分数除法知识点
分数的除法口诀知识点

分数的除法口诀知识点分数的除法是数学中基本的运算之一,它是指将一个分数除以另一个分数的运算。
在学习分数除法的过程中,我们可以掌握一些常用的口诀,帮助我们更加容易理解和记忆分数除法的知识点。
一、口诀第一分数除法是分子相乘,分母相除放后边。
算得结果要约简,将答案写得整整齐。
这个口诀的意思是,分数除法的计算过程中,我们需要先将两个分数的分子相乘,再将两个分数的分母相除,最后将得到的结果约简,并将答案写得整整齐。
例如,我们需要计算 3/4 除以 2/5:首先,将两个分数的分子相乘,得到 3×2=6;然后,将两个分数的分母相除,得到 4÷5=4/5;最后,将得到的结果约简,得到最简分数 6/(4/5)= 6×5/4=15/4。
二、口诀第二除法转换要成功,分子分母全乘以分母。
分子分母除上最大公约数,化为最简根深发。
这个口诀的意思是,在进行分数除法时,我们可以将除法运算转换为乘法运算来简化计算。
具体步骤如下:1. 将除法转换为乘法,即将除号变为乘号;2. 将被除数的分子和分母都乘以除数的分母;3. 将得到的结果化为最简分数。
例如,我们需要计算 2/3 除以 4/5:首先,将除法转换为乘法,即将 2/3 除以 4/5 变为 2/3 乘以 5/4;然后,将被除数的分子和分母都乘以除数的分母,得到(2×5)/(3×4)=10/12;最后,将得到的结果化为最简分数,即 10/12 = 5/6。
三、口诀第三除法就是乘法的倒数,分子分母交换变底上。
约分化简提高效率,学会运算省时间。
这个口诀的意思是,分数除法可以转换为两个分数相乘,并将被除数和除数的分子、分母位置交换。
在计算过程中,我们可以约分和化简,以提高计算效率和减少计算错误。
例如,我们需要计算 3/4 除以 2/5:首先,将除法转换为乘法,并将两个分数的分子、分母交换,得到3/4 除以 2/5 = 3/4 乘以 5/2;然后,将两个分数相乘,得到(3×5)/(4×2)=15/8;最后,约简得到最简分数,即 15/8。
分数除法知识点

《分数除法》知识点归纳
倒数
知识点:
1、发现倒数的特征并理解倒数的意义。
如果两个数的乘积是1,那么我们称其中一个数是另一个数的倒数。
倒数是对两个数来说的,并不是孤立存在的。
2、求倒数的方法。
把这个数的分子和分母调换位置。
3、1的倒数仍是1;0没有倒数。
0没有倒数,是因为在分数中,0不能做分母。
分数除法(一)
知识点:
1、分数除以整数的意义及计算方法。
分数除以整数,就是求这个数的几分之几是多少。
分数除以整数(0除外)等于乘这个数的倒数。
分数除法(二)
知识点:
1、一个数除以分数的意义和基本算理。
一个数除以分数的意义与整数除法的意义相同;一个数除以分数等于乘这个数的倒数。
2、掌握一个数除以分数的计算方法。
除以一个数(0除外)等于乘这个数的倒数。
3、比较商与被除数的大小。
除数小于1,商大于被除数;
除数等于1。
商等于被除数;
除数大于1,商小于被除数。
分数除法(三)
知识点:
1、列方程“求一个数的几分之几是多少”。
2、利用等式的性质解方程。
3、理解打折的含义。
如:打8折就是指现价是原价的十分之八。
分数除法知识点总结整理

分数除法知识点总结整理一、分数的除法规则1. 分数的除法运算规则分数的除法运算规则是将一个分数除以另一个分数,得到一个新的分数。
当进行分数相除时,我们需要将除数倒数,然后将被除数乘以倒数得到商。
具体来说,如果要计算两个分数的商,可以将分数化为通分形式,然后将除数的分母和被除数的分子相乘,得到分子,再将除数的分子和被除数的分母相乘,得到分母,最后将得到的分子和分母化为最简分数形式,即为所得的商。
2. 分数的除数和被除数在进行分数除法运算时,除数表示将分子分成几份,而被除数表示每份的数量。
除数和被除数的关系是除数除以被除数等于商。
例如,如果除数为2/3,被除数为4/5,那么2/3÷ 4/5 的意思是将4/5分成2/3份,每份的数量是多少?3. 分数的倒数在分数除法中,要先将除数倒数,即将除数的分子和分母互换位置。
例如,要求4/5的倒数,可以通过将4/5的分子和分母互换位置得到5/4,即4/5的倒数是5/4。
二、分数除法的计算步骤1. 分数除法的计算步骤分数除法的计算步骤包括以下几个步骤:1)将除数倒数;2)将被除数乘以倒数得到商;3)将得到的商化为最简分数形式。
2. 分数除法的示例以1/2 ÷ 1/3为例,首先将除数1/3倒数得到3/1,然后将被除数1/2乘以倒数3/1得到3/2,最后将3/2化为最简分数形式得到1 1/2,即1/2 ÷ 1/3 = 1 1/2。
三、分数除法的应用1. 分数除法的应用范围分数除法的应用范围非常广泛,可以用于解决各种实际问题,例如在日常生活和工作中,我们经常需要进行分数的除法运算,计算出几个分数的商,来帮助我们解决一些实际问题。
分数除法的实际问题可以包括以下几种类型:1)分配问题:将一定数量的物品按照一定比例分配给不同的人,需要进行分数的除法运算;2)时间问题:计算一段时间内的工作量,需要进行分数的除法运算;3)距离问题:计算两个地点之间的距离,需要进行分数的除法运算。
六年级数学上册第3课分数除法必备知识点

六年级数学上册3 分数除法必备知识点一、分数除法的意义分数除法实际上是“分数的除法运算是分数乘法的逆运算”。
即,已知两个数的积与其中一个因数,求另一个因数的运算。
二、分数除法的计算法则1.分数除以整数:分母不变,如果分子是整数的倍数,则用分子除以整数,商写在分子上。
分子不是整数的倍数时,这个除法可以写成“分数乘以这个整数的倒数”。
2.一个数除以分数:等于这个数乘以分数的倒数。
三、分数除法的简便运算1.约分:在计算过程中,能约分的要约分,以提高计算效率。
2.利用倒数:将除法转化为乘法,利用乘法的交换律、结合律进行简便运算。
四、分数除法的应用1.解决实际问题:分数除法常用于解决涉及比例、分率等问题的实际应用,如工程问题、行程问题等。
2.比较大小:通过分数除法,可以比较两个分数(或小数)的大小。
五、典型题型与解题技巧1.基本题型:分数除以整数整数除以分数分数除以分数2.解题技巧:明确除法的意义,将其转化为乘法。
确定计算顺序,先约分后计算。
检查结果,确保答案的准确性。
六、注意事项1.除数不能为0:与整数除法相同,分数除法中除数(或分数的分母)不能为0。
2.结果的化简:计算后得到的分数结果需要化简到最简形式。
3.理解题意:在应用分数除法解决实际问题时,要准确理解题意,确定正确的数学模型。
七、示例1.计算2÷4:3方法一:23÷4=23×14=212=16。
方法二:23÷4=23×4=212=16。
2.计算5÷34:方法:5÷34=5×43=203=623。
通过以上知识点的学习和练习,你可以掌握分数除法的基本概念和计算方法,并能够运用它来解决实际问题。
第3讲 分数除法(学生版)(知识梳理+典例分析+举一反三+巩固提升)人教版

第3讲分数除法知识点一:倒数的认识1.倒数的意义:乘积是1的两个数互为倒数。
倒数具备两个条件:一是两个数;二是乘积是1。
2.互为倒数的两个数特点:如果两个数都是分数,那么两个分数的分子和分母正好颠倒了位置;如果一个是整数,则另一个分数的分子是1,分母是这个整数。
3.求一个数倒数的方法:(1)通过计算,乘积是1的两个数互为倒数。
(2)交换这个数的分子和分母的位置。
4. 特殊的:1的倒数是1,0没有倒数。
知识点二:分数除以整数分数除以整数(0除外),等于乘这个整数的倒数。
知识点三:一个数除以分数一个数除以一个不等于0的数,等于乘这个数的倒数。
知识点四:分数四则混合运算1. 只有乘、除法,按照从左到右的顺序依次进行计算。
2. 在没有括号的算式里,既有加、减法又有乘、除法,要先算乘、除法,再算加、减法。
3. 在一个有小括号的算式里,应该先算小括号里面的,后算小括号外面的。
知识点五:已知一个数的几分之几是多少求这个数解决“已知一个数的几分之几是多少,求这个数”的问题,一般方法:方程法:1.找出单位“1”,设未知量为x;2.找出题中的等量关系式;3.列出方程并解答;4.检验并写出答案。
知识点六:已知一个数比另一个数多(少)几分之几求这个数“已知比一个数多(少)几分之几的数是多少,求这数”的问题的解法:方程法:根据题中的等量关系:“单位‘1’的量×(1±几分之几)=已知量”或“单位‘1’的量±单位‘1’的量×几分之几=已知量”,设单位“1”的量为 x,列方程解答。
知识点七:分数除法之和倍、差倍问题已知两个量的和(差),其中一个量是另一个量的几分之几,求这两个量的问题的解法:有两个量都是未知的,先把谁看作单位“1”都可以,设其中一个量为未知数x,用这个量表示另一个量,然后找出等量关系,列方程解答出一个量,再解答第二个量。
知识点八:工程问题1.利用抽象的“1”解决实际问题:工程问题是分数问题的特例,工作总量与工作效率都不是具体的数,而是用抽象的分数来表示。
第三单元 分数除法 必背知识点

第三单元《分数除法》知识点1.分数除法计算(1)分数除法的意义和分数除以整数:整数除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算。
分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
分数除以整数的计算方法:把一个数平均分成整数份,求其中的几份就是求这个数的几分之几是多少。
分数除以整数(0除外)的计算方法:(1)用分子和整数相除的商做分子,分母不变。
(2)分数除以整数,等于分数乘这个整数的倒数。
一个数除以分数的计算方法:一个数除以分数,等于这个数乘分数的倒数。
分数除法的统一计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
商与被除数的大小关系:一个数(0除外)除以小于1的数,商大于被除数,除以1,商等于被除数,除以大于1的数,商小于被除数。
0除以任何数商都为0.(1)两个真分数相除,商一定大于被除数。
(2)一个数除以假分数,商一定小于等于被除数。
(3)分数除法的混合运算除加、除减混合运算,如果没有括号,先算除法,后算加减。
分数连除,可以分步转化为乘法计算,也可以一次都转化为乘法再计算,能约分的要约分。
不含括号的分数混合运算的运算顺序:在一个分数混合运算的算式里,如果只含有同一级运算,按照从左到右的顺序计算;如果含有两级运算,先算第二级运算,再算第一级运算。
含有括号的分数混和运算的运算顺序:在一个分数混合运算的算式里,如果既有小括号又有中括号,要先算小括号里面的,再算中括号里面的。
整数的运算定律在分数混和运算中的运用:在进行分数的混和运算中,可以利用加法、减法、乘法、除法的运算定律或运算性质,使计算简便。
2.解决问题已知一个数的几分之几是多少,求这个数的应用题解法列方程解题的关键:找出题中数量间的等量关系。
用算术法解除法应用题的关键:找准已知数量对应的单位“1”的几分之几。
解简单的“已知一个数的几分之几是多少,求这个数”的解题方法:方程解法:(1)找出单位“1”,设未知量为x;(2)找出题中的数量关系式;(3)列出方程。
六年级数学第三单元《分数除法》知识点

六年级数学第三单元《分数除法》知识点六年级数学第三单元《分数除法》知识点一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。
二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。
1、被除数除数=被除数除数的倒数。
例3==3=3=52、除法转化成乘法时,被除数一定不能变,变成,除数变成它的倒数。
3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。
4、被除数与商的变化规律:①除以大于1的数,商小于被除数:ab=c当b1时,c②除以小于1的数,商大于被除数:ab=c当b1时,c(ab0)③除以等于1的数,商等于被除数:ab=c当b=1时,c=a三、分数除法混合运算1、混合运算用梯等式计算,等号写在第一个数字的左下角。
2、运算顺序:①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据除以几个数,等于乘上这几个数的积的简便方法计算。
加、减法为一级运算,乘、除法为二级运算。
②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。
注:(ab)c=acbc四、比:两个数相除也叫两个数的比1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
注:连比如:3:4:5读作:3比4比52、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
例:12∶20==1220==0.612∶20读作:12比20注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。
比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。
3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
3、化简比:化简之后结果还是一个比,不是一个数。
(1)、用比的前项和后项同时除以它们的最大公约数。
(2)、两个分数的`比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
分数除法总结

六年级数学第三单元知识点总结:分数除法一、分数除法1、分数除法的意义:乘法:因数× 因数 = 积除法:积÷ 一个因数 = 另一个因数分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
2、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。
规律(分数除法比较大小时):(1)当除数大于1,商小于被除数;(2)当除数小于1(不等于0),商大于被除数;(3)当除数等于1,商等于被除数。
“[ ]”叫做中括号。
一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的.二、分数除法解决问题(求单位“1”的量(用除法):已知单位“1”的几分之几是多少,求单位“1”的量。
)1、数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是“的":单位“1"的量×分率=分率对应量(2)分率前是“多或少”的意思: 单位“1"的量×(1分率)=分率对应量2、解法:(建议:最好用方程解答)(1)方程:根据数量关系式设未知量为X,用方程解答。
(2)算术(用除法): 分率对应量÷对应分率 = 单位“1"的量3、求一个数是另一个数的几分之几:就一个数÷另一个数4、求一个数比另一个数多(少)几分之几: 两个数的相差量÷单位“1"的量或:① 求多几分之几:大数÷小数– 1② 求少几分之几: 1 –小数÷大数三、比和比的应用(一)、比的意义1、比的意义:两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
例如 15 :10 = 15÷10=3/2(比值通常用分数表示,也可以用小数或整数表示) ∶∶ ∶ ∶前项比号后项比值3、比可以表示两个相同量的关系,即倍数关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
一个数除以一个不等于0的数,等于乘以这个数的倒数。
分数除法转化为乘法的要点:
1、被除数不变
2、除号变乘号
3、除数变成它的倒数
4、按分数乘法法则计算
商与被除数关系(被除数不为0):
当除数大于1,商比被除数小;当除数等于1,商等于被除数;当除数小于1(0除外),商大于被除数。
分数混合运算与整数混合运算的运算顺序是相同的。
四则混合运算的顺序:
(1)算式里,只有加减或乘除运算,按照从左往右的顺序进行计算。
(2)算式里,有加减和乘除运算,要先乘除,后加减。
(3)算式里,有括号的,要先算括号里面的,再算括号外面的。
如果有中、小括号的,先算小括号后算中括号。
括号里面有加减有乘除的,要先乘除后加减!
四则运算带括号的运算规则:
前面是“-减号”加括号时里面的符号要变号。
前面是“÷除号”加括号时后面符号要变号。
前面是“+加号”和“×乘号”时加括号里面的符号不变!。