非线性光学材料的.ppt
合集下载
二阶非线性光学材料课件

它要经受250℃的短时高温和具有100%左右的承 受加工和操作的长时间热稳定性 。
。
• 一般说来,二阶非线性光学材料的设计原则为: • 1)设计和选择基态偶极矩小,激发态偶极矩大的
分子,吸、供电基不要选择电负性相差悬殊的基 团; • 2)降低分子的中心对称性,引入手性原子; • 3)分子内引入氢键的基团使分子在氢键的作用下 定向、非中心对称排列; • 4)分子成盐,盐中分子间库仑力的作用要大于偶 极作用,阳离子分隔屏蔽了有极性的发色团之间 的作用。成盐提高二阶非线性光学系数,尤其适 用于极性大的分子; • 5)形成包结络合物。
。
• 二阶非线性光学高分子材料大致可分为三 类:
• (1)高分子与生色基小分子的主客复合物, • (2) 生色基功能化的高分子; • (3)LB膜的高分子化。
。
• 1.高分子—生色团低分子的宾主复合物
。
• 宾主型非线性光学材料大致可分为三种类 型:
• (1)透明的非晶高分子与二阶非线性光学有 机低分子的复合物.
• ④折射率光栅的形成过程。在此空间电荷场的作用 下,通过电光或双折射效应,在物质内形成折射率 在空间的调制变化。根据静电泊松方程就可以形成 一个正弦变化的折射率光栅,该光栅与初始光波相 比有θ 度的相移角。
。
• 光折变效应有两个显著特点:弱激光响应 和非局域响应。前者指其效应与激光强度 无明显相关性,用弱激光如毫瓦量级功率 的激光来照射光折变材料,只需足够长的 时间,也会产生明显的光致折射率变化。 一束弱光可以使电荷—个个地移动.从而逐 步建立起强电场。后者指通过光折变效应 建立折射率相位栅不仅在时间响应上显示 出惯性,而且在空间分布上其响应也是非 局域的,折射率改变的最大处并不对应光 辐照最强处。
。
• 一般说来,二阶非线性光学材料的设计原则为: • 1)设计和选择基态偶极矩小,激发态偶极矩大的
分子,吸、供电基不要选择电负性相差悬殊的基 团; • 2)降低分子的中心对称性,引入手性原子; • 3)分子内引入氢键的基团使分子在氢键的作用下 定向、非中心对称排列; • 4)分子成盐,盐中分子间库仑力的作用要大于偶 极作用,阳离子分隔屏蔽了有极性的发色团之间 的作用。成盐提高二阶非线性光学系数,尤其适 用于极性大的分子; • 5)形成包结络合物。
。
• 二阶非线性光学高分子材料大致可分为三 类:
• (1)高分子与生色基小分子的主客复合物, • (2) 生色基功能化的高分子; • (3)LB膜的高分子化。
。
• 1.高分子—生色团低分子的宾主复合物
。
• 宾主型非线性光学材料大致可分为三种类 型:
• (1)透明的非晶高分子与二阶非线性光学有 机低分子的复合物.
• ④折射率光栅的形成过程。在此空间电荷场的作用 下,通过电光或双折射效应,在物质内形成折射率 在空间的调制变化。根据静电泊松方程就可以形成 一个正弦变化的折射率光栅,该光栅与初始光波相 比有θ 度的相移角。
。
• 光折变效应有两个显著特点:弱激光响应 和非局域响应。前者指其效应与激光强度 无明显相关性,用弱激光如毫瓦量级功率 的激光来照射光折变材料,只需足够长的 时间,也会产生明显的光致折射率变化。 一束弱光可以使电荷—个个地移动.从而逐 步建立起强电场。后者指通过光折变效应 建立折射率相位栅不仅在时间响应上显示 出惯性,而且在空间分布上其响应也是非 局域的,折射率改变的最大处并不对应光 辐照最强处。
二阶非线性光学材料 ppt课件

• ④折射率光栅的形成过程。在此空间电荷场的作用 下,通过电光或双折射效应,在物质内形成折射率 在空间的调制变化。根据静电泊松方程就可以形成 一个正弦变化的折射率光栅,该光栅与初始光波相 比有θ度的相移角。
二阶非线性光学材料
• 光折变效应有两个显著特点:弱激光响应 和非局域响应。前者指其效应与激光强度 无明显相关性,用弱激光如毫瓦量级功率 的激光来照射光折变材料,只需足够长的 时间,也会产生明显的光致折射率变化。 一束弱光可以使电荷—个个地移动.从而逐 步建立起强电场。后者指通过光折变效应 建立折射率相位栅不仅在时间响应上显示 出惯性,而且在空间分布上其响应也是非 局域的,折射率改变的最大处并不对应光 辐照最强处。
二阶非线性光学材料
• 二阶非线性光学高分子材料大致可分为三 类:
• (1)高分子与生色基小分子的主客复合物, • (2) 生色基功能化的高分子; • (3)LB膜的高分子化。
二阶非线性光学材料
• 1.高分子—生色团低分子的宾主复合物
二阶非线性光学材料
• 宾主型非线性光学材料大致可分为三种类 型:
二阶非线性光学材料
• 由于这种材料的非线性源于生色团的偶极 在电场作用下的极化取向,因此被称之为 “极化聚合物”
二阶非线性光学材料
• 聚合物的极化方法有许多。常用的方法有 • 平板电场极化, • 电晕放电极化、 • 全光极化 • 光诱导极化。
二阶非线性光学材料
二阶非线性光学材料
• 极化聚合物的研究始终围绕3个方面的问题 来进行,即对材料非线性的来源与其物理 过程的了解、材料的潜在应用和开发新的 高性能体系。
二阶非线性光学材料
• 典型的二阶非线性光学生色团分子有
二阶非线性光学材料
二阶非线性光学材料
二阶非线性光学材料
• 光折变效应有两个显著特点:弱激光响应 和非局域响应。前者指其效应与激光强度 无明显相关性,用弱激光如毫瓦量级功率 的激光来照射光折变材料,只需足够长的 时间,也会产生明显的光致折射率变化。 一束弱光可以使电荷—个个地移动.从而逐 步建立起强电场。后者指通过光折变效应 建立折射率相位栅不仅在时间响应上显示 出惯性,而且在空间分布上其响应也是非 局域的,折射率改变的最大处并不对应光 辐照最强处。
二阶非线性光学材料
• 二阶非线性光学高分子材料大致可分为三 类:
• (1)高分子与生色基小分子的主客复合物, • (2) 生色基功能化的高分子; • (3)LB膜的高分子化。
二阶非线性光学材料
• 1.高分子—生色团低分子的宾主复合物
二阶非线性光学材料
• 宾主型非线性光学材料大致可分为三种类 型:
二阶非线性光学材料
• 由于这种材料的非线性源于生色团的偶极 在电场作用下的极化取向,因此被称之为 “极化聚合物”
二阶非线性光学材料
• 聚合物的极化方法有许多。常用的方法有 • 平板电场极化, • 电晕放电极化、 • 全光极化 • 光诱导极化。
二阶非线性光学材料
二阶非线性光学材料
• 极化聚合物的研究始终围绕3个方面的问题 来进行,即对材料非线性的来源与其物理 过程的了解、材料的潜在应用和开发新的 高性能体系。
二阶非线性光学材料
• 典型的二阶非线性光学生色团分子有
二阶非线性光学材料
二阶非线性光学材料
非线性光学PPT课件

光折象是介质的参量与光强有关的现象
对于各向同性介质,可将矢量式改写为标量形式
P 0 (1) E 0 (2) EE 0 (3) EEE
0 ( (1) (2) E (3) E 2 )E 0(E)E
讲课为主讲课为主每次每次学时学时每个学生需各自针对目前非线性光学的一个前沿性问题进行资料每个学生需各自针对目前非线性光学的一个前沿性问题进行资料收集整理写出不低于收集整理写出不低于50005000字的书面报告要求至少阅读字的书面报告要求至少阅读1515篇文献篇文献再完成该综述论文所选主要参考文献应能代表该领域的前沿技术和再完成该综述论文所选主要参考文献应能代表该领域的前沿技术和发展趋势其中发展趋势其中20122012年以后的文献不少于年以后的文献不少于1010量子信息技术量子信息技术量子计算量子通信量子密匙量子计算量子通信量子密匙光子晶体光纤光子晶体光纤有机分子的光学非线性有机分子的光学非线性纳米材料中的非线性纳米材料中的非线性光速的调控技术光速的调控技术超短脉冲产生技术超短脉冲产生技术光网络中的非线性光网络中的非线性半导体材料及器件中的非线性半导体材料及器件中的非线性高功率下光纤中的非线性及抑制高功率下光纤中的非线性及抑制34主要参考书
23
由激光与物质的非线性相互作用产生的压缩态效应,由于其 量子起伏的降低,在通信系统中有应用的潜力,在受到人们 的关注。
寻求新的非线性材料一直贯穿于非线性光学的发展。除了寻 求新的非线性效应外,寻求非线性极化率更大、光学稳定性 更好的材料是非线性光学工作者一直关注的方向。
24
1.3.2 非线性光学研究的发展趋势
Nonlinear Optics 非线性光学
2019/11/23
1
第1章 绪 论
对于各向同性介质,可将矢量式改写为标量形式
P 0 (1) E 0 (2) EE 0 (3) EEE
0 ( (1) (2) E (3) E 2 )E 0(E)E
讲课为主讲课为主每次每次学时学时每个学生需各自针对目前非线性光学的一个前沿性问题进行资料每个学生需各自针对目前非线性光学的一个前沿性问题进行资料收集整理写出不低于收集整理写出不低于50005000字的书面报告要求至少阅读字的书面报告要求至少阅读1515篇文献篇文献再完成该综述论文所选主要参考文献应能代表该领域的前沿技术和再完成该综述论文所选主要参考文献应能代表该领域的前沿技术和发展趋势其中发展趋势其中20122012年以后的文献不少于年以后的文献不少于1010量子信息技术量子信息技术量子计算量子通信量子密匙量子计算量子通信量子密匙光子晶体光纤光子晶体光纤有机分子的光学非线性有机分子的光学非线性纳米材料中的非线性纳米材料中的非线性光速的调控技术光速的调控技术超短脉冲产生技术超短脉冲产生技术光网络中的非线性光网络中的非线性半导体材料及器件中的非线性半导体材料及器件中的非线性高功率下光纤中的非线性及抑制高功率下光纤中的非线性及抑制34主要参考书
23
由激光与物质的非线性相互作用产生的压缩态效应,由于其 量子起伏的降低,在通信系统中有应用的潜力,在受到人们 的关注。
寻求新的非线性材料一直贯穿于非线性光学的发展。除了寻 求新的非线性效应外,寻求非线性极化率更大、光学稳定性 更好的材料是非线性光学工作者一直关注的方向。
24
1.3.2 非线性光学研究的发展趋势
Nonlinear Optics 非线性光学
2019/11/23
1
第1章 绪 论
非线性光学课件-第三章

sech
x
1 cosh x
ex
2 ex
带h称为双曲函数
双曲正切,双曲正割
A1 ( z )
A1
(0)
s
ec
h
z Ls
A2 (z)
A1
(0)
tanh
z Ls
其中
Ls
cn deff A1(0)
Ls 称为相位匹配下二次谐 波产生的有效倍频长度
当z=Ls 时, tanh(1)= 0.762 sech(1)= 0.648
第三章 光学倍频、混频与参量转换
典型的非线性现象
1、光学倍频
二阶非线性 光学现象
介质不具有对称中 心的各向异性介质
2、光学和频、差频(三波混频)
3、光学参量振荡和放大 …
1、三次谐波
三阶非线性 光学现象
对介质对称无要求
2、四波混频 3、双光子吸收 4、光学自聚焦 5、受激散射 …
这些效应是产生光学变频的较成熟的手段之一,它为人们提供了一 种研究物态结构、分子跃迁驰豫和凝聚态物理构成的新的有效手段。
2
1
1,2为基波和谐波真空中的波长
n2 (2 ) n1(1)
只有满足上述条件,倍频最佳,但由于通 常n2(2)≠n1(1),所以只有采取特殊方法才 能做到。
3.1.2 光学二次谐波的基本理论
对于沿z方向传播的三波混频的耦合波方程
A3 z
i3D 2cn(3 )
(2) (3;1,2 ) :
A A ei(k3 k1k2 ) z
(注意是谐波之间同相位,不是谐波和基波同相位)
L
晶体
dz
z
O
在位置z处,在dz薄层介质内的振幅
非线性光学晶体材料优秀课件.pptx

红外非线性光学晶体 分类:
➢ 由四面体基团构成的二元或三元化 合物
➢ 由MX3三角锥形基团构成的化合物 ➢ 单质
深紫外非线性光学晶体
➢ KBBF晶体 ➢ SBBO族晶体
非线性光学晶体材料优秀课件
非线性光学晶体的应用
扩展激光的波长覆盖范围 为了提高谐波转换效率经常采用的三种方法:
➢ 外共振腔技术 ➢ 内共振腔技术 ➢ 准相位匹配技术
非线性光学 晶体材料分 子设计方法
非线性光学晶体材料优秀课件
几种重要的非线性光学晶体
LBO族晶体
➢ LBO晶体 ➢ CBO晶体 ➢ CLBO晶体
KTP晶体 BBO晶体 KDP族晶体
➢ KDP晶体 ➢ DKDP晶体
铌酸盐晶体
➢ KNbO3晶体 ➢ LiNbO3晶体 ➢ MgO:LiNbO3晶体
频系数的几何叠加。对于每种化学键,他们共引入两个微观倍 频系数参量,即β //和β ⊥,分别代表平行于每个键的微观倍频系 数参量和垂直于每个键的微观倍频系数参量。 键电荷模型
晶体的线性和非线性极化率主要是由于A-B两个原子中键 电荷g在外光频电场作用下,作非中心对称运动的结果。 分子轨道法
非线性光学晶体材料优秀课件
引言
晶体非线性光学技术是一项很广泛的应用技术。它包 括激光的变频技术 、调制技术、记忆、存储技术、光 折变技术 等
非线性光学晶体材料优秀课件
非线性光学谐波器件的设计原理
晶体的倍频效应
按相位匹配模式可分为: ➢ 共线相位匹配
① 倍频转换 ② 和频转换
➢ 非共线相位匹配
有效倍频系数: 只能进行数值计算 通光方向的长度 其他特征量:相位匹配参量Δk,允许角宽度ΔθPM
准相位匹配谐波器件
非线性光学优选PPT文档

第八章 现代光学 ( Modern Optics) 8. 8 非线性光学 (Non-linear Optics)*
本节属于打“*”内容,仅提供图片供自行 开发电子教案用,下同。
第八章 现代光学 ( Modern Optics) 8. 8 非线性光学 (Non-linear Optics)*
8888第8本本本88888开第开第本本8888开开第第开本开8第8本88 八节节节发八发八节节发发八八发节发八节非 非 非 非 非非 非 非 非非 非 非 非 非 非 非 非 非章 属 属 属 电 章 电 章 属 属 电 电 章 章 电 属 电 章 属线线线线线 线线线线 线线线线线线线线线于于于子子于于子子子于子于性性性性性 性性性性 性性性性性性性性性现现现现现现打打打教教打打教教教打教打光光光光光 光光光光 光光光光光光光光光代代代代代代“““案案““案案案“案“学学学学学 学学学学 学学学学学学学学学光光光光光光用用用用用用*******”””””””学学学学学学,,,,,,((((((((((((((((((内内内内内内内NNNNNNNNNNNNNNNNNN下下下下下下oooooooooooooooooo((((((容容容容容容容nnnnnnnnnnnnnnnnnn同同同同同同MMMMMM------------------,,,,,,,lllllllllllllllllliiiiiiiiiiiiiiiiiioooooo。。。。。。nnnnnnnnnnnnnnnnnndddddd仅仅仅仅仅仅仅eeeeeeeeeeeeeeeeeeeeeeeeaaaaaaaaaaaaaaaaaarrrrrr提提提提提提提rrrrrrrrrrrrrrrrrrnnnnnnOOOOOOOOOOOOOOOOOOOOOOOO供供供供供供供pppppppppppppppppppppppptttttttttttttttttt图图图图图图图iiiiiiiiiiiiiiiiiittttttcccccccccccccccccciiiiiiccccccssssssssssssssssss片片片片片片片ssssss))))))))))))))))))))))))******************,,,,,,,供供供供供供供自自自自自自自行行行行行行行
非线性光学课件

光参量放大器: 利用非线性光 学效应,通过 控制输入光的 参量如振幅、 相位、偏振态 等实现光信号
的放大。
光参量振荡器: 利用非线性晶 体产生特定波 长的激光输出, 具有频率稳定、 波长可调谐等
优点。低频率的光输
出。
非线性光学应用
光通信领域应用
添加副标题
非线性光学课件
汇报人:
目录
PART One
添加目录标题
PART Three
非线性光学原理
PART Two
非线性光学概述
PART Four
非线性光学材料
PART Five
非线性光学器件
PART Six
非线性光学应用
单击添加章节标题
非线性光学概述
定义与性质
非线性光学的定 义
非线性光学的性 质
光孤子通信
光纤放大器
光纤激光器
光纤传感技术
生物医学领域应用
光学显微镜:利用非线性光学效应提高显微镜的成像质量,能够观察更细 微的结构。
光镊技术:通过非线性光学效应产生的光场束缚和操控细胞、病毒等生物 微粒,为生物医学研究提供新的工具。
光学成像:利用非线性光学成像技术可以对生物组织进行高分辨率、高对 比度的成像,提高医学诊断的准确性和效率。
非线性折射率
定义:非线性折射 率是指材料在强光 作用下折射率随光 强的变化而变化的 现象
产生原因:与材 料中的微观结构 和分子排列有关
表现形式:在强光 作用下,材料折射 率会发生变化,导 致光的传播方向发 生改变
应用领域:在光 学通信、光学成 像等领域有着广 泛的应用前景
非线性吸收系数
定义:非线性吸收系数是描述物质在强光作用下非线性吸收特性的参数 影响因素:包括光强、光束宽度、物质浓度等 计算方法:通过实验测量或理论计算得到 应用领域:在光学通信、光学传感等领域有着广泛的应用
非线性光学晶体材料-PPT文档资料21页

cos[2(2t
k2 z)]
0 (2)1020 cos[(1 2 )t (k1 k2 )z] 0 (2)1020 cos[(1 2 )t (k1 k2 )z]
例: 和频
极化波
电磁波
频率 传输常数
3 1 2
k1
k2
n(1 )
(3)紫外波段的频率转换晶体 偏硼酸钡(BBO)晶体: 倍频系数大, 倍频阈值功率高, 能在较宽的波段内实现 相位匹配, 激光损伤阈值高, 物理化学性能稳定. 三硼酸锂(LBO)晶体: 透光波段宽, 非线性光学系数大, 激光损伤阈值最高的 非线性光学晶体材料. LAP晶体: 非线性光学系数大, 紫外三倍频和四倍频转换效率高, 可制多频率 转换器.
晶体非线性光学效应结构与性能 相互关系的研究方法
键参数法:
晶体的宏观倍频系数是晶体中每种化学键所产生的微观倍 频系数的几何叠加。对于每种化学键,他们共引入两个微观倍 频系数参量,即β //和β ⊥,分别代表平行于每个键的微观倍频系 数参量和垂直于每个键的微观倍频系数参量。
键电荷模型
晶体的线性和非线性极化率主要是由于A-B两个原子中键 电荷g在外光频电场作用下,作非中心对称运动的结果。
第七章 非线性光学晶体材料
7.2 晶体的非线性光学基础
一、非线性光学现象
线性光学
光与介质相互作用,入射光的电场强度比介质中原子
内的场强小得多。
P 0E E
非线性光学
强光入射介质时
P E E 2 E3
倍频和混频
当激光与非线性介质作用,入射光通过介质后, 其输出频率较入射频率有所变化,会出现倍频光、 和频光与差频光。