教师资格证数学学科知识与教学能力(高中数学) 知识点背诵(考前版)
中学教师资格(数学学科知识与教学能力)考试题库(简答题汇总)

中学教师资格(数学学科知识与教学能力)考试题库(简答题汇总)简答题1.某投资人本金为A元。
投资策略为:(1)一年连续投资n次,每个投资周期为(2)在每个投资周期中,利率均为(3)总是连本带息滚动投资。
回答下列问题:(1)一年后的资金总额?答案:2.阐述用二分法求解方程近似解的适用范围及步骤,并说明高中数学新课程引入二分法的意义。
答案:由函数的零点与相应方程根的关系,我们可用二分法来求方程的近似解。
利用二分法求方程的近似解时,首先需要有初始搜索区间,即一个存在解的区间(要用到此区间的两端点),为此,有时需要初步了解函数的性质或形态;其次需要有迭代,即循环运算的过程,具体表现在不断‚二分‛搜索区间;最后需要有一个运算结束的标志,即当最终搜索区间的两端点的精确度均满足预设的要求时(两端点的近似值相同),运算终止。
3.函数单调性是刻画函数变化规律的重要概念,也是函数的一个重要性质。
(1)请叙述函数严格单调递增的定义,并结合函数单调性的定义,说明中学数学课程中函数单调性与哪些内容有关(至少列举出两项内容);(7分)(2)请列举至少两种研究函数单调性的方法,并分别简要说明其特点。
(8分)答案:本题主要考查函数单调性的知识,考生对中学课程内容的掌握以及考生的教学设计能力。
4.‚两角差的余弦公式‛是高中数学必修4中的内容‚经历用向量的数量积推出两角差的余弦公式的过程,进一步体会向量方法的作用‛请完成‚两角差的余弦公式推导过程‛教学设计中的下列任务:(1)分析学生已有的知识基础;(2)确定学生学习的难点;(3)写出推导过程。
答案:本题主要以高中数学必修4中‚两角差的余弦公式‛为例,考查三角函数的基础知识、课程概述及教学设计工作等相关知识,比较综合性地考查学科知识、课程知识以及教学技能的基本知识和基本技能。
(1)学生已有的知识基础:高一学生已经学习了《平面向量》和《三角函数》的知识,从日常教学所反应的学生特点来看,学生对类比和分类讨论的思想有所体会,但是还是只停留在体会阶段,没有办法真正灵活的运用。
2024下半年教师资格证笔试预测知识点-高中数学

2024年下半年全国教师资格证考试重点知识高中数学知识点·极限1.洛必达法则(1)概念:在分子与分母导数都存在的情况下,分别对分子分母进行求导运算,直到该极限的类型为可以直接代入求解即可.(2)适用类型:通常情况下适用于00型或者是∞∞型极限.2.利用两个重要极限0sin lim 1x x x →=,1lim 1e x x x →∞⎛⎫+= ⎪⎝⎭(或()10lim 1e x x x →+=).知识点·导数1.导数的几何意义函数()f x 在点0x 处的导数()'0f x 的几何意义是在曲线()y f x =上点()()00,x f x 处的切线的斜率.相应地,切线方程为()()()'000y f x f x x x -=-.2.导数的运算法则(1)()()()()'''f x g x f x g x ⎡±⎤=±⎣⎦.(2)()()()()()()'''f x g x f x g x f x g x ⎡⋅⎤=+⎣⎦.(3)()()()()()()()()()'''20f x f x g x f x g x g x g x g x ⎡⎤-=≠⎢⎥⎢⎥⎣⎦.3.导数与函数的单调性在某个区间(),a b 内,如果()'0f x >,那么函数()y f x =在这个区间内是增加的;如果()'0f x <,那么函数()y f x =在这个区间内是减少的.知识点·行列式的基本性质1.行列式的值等于其转置行列式的值,即T D D =.2.行列式中任意两行(列)位置互换,行列式的值反号.3.若行列式中两行(列)对应元素相同,行列式值为零.4.若行列式中某一行(列)有公因子k ,则公因子k 可提取到行列式符号外,即nn n n sn s s n a a a ka ka ka a a a212111211nnn n sn s s n a a a a a a a a a k 212111211=.5.行列式中若一行(列)均为零元素,则此行列式值为零.6.行列式中若两行(列)元素对应成比例,则行列式值为零.知识点·齐次线性方程组1.解的情况(1)当()rA n =,齐次线性方程组只有零解.(2)当()r A n <,齐次线性方程组有非零解.2.解的性质(1)方程组(a )的两个解的和还是方程组(a )的解;(2)方程组(a )的一个解的倍数还是方程组(a )的解.3.基础解系(1)齐次线性方程组(a )的一组解12,,,t ηηηL 称为(a )的一个基础解系,如果①方程组(a )的任何一个解都能表成12,,,t ηηηL 的线性组合;②12,,,t ηηηL 线性无关.(2)在齐次线性方程组(a )有非零解的情况下,它有基础解系,并且基础解系所含解的个数等于n r -,这里r 表示系数矩阵的秩(n r -也就是自由未知量的个数).知识点·非齐次线性方程组1.线性方程组有解的判别定理线性方程组(b )有解的充分必要条件为()()rA r A =.方程组Axb =(A 为m n ⨯矩阵)解的情况:()(r A r A n ==⇔有唯一解()(r A r A n =<⇔有无穷多解()1()r A r A +=⇔无解,即b 不能由A 的列向量线性表出.2.解的性质(1)线性方程组(b )的两个解的差是它的导出组(a )的解.(2)线性方程组(b )的一个解与它的导出组(a )的一个解之和还是线性方程组(b )的解.(3)如果0γ是线性方程组(b )的一个特解,那么方程组(b )的任一个解γ都可表示成0γγη=+,其中η是导出组(a )的一个解.因此,对于方程组(b )的任一个特解0γ,当η取遍它的导出组的全部解时,0γγη=+就给(b )的全部解.(4)在方程组(b )有解的条件下,解是唯一的充分必要条件是它的导出组(a )只有零解.知识点·向量组的线性相关性1.基本概念线性相(无)关向量组12,,,s ααα 称为线性相关,如果有数域P 中不全为零的数12,,,s k k k ,使11220s s k k k ααα+++= ,否则称12,,,s ααα 是线性无关的.注:任意一个包含零向量的向量组一定是线性相关的.2.向量组线性关系的判定(1)向量组12,,,(2)s s ααα≥L 线性相关的充要条件是其中至少有某一向量(1)i i s α≤≤可由其余向量线性表示.(2)如果一向量组的一部分线性相关,那么这个向量组就线性相关;也就是说如果一向量组线性无关,那么它的任何一个非空的部分组也线性无关.3.极大线性无关组若向量组12,,,s ααα 的一部分向量12,,,i i ir ααα 满足:(1)12,,,i i ir ααα 线性无关;(2)12,,,s ααα 中的任一向量i α均可由其线性表示;则称此部分向量组12,,,i i ir ααα 为原向量组的一个极大线性无关组.4.性质(1)任意一个极大线性无关组都与向量组自身等价.(2)向量组的极大线性无关组不一定唯一,但任意两个极大线性无关组等价.5.向量组的秩向量组的极大线性无关组所含向量的个数称为这个向量组的秩.(1)秩为r 的n 维向量组中的任意r 个线性无关的向量都是向量组的一个极大线性无关组.(2)等价的向量组必有相同的秩.(秩相同的向量组未必等价);注:考虑到线性无关的向量组就是它自身的极大线性无关组,因此一向量组线性无关的充要条件是它的秩与它所含向量的个数相同.(3)设12,,,r αααL 与12,,,s βββL 两个向量组,如果向量组12,,,r αααL 可以由12,,,s βββL 线性表出,则()()1212,,,,,,r s r r αααβββ≤ .6.矩阵的秩矩阵的行向量组的秩称为矩阵的行秩,矩阵的列向量组的秩称为矩阵的列秩,对任意矩阵,行秩=列秩=矩阵的秩.矩阵A 的秩是r 的充分必要条件为A 中有一个r 阶子式不为零,同时所有1r +阶子式全为零.n n ⨯矩阵的行列式为零的充要条件是它的秩小于n .知识点·线面位置关系1.两个平面间的关系1111122222:0,:0A x B y C z D A x B y C z D ∏+++=∏+++=,则1∏∥2∏11112222A B C D A B C D ⇔==≠;121212120A A B B C C ∏⊥∏⇔++=;1∏与2∏的夹角θ(法向量间的夹角,不大于90)满足:1212cos n n n n θ⋅== 2.两条直线间的关系设1111111:x x y y z z L l m n ---==,2222222:x x y y z z L l m n ---==,则1L ∥2L 111222l m n l m n ⇔==,且111(,,)x y z 不满足2L 的方程;121212120L L l l m m n n ⊥⇔++=;1L 与2L 的夹角θ(方向向量间的夹角,不大于90度)满足cos θ=.3直线和它在平面投影直线所夹锐角θ称为直线与平面的夹角.当直线与平面垂直时,规定夹角为2π.000:x x y y z z L l m n ---==,:0Ax By Cz D ∏+++=,{,,},{,,}s l m n n A B C == ,则L ∥∏s n ⇔⊥ ,即0Al Bm Cn ++=且0000Ax By Cz D +++≠;L ⊥∏s ⇔ ∥n ,即A B C l m n ==;L 与∏的夹角,2s n πθ=-〈〉 ,sin θ=.知识点·古典概型与几何概型1.古典概型(1)具有以下两个特点的概率模型称为古典概率模型,简称古典概型.①试验的所有可能结果只有有限个,每次试验只出现其中的一个结果.②每一个试验结果出现的可能性相等.(2)如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是1n ;如果某个事件A 包括的结果有m 个,那么事件A 的概率()m P A n =.2.几何概型如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.(1)要切实理解并掌握几何概型试验的两个基本特点①无限性:在一次试验中,可能出现的结果有无限多个.②等可能性:每个结果的发生具有等可能性.(2)几何概型中,事件A 的概率计算公式()A P A =构成事件的区域测度(长度、面积、体积等)试验全部结果构成的区域测度(长度、面积、体积等).。
教师资格证数学学科(高中数学)-精选.pdf

13. 问题解决教学
⑴ 数学问题的设计原则:可行性原则、渐进性原则、应用性原则
⑵ 纯粹数学问题解决:波利亚怎样解题表(分析题意;拟定计划;执行计划;验算所
得到的解)
⑶ 非常规问题解决:建模分析(分析问题背景,寻找数学联系;建立数学模型;求解
数学模型;检验;交流和评价;推广) 14. 学习方式:自主学习、探究学习、合作学习
⑶ 高中数学课程有助于学生认识数学的应用价值,增强应用意识。
⑷ 高中数学是学习高中物理、化学等其他课程的基础。
2. 高中数学课程的基本理念:
⑴ 高中数学课程的定位:面向全体学生;不是培养数学专门人才的基础课。
⑵ 高中数学增加了选择性(整个高中课程的基本理念) :为学生发展、培养自己的兴趣、
特长提供空间。
⑶ 自学辅导法:卢仲衡教授提出,要求学生肯自学、能自学、会自学、爱自学
⑷ 发现法:又称问题教学法(布鲁纳) ,步骤是创设问题情境;寻找问题答案,探讨问
题解法;完善问题解答,总结思路方法;知识综合,充实改善学生的知识结构。
10. 概念教学
⑴ 概念的内涵与外延:当概念的内涵扩大时,则概念的外延就缩小;当概念的内涵缩
过程性评价。
3. 高中数学课程的目标:
⑴ 总目标:使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的
数学素养,以满足个人发展与社会进步的需要。
⑵ 三维目标:知识与技能、过程与方法、情感态度与价值观
⑶ 把“过程与方法”作为课程目标是本次课程改革最大的变化之一。
⑷ 五大基本能力:计算能力、逻辑推理能力、空间想象能力、抽象概括能力、数据处理能
力
4. 高中数学课程的主线:
函数主线、运算主线、几何主线、算法主线、统计概率主线、应用主线。
高中数学教资知识点全总结

高中数学教资知识点全总结一、数学基本概念1.数与代数数是数学的基本概念,数可分为整数、有理数、无理数等。
整数包括正整数、负整数和零,有理数包括有限小数和循环小数,无理数是不能表示为有理数比的数。
代数是对数的一般性质的研究。
代数包括算式、方程、不等式等内容。
2.函数与方程函数是数学中的一个基本概念,它的主要特点是对应关系。
函数的概念、性质、表示法等是高中数学的重要内容。
方程是数学中的一个基本概念,它是等式的一种特殊形式。
方程的解、方程的应用等是高中数学的重要内容。
3.集合与概率集合是数学中的一个基本概念,它是一个包含元素的整体。
集合的基本概念、集合的运算、集合的应用等是高中数学的重要内容。
概率是数学中的一个基本概念,它是描述随机事件发生可能性的概念。
事件的概率、概率的性质、概率的应用等是高中数学的重要内容。
二、代数1.数学归纳法数学归纳法是对自然数性质的一种归纳证明方法,它的基本思想是证明n=k成立,然后证明n=k+1也成立。
2.函数的概念与性质函数是数学中的一个基本概念,它的主要特点是对应关系。
函数的定义、函数的性质、函数的图像等是高中数学的重要内容。
3.一元二次方程一元二次方程是数学中重要的一种方程,它的一般形式为ax²+bx+c=0。
求一元二次方程的解的方法有开平方法、配方法、公式法等。
4.多项式多项式是数学中的一个基本概念,它包含有限个单项式的和。
多项式的加法、减法、乘法、除法等是高中数学的重要内容。
5.不等式不等式是数学中的一个基本概念,它是比较两个数的大小的一种数学陈述。
不等式的解、不等式的性质、不等式的应用等是高中数学的重要内容。
三、几何1.向量向量是数学中的一个基本概念,它有大小和方向。
向量的基本概念、向量的运算、向量的几何应用等是高中数学的重要内容。
2.平面向量平面向量是数学中的一个基本概念,它在平面内的两个互相平行且等长的向量称为平面向量。
平面向量的定义、平面向量的性质、平面向量的应用等是高中数学的重要内容。
教师资格考试高级中学数学简答题论述题必背知识点

教师资格考试高级中学数学简答题论述题必背知识点国家教师资格考试高级中学数学学科必背知识点本质属性的思维过程。
抽象是在对事物的属性做分析、学生兴趣和未来的发展,为进一步获得较高问题的能力。
国家教师资格考试高级中学数学学XXX必背知识点一、高中数学必修内容与选修内容1.必修一(集合、函数概念与基本初等函数Ⅰ)2.必修二(立体几何初步、平面解析集合初步)3.必修三(算法初步、统计、概率)4.必修四(基本初等函数Ⅱ(三角函数)、平面向量、三角恒等变换)5.必修五(解三角形、数列、不等式)6.选修内容(常用逻辑用语、圆锥曲线与方程、空间向量与立体几何、导数及其应用、推理与证明、数系的扩充与复数的引入、计数原理、统计案例、概率、坐标系与参数方程、不等式选讲)二、高中数学的基础性含义:1.自己的基础基础性,因为高中数学面向的是局部学生,以是它包罗数学最基础的知识。
2.高中数学包罗必修与选修的内容均为基础的数学内容,必修内容满足学生的共同数学需求,选修内容满足学生的不同数学需求。
3.为其他学科(物理、化学)的研究提供知识基础,因为高中数学课程包罗最基本的“内容”和“头脑”贯串高中数学课程一直。
4.为当前高等教诲理工科的进修打下基础,为当前生活、研究、工作提供所必备的知识基础,为学生未来发展奠定基础。
三、数学的抽象性(一)抽象是在思想中抽取事物本质属性,舍弃非综合、比较、概括的基础上进行的,它是认识事物本质、掌握事物内在规律的思维方法。
抽象性是数学的基本特点之一,数学的抽象性提现在它所研究的对象是完全舍弃具体事物的一切具体内容而只考虑其量的关系与空间形式。
(二)数学的抽象性可以归纳为以下几类:(1)不仅数学概念是抽象的,数学方法也是抽象的,并且大量使用抽象的符号;(2)数学的抽象是逐级抽象的,下一次的抽象是以前一次的抽象材料为其具体背景;(3)高度的抽象必然有高度的概括。
(三)首先要着重培养学生的抽象思维能力。
所谓抽象思惟本领,是指脱离具体形象,运用概念、判断、推理等进行思维的能力。
2021年教师资格证数学学科知识与教学能力知识点大全

2021年教师资格证数学学科知识与教学能力资料大全数学公式一、函数、导数1.函数的单调性⑴设x1、x2∈[a,b]且x1<x2。
那么f(x1)−f(x2)<0⇔f(x)在[a,b]上是增函数;f(x1)−f(x2)>0⇔f(x)在[a,b]上是减函数。
⑵设函数y=f(x)在某个区间内可导,若f′(x)>0,则在该区间内f(x)为增函数;若f′(x)<0,则在该区间内f(x)为减函数2.函数的奇偶性(该函数的定义域关于原点对称)对于定义域内任意的x,都有f(−x)=f(x),则f(x)是偶函数;对于定义域内任意的x,都有f(−x)=−f(x),则f(x)是奇函数。
奇函数的图象关于原点对称,偶函数的图象关于 y轴对称。
3.函数在点x0处的导数的几何意义函数y=f(x)在点x0处的导数f′(x0)是曲线y=f(x)在P(x0,f(x0))处的切线的斜率,相应的切线方程是y−f(x0)=f′(x0)(x−x0)。
4.几种常见函数的导数C′=0(C为常数);(a x)′=a x ln a;(x n)′=nx n−1(n∈Q);(e x)′=e x;(sin x)′=cos x;(cos x)′=−sin x;(arc sin x)′=−(arc cos x)′=;√2(arc tan x)′=−(arc cot x)′=1;1+x2(ln x)′=1;(log a x)′=1x ln a;x5.导数的运算法则(u±v)′=u′±v′;(uv)′=u′v+uv′;u=f(x),v=g(u),v′=g′(u)u′α6.减函数增函数增函数7. 0⑴ 如果在x 0附近的左侧f ′(x 0)>0,右侧f ′(x 0)<0,则f (x 0)是极大值; ⑵ 如果在x 0附近的左侧f ′(x 0)<0,右侧f ′(x 0)>0,则f (x 0)是极小值; 8. 凹凸函数:设f (x )在开区间I 上存在二阶导数:⑴ 若对任意x ∈I ,有f “(x )>0,则f (x )在I 上为下凸函数; ⑵ 若对任意x ∈I ,有f “(x )<0,则f (x )在I 上为上凸函数; 二、 三角函数、三角变换、解三角形、向量 9. 同角三角函数的基本关系式sin 2θ+cos 2θ=1,tan θ=sin θcos θ,tan θ∙cot θ=1 10. 正弦、余弦的诱导公式sin (kπ2±α)={(−1)k2sin α(−1)k−12cos α (k 为偶数)(k 为奇数) cos (kπ2±α)={(−1)k2cos α(−1)k+12sin α (k 为偶数)(k 为奇数)11. 和角与差角公式sin (α±β)=sin αcos β±cos αsin β; cos (α±β)=cos αcos β∓sin αsin β;tan (α±β)=tan α±tan β1∓tan αtan βαsin α+b cos α=√a 2+b 2sin (α±φ)(辅助角φ所在象限由点(a,b )的象限决定, tan θ=ba ) 12. 二倍角公式sin 2α=2sin αcos α;cos 2α=cos 2α−sin 2α=2cos 2α−1=1−2sin 2α;tan 2α=2tan α1−tan 2α13. 三角函数的周期函数y=A sin(ωα+φ),x∈R及函数y=A cos(ωα+φ),x∈R(A,ω,φ为常数,且A≠0,ω>0)的周期T=2πω;函数y=A tan(ωα+φ),x≠kπ+π2,k∈Z(A,ω,φ为常数,且A≠0,ω>0)的周期T=πω。
2021年高中数学教师资格证考试重点知识点梳理汇总

2021年高中数学教师资格证考试重点知识点梳理汇总2021年高中数学教师资格证考试重点知识点梳理汇总人教版必修一第一章集合与函数概念1.1集合知识点梳理(一)集合1.集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2.集合中的元素的三个特性:确定性、互异性、无序性。
说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3.集合的表示:(1) {… }如{我校的篮球队员}, {太平洋,大西洋, 印度洋,北冰洋}(2)用拉丁字母表示集合: A={我校的篮球队员},B={1,2,3,4,5}(3)集合的表示方法:列举法与描述法。
列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
用确定的条件表示某些对象是否属于这个集合的方法。
(1)语言描述法:例: {不是直角三角形的三角形}(2)数学式子描述法:例:不等式 x-3>2 的解集是{x R|x-3>2}或{x|x-3>2}(4)常用数集及其记法:非负整数集(即自然数集)N, 正整数集 N*或 N+ , 整数集 Z , 有理数集 Q , 实数集 R(5)元素与集合的关系:集合的元素通常用小写的拉丁字母表示,如: a 是集合 A 的元素,就说 a 属于集合 A 记作,相反, a 不属于集合 A 记作。
4.集合的分类:2021年高中数学教师资格证考试重点知识点梳理汇总(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:(二)集合间的基本关系1.“包含”关系—子集有两种可能有两种可能(1)A 是 B 的一部分;(2)A 与 B 是同一集合。
2023下半年教资笔试高中数学

2023下半年教资笔试高中数学一、引言高中数学作为教资笔试的一部分,是考察考生对高中数学知识的掌握和应用能力。
2023下半年的教资笔试中,高中数学是一个重要的考点,考生需要掌握一定的数学知识和解题技巧,才能在考试中取得好成绩。
二、数列与数列的表示在高中数学中,数列是一个重要的概念。
数列是指由一系列有序的数按照一定规律排列而成的序列。
数列可以用通项公式、递推公式等方式来表示。
通项公式是指数列中的第n个数与n之间的关系式,递推公式是指数列中的第n个数与前面的数之间的关系式。
三、等差数列和等差数列的性质等差数列是指数列中相邻两项之间的差值保持不变的数列。
等差数列的通项公式为an=a1+(n-1)d,其中an表示数列中的第n个数,a1表示数列中的第一个数,d表示公差。
等差数列具有很多重要的性质,如任意三项成等差中项、等差数列的和等于项数乘以首尾两项的和等等。
四、等比数列和等比数列的性质等比数列是指数列中相邻两项之间的比值保持不变的数列。
等比数列的通项公式为an=a1*q^(n-1),其中an表示数列中的第n个数,a1表示数列中的第一个数,q表示公比。
等比数列也具有很多重要的性质,如任意三项成等比中项、等比数列的和等于首项乘以公比的幂次减一除以公比减一等等。
五、数列求和与数列的应用数列求和是指计算数列中一定范围内的数的和。
对于等差数列,求和公式为Sn=n/2(2a1+(n-1)d),其中Sn表示数列中前n项的和;对于等比数列,求和公式为Sn=a1(q^n-1)/(q-1),其中Sn表示数列中前n项的和。
数列的应用广泛,如在数学、物理等领域中,可以用数列解决一些实际问题。
六、函数与方程函数是数学中的一个重要概念,它是一个自变量和因变量之间的关系。
方程是指数学中等式两边含有未知数的关系式。
在高中数学中,函数和方程是重要的考点,考生需要掌握函数的定义、函数的图像、函数的性质等知识,以及方程的解法和方程的应用等内容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章课程知识1.高中数学课程的地位和作用:1高中数学课程是义务教育后普通高级中学的一门主要课程,它包含了数学中最基本的内容,是培养公民素质的基础课程。
2高中数学对于认识数学与自然界、数学与人类社会的关系,提高提出问题、分析和解决问题的能力,形成理性思维,发展智力和创新意识具有基础性的作用。
3高中数学课程有助于学生认识数学的应用价值,增强应用意识。
4高中数学是学习高中物理、化学等其他课程的基础。
2.高中数学课程的基本理念:1高中数学课程的定位:面向全体学生;不是培养数学专门人才的基础课。
2高中数学增加了选择性(整个高中课程的基本理念):为学生发展、培养自己的兴趣、特长提供空间。
3让学生成为学习的主人:倡导自主学习、合作学习;帮助学生养成良好的学习习惯。
4提高学生数学应用意识:是数学科学发展的要求;是培养创新能力的需要;是培养学习兴趣的需要;是培养自信心的需要;数学应用的广泛性需要学生具有应用意识。
5强调培养学生的创新意识:强调发现和提出问题;强调归纳、演绎并重;强调数学探究、数学建模。
6重视“双基”的发展(数学基础知识和基本能力):理解基本的数学概念和结论的本质;强调概念、结论产生的背景;强调体会其中所蕴含的数学思想方法。
7强调数学的文化价值:数学是人类文化的重要组成部分;《新课标》强调了数学文化的重要作用。
8全面地认识评价:学习结果和学习过程;学习的水平和情感态度的变化;终结性评价和过程性评价。
3.高中数学课程的目标:1总目标:使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。
2三维目标:知识与技能、过程与方法、情感态度与价值观3把“过程与方法”作为课程目标是本次课程改革最大的变化之一。
4五大基本能力:计算能力、逻辑推理能力、空间想象能力、抽象概括能力、数据处理能力4.高中数学课程的内容结构:1必修课程(每模块2学分,36学时):数学1(集合、函数)、数学2(几何)、数学3(算法、统计和概率)、数学4(三角函数、向量)、数学5(解三角形、数列、不等式)2选修课程(每模块2学分,36学时;每专题1学分,18学时):①选修系列1(文科系列,2模块):1-1(“或且非”、圆锥曲线、导数)、1-2(统计、推理与证明、复数、框图)②选修系列2(理科系列,3模块):2-1(“或且非”、圆锥曲线、向量与立体几何)、2-2(导数、推理与证明、复数)、2-3(技术原理、统计案例、概率)③选修系列3(6个专题)④选修系列4(10个专题)5.高中数学课程的主线:函数主线、运算主线、几何主线、算法主线、统计概率主线、应用主线。
6.教学建议:1以学生发展为本,指导学生合理选择课程、制定学习计划2帮助学生打好基础,发展能力:①强调对基本概念和基本思想的理解和掌握②重视基本技能的训练③与时俱进地审视基础知识与基本能力3注重联系,提高对数学整体的认知4注重数学知识与实际的联系,发展学生的应用意识和能力5关注数学的文化价值,促进学生科学观的形成6改善教与学的方式,使学生主动地学习7恰当运用现代信息技术,提高教学质量7.评价建议:1重视对学生数学学习过程的评价2正确评价学生的数学基础知识和基本能力3重视对学生能力的评价(问题意识、独立思考、交流与合作、自评与互评)4实施促进学生发展的多元化评价(尊重被评价对象)5根据学生的不同选择进行评价第二章教学知识8.教学原则抽象与具体相结合、严谨性与量力性相结合原则(“循序渐进”)、理论与实际相结合原则(“学以致用”)、巩固与发展相结合原则(“温故而知新”)9.教学过程备课(备教材、备学生、备教法)、课堂教学(组织教学、复习提问、讲授新课、巩固新课、布置作业)、课外工作(作业批改、课外辅导、数学补课活动)、成绩的考核与评价(口头考察、书面考察)、教学评价(导向作用、鉴定作用、诊断作用、信息反馈与决策调控作用)10.教学方法1讲授法:科学性、系统性(循序渐进)、启发性、量力性(因材施教)、艺术性(教学语言)2讨论法:体现“学生是学习的主体”的特点。
3自学辅导法:卢仲衡教授提出,要求学生肯自学、能自学、会自学、爱自学4发现法:又称问题教学法(布鲁纳),步骤是创设问题情境;寻找问题答案,探讨问题解法;完善问题解答,总结思路方法;知识综合,充实改善学生的知识结构。
11.概念教学1概念的内涵与外延:当概念的内涵扩大时,则概念的外延就缩小;当概念的内涵缩小时,则概念的外延就扩大。
内涵和外延之间的这种关系,称为反变关系。
2概念间的逻辑关系:相容关系(同一关系如“等边三角形”和“正三角形”、交叉关系如“等腰三角形”和“直角三角形”、包含关系如“菱形”和“四边形”)、不相容关系(对立关系如“正数”和“负数”、矛盾关系如“负数”和“非负数”)3概念下定义的常见方式:属加种差定义法(被定义的概念=最邻近的属概念+种差,如“有一个角是直角的平行四边形是矩形”)、解释外延定义法(不易揭示其内涵,如“有理数和无理数统称实数”)、描述性定义法(用简明清晰的语言描述,如“f (x)=xα”)4数学概念获得的主要方式:概念形成(由学生发现)、概念同化(教师直接展示定义)12.命题教学:整体性策略(旨在加强命题知识的横、纵向联系)、准备性策略(教学实施之前)、问题性策略(激发学生的积极性)、情境化教学、过程性策略(暴露命题产生于证明的“所以然”过程)、产生式策略(变式练习)13.推理教学1推理的结构:任何推理都是由前提和结论两部分组成的2推理的形式:演绎推理(由一般到特殊;前提真,结论真;三段论:大前提、小前提,得推理)、归纳推理(由特殊到一般)、类比推理(由特殊到特殊)14.问题解决教学1数学问题的设计原则:可行性原则、渐进性原则、应用性原则2纯粹数学问题解决:波利亚怎样解题表(分析题意;拟定计划;执行计划;验算所得到的解)3非常规问题解决:建模分析(分析问题背景,寻找数学联系;建立数学模型;求解数学模型;检验;交流和评价;推广)15.学习方式:自主学习、探究学习、合作学习第三章教学技能16.教学设计1课堂教学设计就是在课堂教学工作进行之前,以现代教育理论为基础,应用系统科学方法分析研究课堂教学的问题,确定解决问题的方法和步骤,并对课堂教学活动进行系统安排的过程。
2教学设计与教案的关系:①内容不同:教学设计的基本组成既包括教学过程,也包括指导思想与理论依据、教学背景分析、对学生需要的分析、学习内容分析、教学方法与策略的选定、教学资源的设计与使用以及学习效果评价等。
侧重运用现代教学理论进行分析,不仅说明教什么、如何教,而且说明为什么这样教;教案的基本组成是教学过程,侧重教什么、如何教。
②核心目的不同:教学设计不仅重视教师的教,更重视学生的学,以及怎样使学生学得更好。
达到更好的教学效果是教学设计的核心目的;教案的核心目的就是教师怎样讲好教学内容。
③范围不同:从研究范围上讲,教案只是教学设计的一个重要内容。
3数学课堂教学设计的意义:①使课堂教学更规范、操作性更强②使课堂教学更科学③使课堂教学过程更优化4数学课堂教学设计的基本要求:①充分体现数学课程标准的基本理念,努力体现以学生发展为本②适应学生的学习心理和年龄特征③重视课程资源的开发和利用④注重预设与生成的辩证统一⑤辩证认识和处理教学中的多种关系⑥整体把握教学活动的结构5数学教学设计的准备:①认真学习新课标,了解当前我国数学课程的目标要求②全面关注学生需求③认真研读数学教材和参考书,领悟编写意图④广泛涉猎数学教育的其他优秀资源,吸取他人精华,丰富自己的教学设计⑤制定学期教学计划、单元教学计划6教材分析①分析和处理教材是教学设计的基本环节和核心任务②整体系统的观念用教材③理解教材的编排意图④突出教材的重点和难点7学情分析①分析学生原有的认知基础②分析学生的个体差异③了解学生的生理、心理④了解学生对本学科学习方法的掌握情况⑤分析学习知识时可能要遇到的困难8制定合理教学目标的要求①反映学科特点,体现内容本质②要有计划性,可评价性③格式要规范,用词要考究④要全面,不能“重知轻思”、“重知轻情”等⑤注意教学目标的层次性(记忆、理解、探究)⑥要实在具体,不浮华9教学反思①教学反思的内容:对教学设计、教学过程、教学效果、个人经验的反思②教学反思的步骤:截取课堂教学片段及其相关的教学设计;提炼反思的问题;个人撰写反思材料;集体讨论;个人再反思,并撰写反思论文10教学设计的撰写:①教学目标:知识与技能(了解、掌握、应用);过程与方法(提高能力);情感态度与价值观(体验规律、培养看问题的方法)②学情分析③教材分析:本节课的作用和地位;本节课的主要内容;重难点分析④教学理念⑤教学策略⑥教学环境⑦教学过程⑧教学反思17.教学实施1课堂导入:直接导入法、复习导入法、事例导入法(情境导入法)、趣味导入法、悬念导入法2课堂提问的原则:目的性原则、启发性原则、适度性原则、兴趣性原则、循序渐进性原则、全面性原则、充分思考性原则、及时评价性原则3课堂提问的类型:复习回忆提问、理解提问、应用提问、归纳提问、比较提问、分析综合提问、评价提问4学生活动:①学生活动体现了学生在学习中的主体地位②作为教学环节之一的“学生活动”是意义建构的组成部分③学生活动的目的是促进学生的理解④从总体上说,学生活动必须是思维活动5课堂结束技能的实施方法:练习法、比较法与归纳法、提问法和答疑法、呈上法和启下法、发散法和拓展法6结束技能实施时应注意的问题:自然贴切,水到渠成;语言精练,紧扣中心;内外沟通,立疑开拓18.教学评价1数学教育评价的要素:教学目标、教学内容、教学方法、教学心理环境、教师行为、学生行为、教学效果2数学教育评价的功能:管理功能、导向功能、调控功能、激发功能、诊断功能第四章常用数学公式一、函数、导数1.函数的单调性1设、且。
那么x 1x 2∈[a,b ]x 1<x 2在上是增函数;f (x 1)‒f (x 2)<0⇔f (x )[a,b ]在上是减函数。
f (x 1)‒f (x 2)>0⇔f (x )[a,b ]2设函数在某个区间内可导,若,则在该区间内为增函数;若y =f (x )f '(x )>0f (x )f ',则在该区间内为减函数(x )<0f (x )2.函数的奇偶性(该函数的定义域关于原点对称)对于定义域内任意的,都有,则是偶函数;x f (‒x )=f (x )f (x )对于定义域内任意的,都有,则是奇函数。
x f (‒x )=‒f (x )f (x )奇函数的图象关于原点对称,偶函数的图象关于轴对称。
y 3.函数在点处的导数的几何意义x 0函数在点处的导数是曲线在处的切线的斜率,相应y =f (x )x 0f '(x 0)y =f (x )P (x 0,f (x 0))的切线方程是。