分数除法知识点整理

合集下载

分数的除法口诀知识点

分数的除法口诀知识点

分数的除法口诀知识点分数的除法是数学中基本的运算之一,它是指将一个分数除以另一个分数的运算。

在学习分数除法的过程中,我们可以掌握一些常用的口诀,帮助我们更加容易理解和记忆分数除法的知识点。

一、口诀第一分数除法是分子相乘,分母相除放后边。

算得结果要约简,将答案写得整整齐。

这个口诀的意思是,分数除法的计算过程中,我们需要先将两个分数的分子相乘,再将两个分数的分母相除,最后将得到的结果约简,并将答案写得整整齐。

例如,我们需要计算 3/4 除以 2/5:首先,将两个分数的分子相乘,得到 3×2=6;然后,将两个分数的分母相除,得到 4÷5=4/5;最后,将得到的结果约简,得到最简分数 6/(4/5)= 6×5/4=15/4。

二、口诀第二除法转换要成功,分子分母全乘以分母。

分子分母除上最大公约数,化为最简根深发。

这个口诀的意思是,在进行分数除法时,我们可以将除法运算转换为乘法运算来简化计算。

具体步骤如下:1. 将除法转换为乘法,即将除号变为乘号;2. 将被除数的分子和分母都乘以除数的分母;3. 将得到的结果化为最简分数。

例如,我们需要计算 2/3 除以 4/5:首先,将除法转换为乘法,即将 2/3 除以 4/5 变为 2/3 乘以 5/4;然后,将被除数的分子和分母都乘以除数的分母,得到(2×5)/(3×4)=10/12;最后,将得到的结果化为最简分数,即 10/12 = 5/6。

三、口诀第三除法就是乘法的倒数,分子分母交换变底上。

约分化简提高效率,学会运算省时间。

这个口诀的意思是,分数除法可以转换为两个分数相乘,并将被除数和除数的分子、分母位置交换。

在计算过程中,我们可以约分和化简,以提高计算效率和减少计算错误。

例如,我们需要计算 3/4 除以 2/5:首先,将除法转换为乘法,并将两个分数的分子、分母交换,得到3/4 除以 2/5 = 3/4 乘以 5/2;然后,将两个分数相乘,得到(3×5)/(4×2)=15/8;最后,约简得到最简分数,即 15/8。

分数除法知识点总结(通用4篇)

分数除法知识点总结(通用4篇)

分数除法知识点总结第1篇1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。

2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。

注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。

比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的`形式。

3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。

3、化简比:化简之后结果还是一个比,不是一个数。

(1)、用比的前项和后项同时除以它们的最大公约数。

(2)、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。

也可以求出比值再写成比的形式。

(3)、两个小数的比,向右移动小数点的位置,也是先化成整数比。

4、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。

分数除法知识点总结第2篇1、已知单位“1”的量,用乘法。

2、未知单位“1”的量,用除法或列方程解答。

3、分数应用题基本数量关系(把分数看成比)(1)关于甲是乙的几分之几,可以用下面方法解决问题:。

甲=乙×几分之几乙=甲÷几分之几几分之几=甲÷乙(2)关于甲比乙多(少)几分之几。

可以用下面方法解决问题:A 差÷乙=(“比”字后面的量是单位“1”的量)B 多几分之几C 少几分之几D 甲=乙±差=乙±乙×=乙±乙×=乙(1±)E 乙=甲÷(1±)(多是“+”少是“–”)4、按比例分配:把一个量按一定的比分配的方法叫做按比例分配。

5、画线段图:(1)找出单位“1”的量,先画出单位“1”,标出已知和未知。

(2)分析数量关系。

(3)找等量关系。

(4)列方程。

分数除法知识点总结第3篇1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。

(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

分数除法知识点总结整理

分数除法知识点总结整理

分数除法知识点总结整理一、分数的除法规则1. 分数的除法运算规则分数的除法运算规则是将一个分数除以另一个分数,得到一个新的分数。

当进行分数相除时,我们需要将除数倒数,然后将被除数乘以倒数得到商。

具体来说,如果要计算两个分数的商,可以将分数化为通分形式,然后将除数的分母和被除数的分子相乘,得到分子,再将除数的分子和被除数的分母相乘,得到分母,最后将得到的分子和分母化为最简分数形式,即为所得的商。

2. 分数的除数和被除数在进行分数除法运算时,除数表示将分子分成几份,而被除数表示每份的数量。

除数和被除数的关系是除数除以被除数等于商。

例如,如果除数为2/3,被除数为4/5,那么2/3÷ 4/5 的意思是将4/5分成2/3份,每份的数量是多少?3. 分数的倒数在分数除法中,要先将除数倒数,即将除数的分子和分母互换位置。

例如,要求4/5的倒数,可以通过将4/5的分子和分母互换位置得到5/4,即4/5的倒数是5/4。

二、分数除法的计算步骤1. 分数除法的计算步骤分数除法的计算步骤包括以下几个步骤:1)将除数倒数;2)将被除数乘以倒数得到商;3)将得到的商化为最简分数形式。

2. 分数除法的示例以1/2 ÷ 1/3为例,首先将除数1/3倒数得到3/1,然后将被除数1/2乘以倒数3/1得到3/2,最后将3/2化为最简分数形式得到1 1/2,即1/2 ÷ 1/3 = 1 1/2。

三、分数除法的应用1. 分数除法的应用范围分数除法的应用范围非常广泛,可以用于解决各种实际问题,例如在日常生活和工作中,我们经常需要进行分数的除法运算,计算出几个分数的商,来帮助我们解决一些实际问题。

分数除法的实际问题可以包括以下几种类型:1)分配问题:将一定数量的物品按照一定比例分配给不同的人,需要进行分数的除法运算;2)时间问题:计算一段时间内的工作量,需要进行分数的除法运算;3)距离问题:计算两个地点之间的距离,需要进行分数的除法运算。

六年级数学上册第3课分数除法必备知识点

六年级数学上册第3课分数除法必备知识点

六年级数学上册3 分数除法必备知识点一、分数除法的意义分数除法实际上是“分数的除法运算是分数乘法的逆运算”。

即,已知两个数的积与其中一个因数,求另一个因数的运算。

二、分数除法的计算法则1.分数除以整数:分母不变,如果分子是整数的倍数,则用分子除以整数,商写在分子上。

分子不是整数的倍数时,这个除法可以写成“分数乘以这个整数的倒数”。

2.一个数除以分数:等于这个数乘以分数的倒数。

三、分数除法的简便运算1.约分:在计算过程中,能约分的要约分,以提高计算效率。

2.利用倒数:将除法转化为乘法,利用乘法的交换律、结合律进行简便运算。

四、分数除法的应用1.解决实际问题:分数除法常用于解决涉及比例、分率等问题的实际应用,如工程问题、行程问题等。

2.比较大小:通过分数除法,可以比较两个分数(或小数)的大小。

五、典型题型与解题技巧1.基本题型:分数除以整数整数除以分数分数除以分数2.解题技巧:明确除法的意义,将其转化为乘法。

确定计算顺序,先约分后计算。

检查结果,确保答案的准确性。

六、注意事项1.除数不能为0:与整数除法相同,分数除法中除数(或分数的分母)不能为0。

2.结果的化简:计算后得到的分数结果需要化简到最简形式。

3.理解题意:在应用分数除法解决实际问题时,要准确理解题意,确定正确的数学模型。

七、示例1.计算2÷4:3方法一:23÷4=23×14=212=16。

方法二:23÷4=23×4=212=16。

2.计算5÷34:方法:5÷34=5×43=203=623。

通过以上知识点的学习和练习,你可以掌握分数除法的基本概念和计算方法,并能够运用它来解决实际问题。

分数除法相关知识点

分数除法相关知识点
第三单元分数除法
一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。如 ÷ 表示 的里面有多少个___;或已知两个因数的积是 与其中的一个因数 ,求另一个因数是多少。
二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的()数。
1、被除数÷除数=被除数×除数的倒数。例 ÷3= × =
2、除法转化成乘法时,被除数一定不能___,“÷”变成“___”,除数变成它的___。
3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。
4、被除数与商的变化规律:
①除以大于1的数,商_________被除数;②除以小于1的数,商()被除数;③除以等于1的数,商()等式计算,等号写在第一个数字的左下角。
2、运算顺序:
①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成___法再计算;加、减法为一级运算,乘、除法为二级运算。
②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。
注:(a±b)÷c=(a±b)× =a× ±b× .

六年级数学上册《分数除法 》知识点+例题+练习题

六年级数学上册《分数除法 》知识点+例题+练习题

六年级数学上册《分数除法》知识点+例题+练习题分数除法知识点(一)倒数1、倒数的意义:乘积是1的两个数互为倒数。

强调:倒数,即倒数是两个数之间的关系。

它们相互依存,互惠不能单独存在。

明确谁是谁的倒数。

2、求倒数的方法:(原数与倒数之间不要写等号哦)(1)求分数的倒数:交换分子和分母的位置。

(2)求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。

(3)求波段分数的倒数:把波段分数变成假分数,然后求倒数。

(4)求小数的倒数:把小数变成分数,然后求倒数。

3、因为1×1=1,1的倒数是1;因为找不到与0相乘得1的数0没有倒数。

4、对于任意数a(a≠0),它的倒数为1/a;非零整数a的倒数为1/a;分数b/a的倒数是a/b;5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。

(二)分数除法1、分数除法的意义:分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。

2.分数除法的计算规则:除以一个不为0的数,等于乘以这个数的倒数。

3、规律(分数除法比较大小时):(1)当除数大于1,商小于被除数;(2)当除数小于1(不等于0),商大于被除数;(3)当除数等于1时,商等于被除数。

4、“[ ] ”叫做中括号。

一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。

(三)分数除法解决问题(详细见重难点分解)(未知单位“1”的量(用除法):已知单位“1”的几分之几是多少,求单位“1”的量。

)1、数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是“的”:单位“1”的量×分率=分率对应量(2)分率前是“多或少”的意思:单位“1”的量×(1 分率)=分率对应量2、解法:(建议:最好用方程解答)(1)方程:根据数量关系式设未知量为x,用方程解答。

(2)算术(用除法):分率对应量÷对应分率 = 单位“1”的量3、求一个数是另一个数的几分之几:就用一个数÷另一个数4、求一个数比另一个数多(少)几分之几:① 求多几分之几:大数÷小数– 1② 求少几分之几:1 - 小数÷大数或①求多几分之几(大数-小数)÷小数② 求少几分之几:(大数-小数)÷大数(四)比和比的应用1.比值的含义:两个数的除法也叫两个数的比值。

第3讲 分数除法(学生版)(知识梳理+典例分析+举一反三+巩固提升)人教版

第3讲 分数除法(学生版)(知识梳理+典例分析+举一反三+巩固提升)人教版

第3讲分数除法知识点一:倒数的认识1.倒数的意义:乘积是1的两个数互为倒数。

倒数具备两个条件:一是两个数;二是乘积是1。

2.互为倒数的两个数特点:如果两个数都是分数,那么两个分数的分子和分母正好颠倒了位置;如果一个是整数,则另一个分数的分子是1,分母是这个整数。

3.求一个数倒数的方法:(1)通过计算,乘积是1的两个数互为倒数。

(2)交换这个数的分子和分母的位置。

4. 特殊的:1的倒数是1,0没有倒数。

知识点二:分数除以整数分数除以整数(0除外),等于乘这个整数的倒数。

知识点三:一个数除以分数一个数除以一个不等于0的数,等于乘这个数的倒数。

知识点四:分数四则混合运算1. 只有乘、除法,按照从左到右的顺序依次进行计算。

2. 在没有括号的算式里,既有加、减法又有乘、除法,要先算乘、除法,再算加、减法。

3. 在一个有小括号的算式里,应该先算小括号里面的,后算小括号外面的。

知识点五:已知一个数的几分之几是多少求这个数解决“已知一个数的几分之几是多少,求这个数”的问题,一般方法:方程法:1.找出单位“1”,设未知量为x;2.找出题中的等量关系式;3.列出方程并解答;4.检验并写出答案。

知识点六:已知一个数比另一个数多(少)几分之几求这个数“已知比一个数多(少)几分之几的数是多少,求这数”的问题的解法:方程法:根据题中的等量关系:“单位‘1’的量×(1±几分之几)=已知量”或“单位‘1’的量±单位‘1’的量×几分之几=已知量”,设单位“1”的量为 x,列方程解答。

知识点七:分数除法之和倍、差倍问题已知两个量的和(差),其中一个量是另一个量的几分之几,求这两个量的问题的解法:有两个量都是未知的,先把谁看作单位“1”都可以,设其中一个量为未知数x,用这个量表示另一个量,然后找出等量关系,列方程解答出一个量,再解答第二个量。

知识点八:工程问题1.利用抽象的“1”解决实际问题:工程问题是分数问题的特例,工作总量与工作效率都不是具体的数,而是用抽象的分数来表示。

分数的除法知识点总结

分数的除法知识点总结

分数的除法知识点总结在数学中,分数是常见的数值表达方式之一。

除法是数学四则运算中的一种,它用于解决一个数值被另一个数值相除的问题。

本文将详细总结分数的除法知识点,包括分数的表示方法、分数除法的计算规则和常见的解题技巧。

一、分数的表示方法分数由分子和分母两部分组成,分子表示被分割的部分,分母表示分割的份数。

分数可以用以下几种形式进行表示:1. 真分数:分子小于分母的分数,如1/2、3/4等。

2. 假分数:分子大于等于分母的分数,如5/4、7/3等。

3. 带分数:由整数部分和真分数部分组成的分数表示方式,如2 1/2、3 3/4等。

二、分数除法的计算规则分数除法的计算规则与整数除法相似,但需要特别注意以下几点:1. 转化为乘法:分数的除法可以通过转化为乘法来简化计算。

将除法问题转化为分数相乘的形式可以更方便地进行运算。

2. 变换为倒数:除法问题可以通过将除数倒置并与被除数相乘来解决。

这可以将除法问题转化为乘法问题,简化了计算过程。

3. 分数的除法规则:两个分数相除时,可以通过将其中一个分数的分子与另一个分数的分母相乘,分母与分子相乘的结果构成新的分数。

4. 约分:在进行分数除法运算时,可以对得到的分数进行约分,使结果更简洁。

三、分数除法的解题技巧1. 整除的情况:若被除数能够整除除数,则结果为整数,即分子为被除数与除数的商,分母为1。

2. 无限循环小数:当两个数相除得到的结果是一个无限循环小数时,可以将该循环小数化成分数。

将循环部分记为x,循环节的位数记为n,那么这个循环小数可以表示为x/n,分子为循环部分x,分母为由n个9组成的数字。

3. 小数转分数:将小数转化为分数时,可以先写出小数的位数,再将小数的数值部分作为分子,分母为10的位数。

4. 分数连除:如果在一个除法题中,连续出现多个分数,则可以将除法运算转化为乘法运算,将多个分数相乘得到结果。

四、例题解析1. 计算8/3÷1/4的结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

方法:用这个分数乘以这个整数的倒数。

例题:
方法:用这个数乘以分数的倒数。

例题:
按照四则运算的运算顺序:先算乘除,再算加减,有括号的先算括号,同级混合的那个在前先算那个。


例题:
方程运用题一:
第一步:解设单位一为“x”(有单位的x要带上单位);第二步:找出数量关系,列方程式解答;第三步:答。

可画线段图来辅助分析。


例题:
方程运用题二:
方法一:第一步:因为单位一不知道要求单位一,解设单位一位“x”,再表示出它的几分之几为“几分之几x”;第二步:列方程式解答;第三步:答。

方法二:可以把单位一看成“1”,比它多(快、高、长)或少(慢、矮、短)几分之几的数可以表示成1+几分之几或1-几分之几,求出占单位一的几分之几,再列方程式计算。

一样分成三步来完成。

例题:
方法:抓住这两个量的关系的那句话来解设其中一个量为“x”(一般设单位一为“x”),再表示出另一个量为“ x”,最后抓住表示这两个量总和或差的那句话来列方程式。

分成三步完成:解设→列方程解答→答。

例题:

熟背这几组数量关系:工作效率X工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
合作问题:工作总量÷工作效率和=合作的工作时间
解题方法:假设“工作总量为‘1’”,分部求出工作各自的工作效率为,再表示出工作效率的和来为 + ,最后列式解答:1÷。

特殊情况特殊解决→有时候工作总量不一定是单位1,而是单位1的一半或几分之几,这种特殊情况下就应该列式为÷几分之几÷。

例题:。

相关文档
最新文档