摄影测量与遥感下遥感
测绘技术中的摄影测量与遥感技术

测绘技术中的摄影测量与遥感技术摄影测量与遥感技术是现代测绘技术中的两大重要分支,它们在地理信息系统、城市规划、环境监测等领域发挥着重要作用。
本文将探讨摄影测量与遥感技术的原理、应用以及未来发展趋势。
摄影测量是利用摄影测量仪器对地面目标进行拍摄和测量的技术,主要包括摄影测量测量、摄影测量地形图制图和摄影测量立体模型制作。
摄影测量技术的原理是通过测量航空和航天摄影的像点位置和连续帧之间的关系,推导出地物的真实位置和形状。
这种技术广泛应用于地图制作、地理信息系统和城市规划等领域。
例如,在地图制作中,摄影测量技术可以高精度地获取地表地形和地物信息,从而生成精确的地图。
而遥感技术是通过运用航空、航天等手段对地球表面进行远距离、非接触式的观测和获取地物信息的一种方法。
遥感技术的原理是利用电磁辐射的特性来探测和测量地球表面物体的信息。
遥感图像可以提供大范围、高分辨率的地物信息,不受地域和天气条件的限制。
遥感技术广泛应用于环境监测、资源调查、城市规划等领域。
例如,在环境监测中,遥感技术可以用于检测大气污染、土地利用变化等情况,帮助科学家分析环境问题并制定相应的解决方案。
摄影测量与遥感技术的结合能够提供更为全面和准确的地理信息。
通过将摄影测量的数据与遥感图像相结合,可以实现三维真实感地形模型的构建,并提供更详细的地物信息。
这种综合应用在城市规划和土地资源管理等方面具有重要意义。
例如,在城市规划中,摄影测量与遥感技术可以提供高精度的地形数据和地物信息,为城市规划者提供支持和决策依据。
同时,也可以实现城市更新和土地资源利用的监测和管理。
未来,随着摄影测量与遥感技术的不断进步,其在测绘领域的应用前景十分广阔。
首先,随着航空器和卫星技术的发展,高分辨率遥感图像将成为主流。
这将大大提高地物信息的获取精度和遥感图像的质量。
其次,随着计算机技术的进步,我们可以更好地利用摄影测量和遥感数据进行地理信息的处理和分析,实现更高效和准确的结果。
摄影测量与遥感技术专业介绍

摄影测量与遥感技术专业介绍摄影测量与遥感技术是一门综合性的学科,它结合了摄影测量和遥感技术两个领域的知识和技术,用于获取、处理和分析地球表面的信息。
摄影测量与遥感技术在地理信息系统、城市规划、环境监测、资源调查和军事侦察等领域有着广泛的应用。
摄影测量是利用摄影测量仪器对地面进行拍摄和测量的一种方法。
通过对空中或地面上的特定区域进行摄影测量,可以获取该区域的地理位置、地貌特征、地物分布等信息。
摄影测量技术主要包括摄像机、空中三角测量和数学模型等方面的知识。
摄影测量技术可以用于制作地形图、地籍调查、工程测量等领域。
遥感技术是利用遥感器对地球表面进行观测和测量的一种方法。
通过遥感技术,可以获取地球表面的光谱信息、形态特征、温度分布等数据。
遥感技术主要包括遥感传感器、数据处理和解译等方面的知识。
遥感技术可以用于土地利用监测、环境变化分析、资源调查等领域。
摄影测量与遥感技术的结合,可以充分发挥两者的优势,提高地球表面信息的获取和分析能力。
通过摄影测量与遥感技术,可以获取到更全面、更准确的地理信息。
同时,摄影测量与遥感技术可以进行多时相的观测和测量,可以对地球表面的变化进行监测和分析。
在地理信息系统领域,摄影测量与遥感技术可以用于数据采集、数据处理和数据分析等方面。
通过摄影测量与遥感技术获取的数据,可以建立地理信息数据库,为城市规划、交通管理、环境保护等提供决策支持。
在城市规划领域,摄影测量与遥感技术可以用于城市的空间分析和资源调查。
通过摄影测量与遥感技术,可以获取城市的地貌特征、土地利用状况、建筑物分布等信息,为城市规划和土地管理提供科学依据。
在环境监测领域,摄影测量与遥感技术可以用于监测大气污染、水质污染和土壤侵蚀等问题。
通过摄影测量与遥感技术,可以获取环境参数的时空分布信息,为环境保护和生态修复提供数据支持。
在资源调查领域,摄影测量与遥感技术可以用于矿产资源的勘探和农田资源的调查。
通过摄影测量与遥感技术,可以获取矿产资源的分布、储量和品位等信息,为资源开发和管理提供参考。
摄影测量与遥感技术

摄影测量与遥感技术作者:林青涛20世纪60年代以来,由于航天技术、计算机技术和空间探测技术及地面处理技术的发展,产生了一门新的学科——遥感技术。
所谓遥感就是在远离目标的地方,运用传感器将来自物体的电磁波信号记录下来并经处理后,用来测定和识别目标的性质和空间分布。
从广义上说,航空摄影是遥感技术的一种手段,而遥感技术也正是在航空摄影的基础上发展起来的。
一、摄影测量与遥感技术概念摄影测量与遥感学科隶属于地球空间信息科学的范畴,它是利用非接触成像和其他传感器对地球表面及环境、其他目标或过程获取可靠的信息,并进行记录、量测、分析和表达的科学与技术。
摄影测量与遥感的主要特点是在像片上进行量测和解译,无需接触物体本身,因而很少受自然和地理条件的限制,而且可摄得瞬间的动态物体影像。
二、摄影测量与遥感技术的发展1、摄影测量及其发展摄影测量的基本含义是基于像片的量测和解译,它是利用光学或数码摄影机摄影得到的影像,研究和确定被摄影物的形状、大小、位置、性质和相互关系的一门科学和技术。
其内容涉及被摄影物的影像获取方法,影像信息的记录和存储方法,基于单张或多张像片的信息提取方法,数据的处理和传输,产品的表达与应用等方面的理论、设备和技术。
摄影测量的特点之一是在影像上进行量测和解译,无需接触被测目标物体本身,因而很少受自然和环境条件的限制,而且各种类型影像均是客观目标物体的真实反映,影像信息丰富、逼真,人们可以从中获得被研究目标物体的大量几何和物理信息。
到目前为止,摄影测量已有近170年的发展历史了。
概括而言,摄影测量经历了模拟法、解析法和数字化三个发展阶段。
表1列出了摄影测量三个发展阶段的主要特点。
如果说从模拟摄影测量到解析摄影测量到解析摄影测量的发展是一次技术的进步,那么从解析摄影测量到数字摄影测量的发展则是一场技术的革命。
数字摄影测量与模拟、解析摄影测量的最大区别在于:它处理的原理信息不仅可以是航空像片经扫描得到的数字化影像或由数字传感器直接得到的数字影像,其产品的数字形式,更主要的是它最终以计算机视觉代替人眼的立体观测,因而它所使用的仪器最终只有通用的计算机及其相应的外部设备,故而是一种计算机视觉的方法。
测绘技术中的航空摄影测量与航空遥感技术对比分析

测绘技术中的航空摄影测量与航空遥感技术对比分析引言:测绘技术在现代社会中扮演着不可或缺的角色。
在测绘领域中,航空摄影测量和航空遥感技术是两个重要的手段。
本文将对这两种技术进行对比分析,探讨其优势与应用领域,从而为测绘工作者和科研人员提供参考。
一、航空摄影测量技术的概述航空摄影测量技术是指通过航空器搭载相机,通过摄影测量原理获取地面点的三维位置和形态信息的一种技术手段。
这种技术已经有近一个世纪的历史,并且在测绘、地理信息系统、城市规划等领域得到了广泛应用。
传统的航空摄影测量技术主要通过航片测量方法获取地面点的空间坐标,但其依赖于密集的控制点和准确的地面控制数据,成本较高且操作复杂。
二、航空遥感技术的概述航空遥感技术则是指利用航空器搭载的遥感传感器,以电磁波辐射的反射、发射或散射特性获取地表信息的一种技术手段。
航空遥感技术相比于航空摄影测量技术在数据获取方式和数据处理手段上具有一定的差异。
航空遥感技术利用光电传感器、热红外传感器等设备获取地表信息,并通过图像处理算法提取出有价值的地理信息。
三、航空摄影测量与航空遥感技术的对比1. 数据获取方式:航空摄影测量技术通过航空器搭载相机进行数据获取,主要获取的是地面物体的形态信息;而航空遥感技术则通过遥感传感器进行数据获取,主要获取地物的光谱、热红外等特征信息。
2. 数据处理手段:航空摄影测量技术主要通过摄影测量原理进行数据处理,包括航片的解译、立体量测等;而航空遥感技术则主要借助图像处理算法进行数据处理,包括图像分类、特征提取等。
3. 数据应用领域:航空摄影测量技术在测绘、地理信息系统等领域得到了广泛应用,尤其在3D建模、地图制作等方面发挥了重要作用。
航空遥感技术则在遥感地学、环境监测、农业资源调查等方面具有较大的应用潜力。
四、航空摄影测量与航空遥感技术的融合随着科技的发展,航空摄影测量与航空遥感技术的融合应用日益广泛。
航空摄影测量技术可以提供高精度的地物控制数据,而航空遥感技术则能够提供大范围、高频次的遥感影像数据。
摄影测量技术与遥感技术的异同与协同应用

摄影测量技术与遥感技术的异同与协同应用摄影测量技术和遥感技术是现代地理信息科学领域中两个重要的专业技术,它们在地理空间数据的获取、处理和分析中起着非常关键的作用。
尽管摄影测量技术和遥感技术在数据来源、原理和应用范围上存在一些差异,但它们的共同点和相互协同作用使得它们能够更好地满足现代社会对地理信息的需求。
摄影测量技术主要通过摄影机和传感器获取地面影像,并利用测量原理和方法来获取地物的空间位置、形状和高程等数据。
摄影测量技术的主要特点是数据的高分辨率、高精度和高空间分辨率。
它广泛应用于工程测量、地形制图和三维建模等领域。
而遥感技术则是通过遥感卫星、航空平台等手段获取地球表面的信息,包括地物的光谱、纹理和形状等特征。
遥感技术的主要特点是数据覆盖范围广、获取效率高和信息内容丰富。
它广泛应用于环境监测、资源调查和农业生产等领域。
摄影测量技术和遥感技术在数据来源上存在一定的差异。
摄影测量技术主要依赖于摄影机和传感器来获取地面影像数据,通常需要在特定的时间、空间和地面条件下进行拍摄,这对于数据的获取和处理提出了一定的要求。
而遥感技术则可以通过遥感卫星、航空平台等手段来获取地球表面的信息,具有较强的独立性和广泛的数据来源,可以在时间和空间上进行灵活调整。
摄影测量技术和遥感技术在数据处理和分析上也存在一些差异。
摄影测量技术主要通过对影像的几何校正、影像配准和数字高程模型(DEM)的生成等步骤来进行数据处理。
这些处理过程需要依赖精确的地面控制点和测量方法,从而保证数据的精确性和可靠性。
而遥感技术则需要对遥感影像进行预处理、特征提取和信息提取等步骤。
这些处理过程通常依赖于图像处理和遥感分析算法,以提取地球表面的各种特征信息。
尽管摄影测量技术和遥感技术在数据来源、原理和应用范围上存在一些差异,但它们之间存在一定的共同点和相互协同作用。
首先,摄影测量技术和遥感技术都能够提供全面、准确、时效的地理信息数据,满足现代社会对地理信息的多样化需求。
摄影测量与遥感

摄影测量与遥感1摄影测量基本原理1.1.1摄影测量的定义摄影测量学是通过影像研究信息的获取、处理、提取和成果表达的一门信息科学。
1988年ISPRS在日本京都第16届大会上对摄影测量与遥感的定义:摄影测量与遥感是对非接触传感器系统获得的影像及其数字表达进行记录、量测和解译,从而获得自然物体和环境的可靠信息的一门工艺、科学和技术。
摄影测量学可从不同角度进行分类。
按摄影距离的远近分,可分为航天摄影测量、航空摄影测量、地面摄影测量、近景摄影测量和显微摄影测量。
按用途分类,有地形摄影测量和非地形摄影测量。
按处理的技术手段分,有模拟摄影测量、解析摄影测量和数字摄影测量。
1.1.2摄影测量学发展的三个阶段模拟法摄影测量(1851-1970)其基本原理是利用光学/机械投影方法实现摄影过程的反转,用两个/多个投影器,模拟摄影机摄影时的位置和姿态,构成与实际地形表面成比例的几何模型,通过对该模型的量测得到地形图和各种专题图。
解析法摄影测量(1950-1980)以电子计算机为主要手段,通过对摄影像片的量测和解析计算方法的交会方式,来研究和确定被摄物体的形状、大小、位置、性质及其相互关系,并提供各种摄影测量产品的一门科学。
数字摄影测量(1970-现在)基于摄影测量的基本原理,通过对所获取的数字/数字化影像进行处理,自动(半自动)提取被摄对象用数字方式表达的几何与物理信息,从而获得各种形式的数字产品和目视化产品。
1.1.3单张航摄像片解析航摄影像是航空摄影测量的原始资料。
像片解析就是用数学分析的方法,研究被摄景物在航摄像片上的成像规律,像片上影像与所摄物体之间的数学关系,从而建立像点与物点的坐标关系式。
像片解析是摄影测量的理论基础。
为了由像点反求物点,必须知道摄影时摄影物镜或投影中心、像片与地面三者之间的相关位置。
而确定它们之间相关位置的参数称为像片的方位元素,像片的方位元素分为内方位元素和外方为元素两部分。
内元素3个:确定摄影物镜后节点与像片之间相互位置关系的参数(x0,y0,f),可恢复摄影光束。
摄影测量与遥感技术

摄影测量与遥感技术摄影测量与遥感技术在现代科技发展中扮演着重要的角色。
随着科技的日益进步,这些技术不仅在地理信息系统领域发挥着重要的作用,还在环境保护、城市规划、农业发展等各个领域中发挥着越来越大的作用。
本文将从摄影测量和遥感技术的定义、原理、应用和发展前景等方面进行论述。
摄影测量是一种通过摄影途径获得和处理地物或地形三维空间位置和属性的方法。
它主要通过获取无人机或航空摄影图像,并利用数学模型进行测量和计算,从而获得地理空间信息。
摄影测量技术主要包括摄影测量数据采集、前方交会、后方交会和测量结果处理等步骤。
通过这些步骤,我们可以获取到地物的几何形状、位置和属性信息,并用于地理信息系统的构建和更新。
遥感技术则是通过获取、解译和分析地球表面的遥感图像来获取地理空间信息的方法。
遥感技术主要分为主动遥感和被动遥感。
主动遥感是指利用主动方式发射电磁波,通过测量电磁波的反射或散射来获得地物信息。
被动遥感则是指利用自然辐射(如太阳辐射)来获取地物信息。
遥感技术主要通过卫星、飞机、无人机等载具来获取遥感图像,然后通过影像处理和解译技术来获得地理信息。
摄影测量和遥感技术在地理信息系统领域有着广泛的应用。
在城市规划中,摄影测量和遥感技术可以提供城市的地形地貌、土地利用、交通网络等信息,帮助规划师进行城市建设和规划。
在环境保护中,这些技术可以监测和评估环境污染、土地退化等问题,为环境保护提供决策依据。
在农业发展中,摄影测量和遥感技术可以提供农作物的生长状况、土壤湿度等信息,帮助农民制定农业种植策略。
此外,摄影测量和遥感技术还可以应用于自然灾害预警、资源勘查和监测、交通规划、土地管理等领域。
这些技术的广泛应用不仅提高了工作效率,也为决策者和研究人员提供了更全面、准确的数据。
摄影测量和遥感技术的发展前景十分广阔。
随着无人机技术的快速发展,摄影测量和遥感技术的数据获取和处理将更加高效和精确。
此外,人工智能和机器学习的应用也将进一步提升数据处理和解译的能力,使得摄影测量和遥感技术在各个领域中的应用更加丰富和深入。
摄影测量与遥感

摄影测量与遥感摄影测量与遥感一、摄影测量学的定义与任务摄影测量学是利用光学摄影机获取的像片,经过处理以获取被摄物体的形状、大小、位置、特性及其相互关系的一门学科。
摄影测量产品:•DEM(数字高程模型):数字高程模型是以高程表达地面起伏形态的数字集合。
用于与高程有关的地貌形态分析、通视条件分析、洪水淹没区分析。
•DLG(数字线划图):现有地形图上基础地理要素分层存储的矢量数据集。
数字线划图既包括空间信息也包括属性信息,可用于人口、资源、环境、交通、治安等各专业信息系统的空间定位基础。
•DRG(数字栅格地图):数字栅格地图是纸制地形图的栅格形式的数字化产品。
可作为背景与其他空间信息相关,用于数据采集、评价与更新,与DOM、DEM集成派生出新的可视信息。
•DOM(数字正射影像图):利用航空相片、遥感影像,经象元纠正,按图幅范围裁切生成的影像数据。
它的信息丰富直观,具有良好的可判读性和可量测性,从中可直接提取自然地理和社会经济信息。
摄影测量分类:(1)空摄影测量(2)航天摄影测量(3)地面摄影测量(4)近景摄影测量(5)显微摄影测量。
二、摄影测量学的发展历程从1851年法国陆军上校劳赛达提出并进行交会摄影测量算起,摄影测量学已经走过了160年的历程:模拟摄影测量(1851-1960’s)、解析摄影测量(1950’s-1980’s)、数字摄影测量(1970’s-现在)。
三、摄影测量与遥感的发展摄影测量与遥感是对非接触传感器系统获得的影像及其数字表达进行记录、量测和解译,从而获得自然物体及其环境的可靠信息的一门工艺、科学和技术。
无需接触物体本身获得被摄物体信息由二维影象重建三维目标面采集数据方式同时提取物体的几何与物理特性发展方向:与RS、GIS、GPS结合方向;智能化,实时化方向。