B,C,I与BC 边上的旁切圆心T 共圆,且IT是这个圆的直径,IT的中点O为圆心.由于A,I,T共线(∠BAC的平分线),且P在圆周上,AP+PO≥AO=AI+IO,PO=IO,故AP≥AI.等号当且仅当P为线段AO与圆周的交点即P=I时成立.2.正2006 边形P 的一条对角线称为好的,如果它的两端点将P 的边界分成的两部分各含P的奇数条边.P的边也是好的.设P被不在P的内部相交的2003 条对角线剖分为三角形.试求这种剖分图中有两条边为好的等腰三角形个数的最大值.解:对于剖分图中的任一三角形ABC,P的边界被A,B,C分为3段,A-B段所含P 的边数记作m(AB).由于m(AB)+ m(BC)+ m(CA)=2006,故等腰三角形若有两条好边,它们必是两腰.称这样的等腰三角形为好三角形.考虑任一好三角形ABC(AB=AC).A-B 段上若有别的好三角形,其两腰所截下的P 的边数为偶数.由于剖分图中的三角形互不交叉,而A-B 段上P 的边数为奇数,故A-B 段上必有P的一边α不属于更小的腰段,同理A-C段上也有P的一边β不属于更小的腰段,令△ABC 对应于{α,β}.由上述取法,两个不同的好三角形对应的二元集无公共元,因此好三角形不多于20062=1003 个.设P=A1A2…A2006,用对角线A1A2k+1(1≤k≤1002)及A2k+1A2k+3(1≤k≤1001)所作的剖分图恰有1003 个好三角形.因此,好三角形个数的最大值是1003.3.求最小实数M ,使得对一切实数 a ,b ,c 都成立不等式2222222222|()()()|()ab a b bc b c ca c a M a b c -+-+-++≤解:222222()()()ab a b bc b c ca c a -+-+-()()()()a b b c c a a b c =----++.设a b x b c y c a z a b c s -=-=-=++=,,,,则22222221()3a b c x y z s ++=+++. 原不等式成为 22222()9||(0)M x y z s xyzs x y z +++++=≥.x y z ,,中两个同号而与另一个反号.不妨设 x y ,≥0.则2221||()2z x y x y x y =+++,≥,2()4x y xy +≥.于是由算术-几何平均不等式 222222223()(())2x y z s x y s +++++≥=22222111(()()())222x y x y x y s ++++++ 6223414())42()||162||8x y s x y s xyzs +=+≥(≥ 即9232M =时原不等式成立. 等号在21s x y ===,,2z =-,即::(23):2:(23)a b c =+-时达到,故所求的最小的9232M =. 4.求所有的整数对(x y ,),使得212122x x y +++=.解:对于每组解(x y ,),显然0x ≥,且()x y -,也是解.0x =时给出两组解(02)±,.设x y ,>0,原式化为12(21)(1)(1)x x y y ++=+-.1y +与1y -同为偶数且只有一个被4整除.故3x ≥,且可令12x y m ε-=+ ,其中m 为正的奇数,1ε=±.代入化简得 2212(8)x m m ε--=-.若1ε=,2801m m -=≤,.不满足上式.故必1ε=-,此时22212(8)2(8)x m m m -+=--≥,解得3m ≤.但1m =不符合,只有3m =,4x =,23y =.因此共有4组整数解(02)(423)±±,,,.5.设()P x 为n 次(n >1)整系数多项式,k 是一个正整数.考虑多项式()(((())))Q x P P P x = ,其中 P 出现k 次.证明,最多存在 n 个整数t ,使得()Q t t =.证:若Q 的每个整数不动点都是 P 的不动点,结论显然成立.设有整数0x 使得00()Q x x =,00()P x x ≠.作递推数列 1()(012)i i x P x i +== ,,.它以 k 为周期.差分数列1(12)i i i x x i -∆=-= ,,的每一项整除后一项.由周期性及10∆≠,所有||i ∆ 为同一个正整数u .令121111min{}m k m m m m m m x x x x u x x x x x x -++-==-=-= ,,,,,.数列的周期为 2.即0x 是 P 的2-周期点.设 a 是P 的另一个2-周期点,() b P a =(允许b =a ).则0a x -与1b x -互相整除,故01||||a x b x -=-,同理01||||b x a x -=-.展开绝对值号,若二者同取正号,推出01x x =,矛盾.故必有一个取负号而得到01a b x x +=+.记01x x C +=,我们得到:Q 的每个整数不动点都是方程 ()P x x C +=的根.由于P 的次数n 大于 1,这个方程为n 次.故得本题结论.6.对于凸多边形P 的每一边b ,以b 为一边在P 内作一个面积最大的三角形.证明,所有这些三角形的面积之和不小于P 的面积的两倍.证:过P 的每个顶点有唯一的直线平分P 的面积,将该直线与P 的边界的另一交点也看作 P 的顶点(允许若干个相继顶点共线).每两条面积平分线都交于 P 内.P 可 看成一个 2n 边形122-12n n A A A A ,每条对角线i i n A A +是P 的面积平分线(i =1,2,…,n ,2i n i A A +=).设i i n A A +与11i i n A A +++交于 i O (i n i O O +=),由面积关系得到, 11()()i i i i i n i n S O A A S O A A ++++=△△,11i i i i i i n i i n O A O A O A O A ++++= ,故i i n i i O A O A +和11i i n i i O A O A +++ 中必有一个不小于 1,于是以 1i i A A +为一边在 P 内作的面积最大的三角形的面积 11111()max{()()}2()i i i n i i i n i i i i i S A A S A A A S A A A S O A A +++++++≥△,△≥△.对于每条有向线段i i n A A + ,P 内部的每一点T 或在它的左侧或在它的右侧.由于T 在11n A A + 和12111n n n A A A A +++= 的相反侧,故必有i 使得T 在i i n A A + 和11i i n A A +++ 的相反侧,从而T在1i i i O A A +△或1i i n i n O A A +++△中.即211ni i i i O A A P +=⊇ △.于是 221111()2()2()n nii i i i i i S A A S O A A S P ++==∑∑≥△≥ P 中同一边上的各个1()i i S A A +之和就是该边上的面积最大的内接三角形面积.。

第49届国际数学奥林匹克(IMO)试题及解答 (1)

第49届国际数学奥林匹克(IMO)试题及解答 (1)


2
,( 借) <丝掣( 2) . 舒任意n,6∈I,口<6,当A>0时恒有
剖析:这里( 1) 与( 2) 等价是有条件的,并不 是对任意的函数,( z) 都成立的.如反例:
当J =Q( 有理数) ,A为无理数时,则对于任
意 的 口 , 6, ∈ Q, 厂 (z)=z2, 有 竿 尝 ∈ Q, 所 以
6.在凸四边形ABcD中,BA≠BC,∞l 和 甜z 分 别足△ABC和△ADC的内 切圆.假 没存 在一个圆 鲫与射线BA相 切( 切点不在 线段BA 上),与射线BC相切( 切点不在线段BC上) ,且
与直线AD和直线CD都相切.证明:圆叫1和 c【J 2 的两条外公切线的交点在圆cc ,上.( 俄罗斯提供)
作圆的一条平行于ac的切线z靠近边上海中学数学2008年第l324006浙江省衢州高级中学吴光耀严密性是数学的三大特点之一数学计算与教学证明的严密性既是数学科学的特点又可以训练思维使学生细心周密而这些素质又指导学生去思考生活工作中的问题使他们养成周密稳重的习惯有助于提高基本素质
上海中学数学·2008年第l O期
证明:由于n一2Rs i nA,6—2Rs i nB,c一
2Rsi nC只要证:
■ — — i 忑 ■ 一 s i n2A+s i n2B

■.I
si

n2B— si n2C
— 瓦砑 ■ 一
f
、 彳
■垡g二堑垡垒! ……m
AC的那条) ,设 z与圆鲫相切于点丁,下证B,y, T三点共线.
田●
如图4,设z 与射线BA,BC分别交于点A1, C1,则圆御是三角形BAl Cl 的关于顶点B的旁 切圆,T是它与A1Cl 的切点,而圆叫3是三角形 BAC关于点B的旁切圆,圆螂与AC相切于点 V.则由Al Cl ∥AC知,△BAC和△BAl C1以B 为中心位似,而V,T分别是对应旁切圆与对应 边的切 点,因此 y,丁 是这一对位 似形中的 对应 点,而B是位似中心,故B,V,T共线,从巾i 命题 得证.

2023人教版下册 数据的分析 单元练习卷(原卷版)

2023人教版下册 数据的分析 单元练习卷(原卷版)

专题13 第20章《数据的分析》单元练习卷一.选择题(共10小题,共30分)1.(3分)国际数学奥林匹克竞赛旨在激发全球青年人的数学才能,中国代表队近六届竞赛的金牌数(单位:枚)分别为6,6,4,5,4,4,关于这组数据,下列说法正确的是()A.方差是0.5B.众数是6 C.中位数是4.5D.平均数是4.82.(3分)下列为某班级研究性学习小组学员出勤次数如表所示,则小组学员出勤次数的众数和中位数分别是()出勤次数45678学员人数26543A.5,6B.5,5C.6,5D.8,63.(3分)已知一组数据的方差为,则()A.这组数据有10个B.这组数据的平均数是5C.方差是一个非负数D.每个数据加3,方差的值增加34.(3分)思政课上,某小组的2023全国“两会”知识测试成绩统计如表(满分10分):成绩78910频数1342则该组测试成绩的平均数为()(单位:分)A.8.2B.8.3C.8.7D.8.95.(3分)温州银泰商场某店一天中卖出某种品牌的休闲鞋16双,它们的尺码与销售量如表所示:鞋的尺码/cm2525.52626.527销售量/双23443则这16双鞋的尺码组成的数据中,中位数()A.25.5B.26C.26.5D.276.(3分)一组数据5,8,8,10,1■中,最后一个两位数的个位数字被墨迹覆盖,则这组数据不受影响的统计量是()A.平均数B.中位数C.众数D.极差7.(3分)一位卖“运动鞋”的经销商到一所学校对200名学生的鞋号进行了抽样调查,经销商最感兴趣的是这组鞋号的()A.众数B.平均数C.中位数D.方差8.(3分)某班一合作学习小组有6人,初三上期数学期末考试成绩数据分别为114、86、95、77、110、93,则这组数据的中位数是()A.86B.95C.77D.949.(3分)为响应“双减”政策,进一步落实“立德树人、五育并举”的思想主张,深圳某学校积极推进学生综合素质评价改革,小芳在本学期德、智、体、美、劳的评价得分如图所示,其各项的得分分别为9,8,10,8,7,则该同学这五项评价得分的众数,中位数,平均数分别为()A.8,8,8B.7,8,7.8C.8,8,8.7D.8,8,8.410.(3分)某校举行“喜迎中国共产党建党100周年”党史知识竞赛,如图是10名决赛选手的成绩.对于这10名选手的成绩,下列说法中正确的是()A.众数是5B.中位数是90C.平均数是93D.方差是0二.填空题(共6小题,共30分)11.(5分)已知一组数据﹣1,﹣3,5,7,这组数据的极差是.12.(5分)在对某样本进行方差计算时,计算的公式是:,该样本的样本容量是.13.(5分)如图是甲、乙两人5次投篮成绩统计图(每人每次投球10个),则s甲2s乙2(填“>”,“=”或“<”).14.(5分)小丽计算数据方差时,使用公式S2=,则公式中=.15.(5分)我市某电视台招募主持人,甲侯选人的综合专业索质、普通话、才艺展示成绩如表所示.测试项目综合专业索质普通话才艺展示测试成绩908692根据实际需求,该电视台规定综合专业素质、普通话和才艺展示三项测试得分按5:3:2 的比例确定最终成绩,则甲候选人的最终成绩为分.16.(5分)现有1,2,3,…,9九个数字,甲、乙两位同学轮流从中选出一个数字,从左至右依次填入下面所示的表格中(表中已出现的数字不再重复使用),每次填数时,甲会选择填入后使表中现有数据平均数最小的数字,乙会选择填入后使表中现有数据中位数最大的数字.如图,若表中第一个数字是6,甲先填,(1)请你在表中空白处填出一种符合要求的填数结果;(2)满足条件的填法有种.6三.解答题(共7小题,共50分)17.(6分)学校组织“中国传统文化”知识竞赛,每班都有20名同学参加,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为100分,90分,80分,70分(90分及以上属于优秀),学校将七年一班和二班的成绩整理如下:(1)填写以下表格;班级平均数众数中位数优秀率七年一班分90分分七年二班92分分90分80%(2)结合以上统计量,你认为哪个班级的竞赛成绩更加优秀?请简述理由.18.(8分)为了解决杨树花絮污染环境的难题,某公司引进优秀专利品种,建立新树种实验基地,研究组在甲、乙两个实验基地同时播下新树种,同时随机各抽取20株树苗,记录下每株树苗的长度(单位:cm),进行整理、描述和分析(用x表示树苗长度,数据分成5组:A.20≤x<30;B.30≤x<40;C.40≤x <50;D.50≤x<60;E.x≥60,50cm及以上为优等),下面给出了部分信息:【数据收集】甲实验基地抽取的20株树苗的长度:28,29,32,34,38,40,42,45,46,51,51,52,54,55,55,55,55,57,60,61.乙实验基地抽取的20株树苗中,A、B、E三个等级的数据个数相同,C组的所有数据是:42,43,46,49,49.【数据整理】甲实验基地抽取的树苗长度统计表x频数频率A20.1B a0.15C40.2D90.45E20.1【数据分析】基地平均数众数中位数E组所占百分比甲47b5110%乙4756c m%根据以上信息,解答下列问题:(1)填空:a=,b=,c=,m=;(2)根据上述数据分析,你认为甲、乙两基地哪个基地的树苗好?请说明理由(写出一条理由即可);(3)请估计2000棵乙基地的树苗为优等的树苗有多少棵?19.(8分)争创全国文明城市,从我做起.某中学开设了文明礼仪校本课程,为了解学生的学习情况,学校组织七八年级学生进行文明礼仪知识测试,两个年级均有300名学生,从七八年级各随机抽取了10名学生的测试成绩,满分100分,整理分析如下:七年级:99 98 98 98 95 93 91 90 89 79八年级:99 99 99 91 96 90 93 87 91 85整理分析上面的数据,得到如下表格:平均数中位数众数方差统计量年级七年级9394a33.7八年级93b9923.4根据以上信息,解答下列问题.(1)填空:a=,b=;(2)根据统计结果,年级的成绩更整齐;(3)七年级甲同学和八年级乙同学成绩均为93分,根据上面统计情况估计同学的成绩在本年级的排名更靠前;(4)如果在收集七年级数据的过程中将抽取的“89”误写成了“79”,七年级数据的平均数、中位数、众数中发生变化的是;(5)若成绩不低于95分的可以获奖,估计两个年级获奖的共有人.20.(8分)中国共产主义青年团是中国共产党用来团结教育青年一代的群众组织,也是党联系青年的桥梁和纽带,2022年是共青团成立100周年,某校为了解学生对共青团的认识,组织七、八年资全体团员学生进行了“团史知识竞赛”,为了解竞赛成绩,抽样调查了七、八年级部分学生的分数,过程如下:【收集数据】从该校七、八年级学生中各随机抽取20名学生的分数,其中八年级学生的分数如下:75,90,55,60,85,85,95,100,80,85,80,85,90,75,65,60,80,95,70,75,【整理、过述数据】按如下表分数段整理、描述这两组样本数据:分数(分)x<6060≤x<7070≤x<8080≤x<9090≤x≤100七年级(人)23654八年级(人)1m475【分析数据】两组样本数据的平均数、中位数、众数如表所示:年级平均数中位数众数七年级77.57585八年级79.25b c根据以上提供的信息,回答下列问题:(1)填空:m=,b=,c=;(2)该校八年级学生有560人,假设全部参加此次竞赛,请估计八年级成绩超过平均数79.25分的人数;(3)在这次竞赛中,七八年级参加人数相同,七年级学生小明与八年级学生小亮的成绩都是75分,于是小明说:“我在年级的名次有可能高于小亮在年级里的名次”,你同意小明的说法吗?并说明理由.21.(10分)某学校从九年级学生中任意选取40人,随机分成甲、乙两个小组进行“引体向上”体能测试,根据测试成绩绘制出统计表和如图所示的统计图(成绩均为整数,满分为10分)甲组成绩统计表成绩/分78910人数/人1955(1)m=,甲组成绩的众数乙组成绩的众数(填“>”“<”或“=”);(2)求甲组的平均成绩;(3)这40个学生成绩的中位数是;(4)计算出甲组成绩的方差为0.81,乙组成绩的方差为0.75,则成绩更加稳定的是组(填“甲”或“乙”).22.(10分)为了解某校八年级男生在体能测试中引体向上项目的情况,随机抽查了部分男生引体向上项目的测试成绩,绘制如图统计图,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的男生人数为,图①中m的值为;本次调查获取的样本数据的平均数为,中位数为.(2)若规定引体向上6次及以上为该项目良好,根据样本数据,估计该校320名男生中该项目良好的人数.(3)根据良好人数,为了中招体育测试能有更多人得到高分,请你给该校男生提出一些相关建议(最少两条).23.(10分)为了解学生每天的睡眠情况,某初中学校从全校2400名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:7,9,9,8,10.5,8,10,9.5,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,8,9,7,9.5,8.5,9,7,9,9,8.5,7.5,8.5,9,8,7.5,9.5,10,9,8,9,9.5,8.5.记者:胡浩教育部印发《关于进一步加强中小学生睡眠管理工作的通知》,明确了中小学生必要睡眠时间,小学生每天睡眠时间应达到10h,初中生应达到9h,高中生应达到8h.在对这些数据整理后,绘制了如下的统计图表:睡眠时间分组统计表组别睡眠时间分组人数(频数)一7≤t<87二8≤t<9a三9≤t<1018四10≤t<11b请根据以上信息,解答下列问题:(1)a=,b=,m=,n=;(2)抽取的这40名学生平均每天睡眠时间的中位数落在组;(填组别)(3)如果按照要求,学生平均每天的睡眼时间应不少于9h,请估计该校学生中睡眠时间符合要求的人数;(4)请对该校学生“睡眠时间”的情况作出合理的评价.。

初中数学奥林匹克竞赛题及答案

初中数学奥林匹克竞赛题及答案

初中数学奥林匹克竞赛题及答案奥数题一一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么 ( )A.a,b都是0B.a,b之一是0C.a,b互为相反数D.a,b互为倒数答案:C解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。

2.下面的说法中正确的是 ( )A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式答案:D解析:x²,x3都是单项式.两个单项式x3,x²之和为x3+x²是多项式,排除A。

两个单项式x²,2x2之和为3x2是单项式,排除B。

两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。

3.下面说法中不正确的是 ( )A. 有最小的自然数B.没有最小的正有理数C.没有最大的负整数D.没有最大的非负数答案:C解析:最大的负整数是-1,故C错误。

4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )A.a,b同号B.a,b异号C.a>0D.b>0答案:D5.大于-π并且不是自然数的整数有 ( )A.2个B.3个C.4个D.无数个答案:C解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C。

6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。

这四种说法中,不正确的说法的个数是 ( )A.0个B.1个C.2个D.3个答案:B解析:负数的平方是正数,所以一定大于它本身,故C错误。

7.a代表有理数,那么,a和-a的大小关系是 ( )A.a大于-aB.a小于-aC.a大于-a或a小于-aD.a不一定大于-a答案:D解析:令a=0,马上可以排除A、B、C,应选D。

8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数B.乘以同一个整式C.加上同一个代数式D.都加上1答案:D解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。

(共8套)世界少年奥林匹克数学竞赛真题附答案 六年级至四年级专版(全)

(共8套)世界少年奥林匹克数学竞赛真题附答案 六年级至四年级专版(全)

(共8套)世界少年奥林匹克数学竞赛真题 六年级至四年级专版(全)绝密★启用前世界少年奥林匹克数学竞赛(中国区)选拔赛地方海选赛(2016年10月)选手须知:1、本卷共三部分,第一部分:填空题,共计50分;第二部分:计算题,共计12分;第三部分:解答题,共计58分。

2、答题前请将自己的姓名、学校、赛场、参赛证号码写在规定的位置。

3、比赛时不能使用计算工具。

4、比赛完毕时试卷和草稿纸将被收回。

六年级试题(A卷)(本试卷满分120分 ,考试时间90分钟 )一、填空题。

(每题5分,共计50分)1、有甲、乙两个两位数,甲数的27等于乙数的 23,这个两位数的差最多是 。

2、如果15111111111111111*=++++,242222222222*=+++,33*=3+33+333,那么7*4= 。

3、由数字0,2,8(既可全用也可不全用)组成的非零自然数,按照从小到大排列,2008排在第 个。

4、如图,正方形的边长是2(a+b ),已知图中阴影部分B 的面积是7平方厘米,则阴影部分A 和C 面积的和是 平方厘米。

5、一辆出租车与一辆货车同时从甲地出发,开往乙地出租车4小时到达,货车6小时到达,已知出租车 比货车每小时多行35千米。

甲乙两地相距 千米6、一个长方体铁块,被截成两个完全相同的正方体铁块,两个正方体铁块的棱长之和比原来长方体铁块的棱长之和增加了16厘米,则原来长方体铁块的长是 。

7、四袋水果共46个,如果第一袋增加1个,第二袋减少2个,第三袋增加1倍,第四袋减少一半,那么四袋水果的个数就相等了,则第四袋水果原先有 个。

8、有23个零件,其中有一个次品,不知它比正品轻还是重,用天平最少 次可以找出次品。

9、123A5能被55整除,则A= 。

10、在一次数学游戏中,每一次都可将黑板上所写的数加倍或者擦去它的末位数,假定一开始写的数是458,那么经过 次上述变化得到14.二、计算题。

(每题6分,共计12分)11、123200112320012002200220022002++++12、6328862363278624⨯-⨯省 市 学校 姓名 赛场 参赛证号∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕∕〇∕∕∕∕∕∕ 密 〇 封 〇 装 〇 订 〇 线 ∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕密 封 线 内 不 要 答 题a +六年级 第3页 六年级 第4页三、解答题。

国际数学奥林匹克试题分类解析—A数论_A2整数的求解

国际数学奥林匹克试题分类解析—A数论_A2整数的求解

A2 整数的求解A2-001 哪些连续正整数之和为1000?试求出所有的解.【题说】1963年成都市赛高二二试题3.【解】设这些连续正整数共n个(n>1),最小的一个数为a,则有a+(a+1)+…+(a+n-1)=1000即n(2a+n-1)=2000若n为偶数,则2a+n-1为奇数;若n为奇数,则2a+n-1为偶数.因a≣1,故2a+n-1>n.同,故只有n=5,16,25,因此可能的取法只有下列三种:若n=5,则a=198;若n=16,则a=55;若n=25,则a=28.故解有三种:198+199+200+201+20255+56+…+7028+29+…+52A2-002 N是整数,它的b进制表示是777,求最小的正整数b,使得N是整数的四次方.【题说】第九届(1977年)加拿大数学奥林匹克题3.【解】设b为所求最小正整数,则7b2+7b+7=x4素数7应整除x,故可设x=7k,k为正整数.于是有b2+b+1=73k4当k=1时,(b-18)(b+19)=0.因此b=18是满足条件的最小正整数.A2-003 如果比n个连续整数的和大100的数等于其次n个连续数的和,求n.【题说】1976年美国纽约数学竞赛题7.s2-s1=n2=100从而求得n=10.A2-004 设a和b为正整数,当a2+b2被a+b除时,商是q而余数是r,试求出所有数对(a,b),使得q2+r=1977.【题说】第十九届(1977年)国际数学奥林匹克题5.本题由原联邦德国提供.【解】由题设a2+b2=q(a+b)+r(0≢r<a+b),q2+r=1977,所以q2≢1977,从而q≢44.若q≢43,则r=1977-q2≣1977-432=128.即(a+b)≢88,与(a+b)>r≣128,矛盾.因此,只能有q=44,r=41,从而得a2+b2=44(a+b)+41(a-22)2+(b-22)2=1009不妨设|a-22|≣|b-22|,则1009≣(a-22)2≣504,从而45≢a≢53.经验算得两组解:a=50,b=37及a=50,b=7.由对称性,还有两组解a=37,b=50;a=7,b=50.A2-005 数1978n与1978m的最后三位数相等,试求出正整数n和m,使得m+n取最小值,这里n>m≣1.【题说】第二十届(1978年)国际数学奥林匹克题1.本题由古巴提供.【解】由题设1978n-1978m=1978m(1978n-m-1)≡0(mod 1000)理注解:设1978n=1000a+c 1978m=1000b+c 1978n-1978m=1000(a-b)因而1978m≡2m×989m≡0(mod 8),m≣31978n-m≡1(mod 125)注解:1978m(1978n-m-1)这两式的乘积要为1000整除,显然1978m这式为8的倍数,另一式为125的倍数。

历届奥数数论竞赛题讲解精选

历届奥数数论竞赛题讲解精选

历届奥数数论竞赛题讲解精选数论作为数学的一个分支,被广泛地应用于各个领域。

而奥林匹克数学竞赛(简称奥数)又是世界范围内最具影响力的数学竞赛之一。

在奥数竞赛中,数论作为一个重要的考察内容,经常出现各种难度的题目。

本文将为大家选取历届奥数数论竞赛题,并进行详细讲解。

1. 题目一在2020年奥数竞赛中,一道数论题目引起了广泛关注。

题目如下:给定正整数n,如果n的某个正因数不能被表示为其他两个正因数的和,我们称n为一个"奇异数"。

求不超过1000的奇异数的个数。

解析:根据题目要求,我们需要找到不超过1000的所有奇异数。

首先,我们可以先列举出这些数:1,2,3,5,7,11,13,...。

观察这个序列,我们可以发现,这些数正好是质数。

因为质数不能被其他正因数整除,所以不存在两个正因数的和等于质数。

因此,我们可以得出结论,在不超过1000的范围内,奇异数的个数等于质数的个数。

2. 题目二在2018年奥数竞赛中,出现了一道较为复杂的数论题。

题目如下:给定正整数n,求满足a^2+b^2=n的正整数解的个数。

解析:这是一道求解平方和的题目。

我们可以使用穷举法来解决。

首先,我们可以假设a和b的范围为0到√n。

然后,我们逐个尝试每一个可能的a和b的组合,计算是否满足条件a^2+b^2=n。

如果满足条件,则计数器加一。

最后,我们输出计数器的值,即为满足条件的正整数解的个数。

3. 题目三在2015年奥数竞赛中,一道有关数论的应用题成为了考察焦点。

题目如下:一共有10个村庄,每个村庄里住着不同数量的人。

为了公平起见,我们需要将这10个村庄分成两组,使得这两组村庄中的人数之和相等。

请问有多少种分组方法?解析:这是一道组合问题。

我们可以利用深度优先搜索(DFS)来解决。

首先,我们将10个村庄的人数记为数组arr。

然后,我们计算出总人数的一半sum。

接下来,我们定义一个递归函数dfs,函数参数包括当前索引index,当前结果curSum,以及当前已经选择的村庄数目count。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Problem 2.
Let P be a regular 2006-gon. A diagonal of P is called good if its endpoints divide the boundary of P into two parts, each composed of an odd number of sides of P . The sides of P are also called good .
C M

I P A B
ω
Let Ω be the circumcircle of triangle ABC . It is a well-known fact that the centre of ω is the midpoint M of the arc BC of Ω. This is also the point where the angle bisector AI intersects Ω. From triangle AP M we have AP + P M ≥ AM = AI + IM = AI + P M. Therefore AP ≥ AI . Equality holds if and only if P lies on the line segment AI , which occurs if and only if P = I .
2
Problem 5. Let P (x) be a polynomial of degree n > 1 with integer coefficients and let k be a positive integer. Consider the polynomial Q(x) = P (P (. . . P (P (x)) . . .)), where P occurs k times. Prove that there are at most n integers t such that Q(t) = t. Problem 6. Assign to each side b of a convex polygon P the maximum area of a triangle that has b as a side and is contained in P . Show that the sum of the areas assigned to the sides of P is at least twice the area of P .
Probleem 3. Bepaal die kleinste re¨ ele getal M waarvoor d ab(a2 − b2 ) + bc(b2 − c2 ) + ca(c2 − a2 ) vir alle re¨ ele getalle a, b en c geld.
M(
Contents
la
47th International Mathematical Olympiad Slovenia 2006
12 Julie 2006
Problems with Solutions
Probleem 1. Laat I die middelpunt van die ingeskrewe sir ’n punt binne die driehoek sodat ˆ + P CA ˆ = P BC ˆ + P CB. ˆ P BA Bewys dat: • AP AI ;
Problems Solutions Problem Problem Problem Problem Problem Problem 5 7 7 7 8 10 10 11
1 2 3 4 5 6
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
Problems
Problem 1. Let ABC be a triangle with incentre I . A point P in the interior of the triangle satisfies ∠P BA + ∠P CA = ∠P BC + ∠P CB. Show that AP ≥ AI , and that equality holds if and only if P = I . Problem 2. Let P be a regular 2006-gon. A diagonal of P is called good if its endpoints divide the boundary of P into two parts, each composed of an odd number of sides of P . The sides of P are also called good . Suppose P has been dissected into triangles by 2003 diagonals, no two of which have a common point in the interior of P . Find the maximum number of isosceles triangles having two good sides that could appear in such a configuration. Problem 3. Determine the least real number M such that the inequality ab(a2 − b2 ) + bc(b2 − c2 ) + ca(c2 − a2 ) ≤ M a2 + b2 + c2 holds for all real numbers a, b and c. Problem 4. Determine all pairs (x, y ) of integers such that 1 + 2x + 22x+1 = y 2 .
• gelykheid geld as en slegs as P = I .
Probleem 2. Gegee ’n re¨ elmatige 2006-hoek P . ’n Diagona as sy eindpunte die rand van P in twee dele verdeel wat elk P bestaan. Die sye van P word ook goed genoem. Nou word P opgedeel in driehoeke deur 2003 diagonale, wa skaplike punt binne P het nie. Vind die grootste aantal gelyk goeie sye wat op hierdie wyse kan ontstaan.
6
Solutions
Problem 1.
Let ABC be a triangle with incentre I . A point P in the interior of the triangle satisfies ∠P BA + ∠P CA = ∠P BC + ∠P CB. Show that AP ≥ AI , and that equality holds if and only if P = I . Solution. Let ∠A = α, ∠B = β , ∠C = γ . Since ∠P BA + ∠P CA + ∠P BC + ∠P CB = β + γ , the condition from the problem statement is equivalent to ∠P BC + ∠P CB = (β + γ )/2, i. e. ∠BP C = 90◦ + α/2. On the other hand ∠BIC = 180◦ − (β + γ )/2 = 90◦ + α/2. Hence ∠BP C = ∠BIC , and since P and I are on the same side of BC , the points B , C , I and P are concyclic. In other words, P lies on the circumcircle ω of triangle BCI .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
.பைடு நூலகம். . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
8 Suppose P has been dissected into triangles by 2003 diagonals, no two of which have a common point in the interior of P . Find the maximum number of isosceles triangles having two good sides that could appear in such a configuration. Solution 1. Call an isosceles triangle good if it has two odd sides. Suppose we are given a dissection as in the problem statement. A triangle in the dissection which is good and isosceles will be called iso-good for brevity. Lemma. Let AB be one of dissecting diagonals and let L be the shorter part of the boundary of the 2006-gon with endpoints A, B . Suppose that L consists of n segments. Then the number of iso-good triangles with vertices on L does not exceed n/2.
相关文档
最新文档