上海交大高等代数+数学分析历届考研真题.

合集下载

数学类考研上海交大陈纪修《数学分析》配套考研真题

数学类考研上海交大陈纪修《数学分析》配套考研真题

数学类考研上海交大陈纪修《数学分析》配套考研真题第一部分名校考研真题第1章集合与映射本章暂未编选名校考研真题,若有最新真题会及时更新。

第2章数列极限一、判断题1.对任意的p为正整数,如果,则存在。

()[重庆大学研]【答案】错查看答案【解析】根据数列收敛的Cauchy收敛准则,可举出反例:,虽然对任意的但(也可说明)。

2.对数列和若是有界数列,则是有界数列。

()[北京大学研]【答案】对查看答案【解析】设|S n|<M,则3.数列存在极限的充分必要条件是:对任一自然数p,都有()[北京大学研]【答案】错查看答案【解析】反例:,但不存在.二、解答题1.[暨南大学2013研]解:利用定积分的定义求解.2.设数列满足条件:,且,证明数列无界.[华东师范大学2009研]证明:用反证法.假若数列有界,即存在,使得,则由条件知.由得,对,存在正整数,当时,有,,令,则,且,,(1)对(1)式两边取上确界,有,所以,这与矛盾,所以数列无界.3.求极限.[华中科技大学2008研]解:一方面显然,另一方面,且由迫敛性可知.注:可用如下两种方式证明.(1)令,则,所以,从而.(2)由,得.4.证明不存在.[兰州大学2009研]证明:取,则由于,所以不存在.5.(1)设数列为正的单调递减数列,且收敛,证明:.(2)设数列为正的单调递减数列,且收敛,证明:.[南开大学2011研]证明:(1)因为为正的单调递减数列,由单调有界定理得存在,由收敛,可知必有(p为任意正整数),对任意存在正整数,使得对任意正整数,成立在上式中,令,取极限,则得由的任意性,则得显然故有.(2)因为为正的单调递减数列,由单调有界定理知存在,由收敛,可知必有;对任意存在正整数,使得对任意正整数,成立在上式中,令,取极限,则得由的任意性,则得显然故有.6.设证明收敛,并求极限。

[华中科技大学2007研]证明:很明显,假设则又因为所以单调递增有上界,故极限存在。

985院校数学系2019年考研数学分析高等代数试题及部分解答

985院校数学系2019年考研数学分析高等代数试题及部分解答

15 武汉大学
39
15.1 2019 年数学分析真题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
16 华中科大 2012 年数学分析试题解析
40
17 武汉大学 2018 年数学分析试题解析
44
18 中南大学 2010 年数学分析试题解析
6 浙江大学
16
6.1 2019 年数学分析真题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.2 2019 年高等代数真题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7 华中科技大学
18
7.1 2019 年数学分析真题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.2 2019 年高等代数真题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
13 大连理工大学
35
13.1 2019 年数学分析真题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
14 电子科技大学
37
14.1 2019 年数学分析真题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5 天津大学
13
5.1 2019 年数学分析真题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

上海大学高等代数历年考研真题

上海大学高等代数历年考研真题

2000上海大学 高等代数(一) 计算行列式:acccb ac cb b a cb b b a⋅⋅⋅⋅⋅⋅⋅⋅⋅ (二) 把二次型414332214321),,,(x x x x x x x x x x x x f +++=用非退化线性替换化成平方和.(三) B A ,分别为m n ⨯和m n ⨯矩阵, n I 表示n n ⨯单位矩阵.证明: m n ⨯阶矩阵n A I X B ⎛⎫=⎪⎝⎭可逆当且仅当B A 可逆,可逆时求出X 的逆. (四) 设12,n e e e ⋅⋅⋅是n 维线性空间n V 的一组基,对任意n 个向量12,n a a a ⋅⋅⋅n V ∈,证明:存在唯一的线性变换A ,使得(),1,2i i A e a i n ==⋅⋅(五) 设A 是n 维线性空间V 的线性变换,求证:1(0)V A V A -=⊕当且仅当若12,r a a a ⋅⋅⋅为A V 的一组基则12,r A a A a A a ⋅⋅⋅是2()A V 的一组基. (六) 设A 为2级实方阵,适合21001A -⎛⎫=⎪-⎝⎭,求证:A 相似于0110-⎛⎫⎪⎝⎭. (七) 已知,f g 均为线性空间V 上线性变换,满足22,f f gg ==试证:(1)f 与g 有相同的值域⇔,fg g g f f ==. (2)f 与g 有相同的核⇔,fg f g f g ==.2001上海大学 高等代数(一)计算行列式:231212123n n n x a a a a x a a a a x a a a a x(二)设A 为3阶非零方阵,且20A =.(1)求证:存在123,,a a a ,123,,b b b ,()121233a A a b b b a ⎛⎫ ⎪= ⎪ ⎪⎝⎭(2)求方程组0A X =的基础解系.(三)用正交的线性替换化二次行2221231231323(,,)3244f x x x x x x x x x x =++--为标准形(四)设A 为n m ⨯阶实矩阵,且()()r A m n m =≥.若'2'()A A a A A =,求证'm A A a E =.(五)设A 是n (n 为奇数)维线性空间V 上线性变换,若10,0n nAA-≠=求证:存在a V ∈,使2211,,,,n n n a A a A a A a Aa Aa Aa a ---++++ 为V 的一组基,并求A 在此组基下的矩阵.(六)设A 是欧式空间V 上的对称变换.求证:对任意0a ≠,都有()0,0a A a a ≠<⇔A 的所有特征值都小于0. (七)设A a B aβ-⎛⎫=⎪⎝⎭,其中A 为n 阶负定矩阵,a 为n 维列实向量,β为实数.求证B 正定的充分必要条件为'10a A a β-+>.(八)若A 是正交阵,且A -特征值为1的重数是S ,求证:(1)sA =-(A 为A 的行列式).2002 上海大学 高等代数(一)计算行列式:若1232nx a a a ax a aA B aa x a aaax ==,求AB A BA ⎛⎫=⎪⎝⎭. (二)设A 是n 阶可逆方阵,0A A B A ⎛⎫=⎪⎝⎭. (1)计算kB (K 是整数),(2)假设100110111A =,C 为6阶方阵,而且2BC C E =+,求C .(三)设(1)(1)(1)(1)p p p n p pp n p p A p n p p p n pppp--------=--------,A 是n 阶矩阵(0p ≠),求0A X =的基础解系.(四)构造一个3阶实对称方阵A ,使其特征值为1,1,-1.并且对应的特征值有特征向量(1,1,1),(2,2,1).(五)设向量组A :123,,n a a a a ⋅⋅的秩为r (r n <),则A 中任意r 个向量线性无关的充分必要条件为:对任意向量121,,r i i i a a a + ,若1211210r i i rika k a k a ++++= ,则121,r k k k +或全为0或全不为0.(六)设A 为n 阶正定矩阵,n m B ⨯为秩为m 的实矩阵,求证'B A B tE +(0t >,E 为单位矩阵)为正定矩阵.(七)设A 为欧式空间V 上的线性变换,且2A E =.(1)求证:A 是V 上的正交变换的充分必要条件为A 是V 上的对称变换. (2)设{}1,V a a V A a a =∈=,求证:12V V V =+是直和.(八)设A 为n 阶实正交矩阵,123,,n a a a a ⋅⋅为n 维列向量,且线性无关,若12,n A E a A E a A E a +++ 线性无关,则1A =.2003上海大学 高等代数(一)计算行列式:x a a a ax a aA a a x a aaax=(A 为n 阶矩阵),2AA B AA ⎛⎫= ⎪⎝⎭(1)求A (2)求B(二)设A 为21n k =+阶反对称矩阵,求A .(三)设,A B 为n 阶整数方阵(,A B 中元素为整数),若A B E A =- (1)求证:1A =±,(2)若200120232B -⎛⎫⎪=- ⎪ ⎪-⎝⎭,求A . (四)设12(,)n A a a a = 为n 阶方阵,()1r A n =-,且121n n a a a a -=++ 121n n a a a a β-=+++ ,求A X β=的解.(五)设A 是n 阶可逆方阵,且A 每行元素之和为a ,求证:k A -的每行元素之和为ka -(k 为正整数)(六)设A 为n 阶正交矩阵,若.证明:存在正交矩阵G 使1rs E GA G E -⎛⎫=⎪-⎝⎭. (七)设2A A =,且A 为n 阶方阵,()R A r =.(1)求证:2rE A += (2)求证:()()R A R A E n +-=(3)若1r =,求0A X =的解.(八)构造一个3阶实对称方阵A ,使其特征值为2,1,1,且有特征向量(1,1,1). (九)设二次型22221234121314232434()222222f X x x x x x x x x x x x x x x x x =++++++---(1)求()f X 对应的实对称矩阵A .(2)求正交变换X P Y =,将()f X 化为标准型.(十)设A 是n 维线性空间V 上的线性变换,12,k a a a 是对应的不同特征值12,k λλλ 的特征向量.若12k a a a W ++∈ ,而W 是A 的不变子空间,则有维(W )k ≥ (十一)设B 为欧式空间V 上的变换,A 为欧式空间V 上的线性变换且有:(,)(,),,A a a B a V βββ=∀∈.证明:(1)B 为欧式空间V 上的线性变换. (2)1(0)()A B V -⊥=2004 上海大学 高等代数(一)设n 阶可逆方阵()ij A a =中每一行元素之和为(0)a a ≠,证明:(1)11(1,2)nij j A aA i n -===∑ ,其中i j A 为ij a 的代数余子式.(2)如果ij a 都是整数(1,2)i n = ,则a 整除A . (二)设1212121n n nn n a a a a A b b b b -⨯-⎛⎫= ⎪⎝⎭为实矩阵,且()2r A =. (1)求行列式'E A A λ-.(2)求'0A A X =的解(X 是n 维列向量).(三)设,A B 为n 阶整数方阵,若2B E A B =-.(1)求证:21A B+=.(2)若100110231B -⎛⎫⎪=- ⎪ ⎪-⎝⎭,求1(2)A B -+. (四)若A 为非零的半正定矩阵,B 为正定矩阵,求证: (1)求证:存在实矩阵T ,使'T T B =. (2)1A E +>. (3)A B B +>.(五)设λ为A 的特征值的最小者.求证:对任意的n 维列向量a ,有''a A a a a λ≥. (六) 设123,,λλλ为3阶方阵A 的特征值,且()()()111,011,01分别为其对应的特征向量,求nA .(七) V 是n 维欧氏空间, σ是n 维空间V 上的线性变换,如果1231,,n a a a a - 是V 中1n -个线性无关的向量,且(),σββ分别与1231,,n a a a a - 正交(β不为0).求证: β为σ的特征向量.(八)设3223303060303A B ⨯⨯⎛⎫ ⎪= ⎪ ⎪⎝⎭,求证: (1)()()2r A r B == (2)题型与钱吉林书习题类示。

上海交通大学《高等代数》《数学分析》历年考研真题汇总(2009-2018真题汇编)

上海交通大学《高等代数》《数学分析》历年考研真题汇总(2009-2018真题汇编)

(x − 1)n | (f (x) + 1), (x + 1)n | (f (x) − 1).
Ê! V •ê• F þ n ‘‚5˜m, A • V þ ‚5C†÷v A 3 − 2A 2 − A = −2id, Ù¥ id • V þð C†.
(1) A ´ÄŒé z, e´, žy². (2) - V1 = {(A − 2id)v | v ∈ V }, V2 = {(A 2 − id)v | v ∈ V }. y²: V = V1 ⊕ V2.
8
5 þ° ÏŒÆ 2015 ca¬ïÄ)\Æ•ÁÁK£828 p “ê¤
9
6 þ° ÏŒÆ 2018 ca¬ïÄ)\Æ•ÁÁK£828 p “ê¤
10
7 þ° ÏŒÆ 2010 ca¬ïÄ)\Æ•ÁÁK( 614 êÆ©Û)
11
8 þ° ÏŒÆ 2011 ca¬ïÄ)\Æ•ÁÁK( 614 êÆ©Û)
16
3
1. 2010年þ° ÏŒÆ828《高等代数》a¬ïÄ)\Æ•ÁÁK
˜! ( 20 ©) OŽ1 ª
an1
an2
(1) Dn+1 =
...
an1 −1b1 · · ·
an2 −1b2 · · · ...
ann+1 ann−+11bn+1 · · ·
1 + a1 + b1 a1 + b2
a1bn1 −1
›˜! A ´ n ‘m¥ f˜m.
C†, V1 ´ V A − ØCf˜m. y²: V1
Ö•´ V A − ØC
› ! A, B þ• n ¢é¡ , y²: AB A ŠÑŒu".
4

上海交大2004考研数学分析

上海交大2004考研数学分析

2004年上海交通大学 数学分析一(14)设lim n n a a →∞=,证明22lim221anna a a n n =+++∞→ 证 因2n x n =∞ ,故利用Stolz 公式,11limlim n n n n n n n ny y yx x x +→∞→∞+-=-,得12112222(1)1limlim lim lim (1)212n n n n n n n a a na n a n aa n n n n ++→∞→∞→∞→∞+++++===+-+ 二(14)证明2sin()x 在[)+∞,0上不一致连续.证因n x =n y =22sin sin 1n n x y -=,0n n x y -=-=→,故2sin()x 在[)+∞,0上不一致连续.三(14)设)(x f 在[]a 2,0上连续,且)0(f =)2(a f ,证明∃0x ∈[]a ,0,使)(0x f =)(0a x f +证 作()()()g x f x a f x =+-([]0,x a ∈),则()g x 在[]0,a 上连续,因)0(f =)2(a f ,故(2)(0)g a g =-,情形1 若(0)0g =,则取00x =,则)(0x f =)(0a x f +, 情形2 若(0)0g ≠,则因2(2)(0)(0)0g a g g =-<,故由介值定理知,存在[]00,x a ∈,使得0()0g x =,即)(0x f =)(0a x f +.四(14)证明不等式x π2<x sin <x ,⎪⎭⎫ ⎝⎛∈2,0πx证 作sin ()x f x x =,π0,2x ⎛⎫∈ ⎪⎝⎭,则因22cos sin cos ()(tan )0x x x xf x x x x x-'==-<,故sin ()x f x x =在π0,2⎛⎫⎪⎝⎭上严格单调减少,而0lim ()1x f x →=,π22lim ()πx f x →=, 因此,在π0,2⎛⎫ ⎪⎝⎭上,有2sin ()1πx f x x <=<,即x π2<x sin <x .五 (14) 设()d af x x +∞⎰收敛,且)(x f 在[)+∞,a 上一致连续,证明)(lim x f x +∞→= 0.证 因)(x f 在[)+∞,a 上一致连续,故0ε∀>,0δ∃>,使得当[)12,,t t a ∈+∞且12t t δ-<时,有12()()2f t f t ε-<,令(1)()d a n n a n u f x x δδ++-=⎰,则由积分第一中值定理得,[](1),n x a n a n δδ∃∈+-+,使得(1)()d ()a n n n a n u f x x f x δδδ++-==⎰.因()d af x x +∞⎰收敛,故级数1n n u ∞=∑收敛,从而0n u →,即()0n f x δ→,也即()0n f x →,故对上述的ε,存在N +∈ ,使得当n N >时,()2n f x ε<.取X a N δ=+,则当x X >时,因[)[)0,(1),k x a a k a k δδ∞=∈∞=+-+故存在惟一的k +∈ ,使得[)(1),x a k a k δδ∈+-+,易见k N >,且k x x δ-<,从而()()()()22k k f x f x f x f x εεε≤+-<+=六(14)设211n x n -=,121d n n n x x x +=⎰,1,2,n = ,证明级数()∑∞=--111n nn x 收敛.解. 11211d ln |ln(1)n n n n nx x x x n ++===+⎰,因2121n nS S k+=+,故只要证 ()1211111ln(1)nnk n k k k S x kk -==⎡⎤=-=-+⎢⎥⎣⎦∑∑22111()2n k k k =⎡⎤=+⎢⎥⎣⎦∑ 收敛即可.七(14)设)(x f 在[]1,0上连续,)1(f = 0 ,n n x x f x g )()(= ,1,2,n = , 证明)}({x g n 在[]1,0上一致收敛.八(12)设()f x 在[]1,0上连续,证明10lim ()d n n n x f x x →∞⎰=)1(f .证 (1)(令n t x =,则10()d n n x f x x ⎰111()d n nt f t t =⎰,(2)因()f x 在[]1,0上连续,故0M ∃>,使得()f x M ≤,[]0,1x ∈,(3)0ε∀>,记3a Mε=,不妨设01a <<,则11110()d ()d d 3aa an nnnt f t t t f t t M t Ma ε≤≤==⎰⎰⎰,(4)111111111()d (1)[()(1)]d ()(1)d n nnnnnaa at f t t f tf t f t t f t f t -=-≤-⎰⎰⎰11111()(1)(1)(1)d nnnnat f t t f t f f t =-+-⎰1111()(1)d (1)1d nnaaf t f t f t t ≤-+-⎰⎰(5)因()f x 在[]1,0上连续,故()f x 在[]1,0上一致连续,故对上述的正数ε,0δ∃>,当[]12,0,1x x ∈且12x x δ-<时,有12()()3(1)f x f x a ε-<-(6)因1lim 1nn a →∞=,记min{,}3(1)M a εεδ*=-,则存在正整数N ,使得当n N >时,有11na ε*-<,(7)当(,1)t a ∈时,有111111nnnt t a -=-≤-,从而当n N >时,有1111()(1)d (1)1d 33nnaaf t f t f t t εε-+-<+⎰⎰(8)由(3)和(7)知,当n N >时,有1110()d (1)nnt f t t f -⎰1111102()d ()d (1)33an n n na t f t t t f t t f εεε≤+-<+=⎰⎰九(12)设1a >0,1+n a =n a +n a 1,证明n =1证 (1)要证n =1 ,只要证2lim 12nn a n →∞=,即只要证221lim 1(22)2n nn a a n n +→∞-=+-,即证221lim()2n n n a a +→∞-= (2)因1+n a =n a +n a 1,故110n n n a a a +-=>,1211n n na a a +=+ 2211112211()()112n n n n n n n n n n na a a a a a a a a a a +++++-=-+==++=+ 因此只要证21lim0n na →∞=,即只要证lim n n a →∞=∞ (3)由110n n na a a +-=>知,{}n a 单调增加,假如{}n a 有上界,则{}n a 必有极限a ,由1+n a =n a +n a 1知,a =a +1a,因此10a =,矛盾. 这表明{}n a 单调增加、没有上界,因此lim n n a →∞=∞. (证完)十(28)计算下述积分:1.d x y ⎰⎰,其中D 是矩形区域x 1≤,20≤≤y解 记21{(,)|1,02,0}D x y x y y x =≤≤≤-≤22{(,)|1,02,0}D x y x y y x =≤≤≤≤-,2d d d DD D x y x y x y =+⎰⎰⎰⎰⎰⎰2112221122211d ()d d ()d x x x x y y x y x y --=-+-⎰⎰⎰⎰332211221122()d (2)d 33x x x x --=+-⎰⎰ 332211220044()d (2)d 33x x x x =+-⎰⎰ π143400416d cos d 33x x t t =+⎰⎰()x t =这里 π2401161cos2d 332t t +⎛⎫=+ ⎪⎝⎭⎰ π40141cos412cos2d 332t t t +⎛⎫=+++ ⎪⎝⎭⎰ π40143sin 4sin 23328t t t ⎡⎤=+++⎢⎥⎣⎦ 143ππ5133823⎛⎫=++=+ ⎪⎝⎭ 2.22d d ()d d d d Syz y z x z y z x xy x y +++⎰⎰,其中S 是曲面224z x y +=-上0≥y 的那部分正侧.解 记22{(,,)|4,0}x y z x z y ∑=+≤=(取下侧),22{(,,)|04}V x y z y x z =≤≤--,则V S ∂=+∑,由高斯公式知,2222d d ()d d d d ()d d d 0SS Vyz y z x z y z x xy x y x z x y z +∑∑+++=-=++⎰⎰⎰⎰⎰⎰⎰⎰⎰2242222()d d d d ()d d Vx z x z x y z yx z x z +=+=+⎰⎰⎰⎰42012π(4)d 4y y =-⎰ 430π32π(4)63y ⎡⎤=--=⎣⎦。

上海交大考研试题(高代)

上海交大考研试题(高代)

上海交通大学研究生入学试题(高等代数)JDy97-1方程组⎩⎪⎨⎪⎧3x 1+4x 2-5x 3+7x 4=02x 1-3x 2+3x 3-2x 4=04x 1+11x 2-13x 3+16x 4=07x 1-2x 2+ x 3+3x 4=0是否有非零解? 若有,求其通解,并写出解空间维数。

(14分)JDy97-2用正交线性变换把二次型 x 12+2x 22+3x 32 -4x 1x 2 - 4x 2x 3化为标准形,并写出该变换。

(14分)JDy97-3证明:矩阵A 是正定或半正定实对称的充要条件是:存在实矩阵S ,使得A=S T S ,其中S T 表示S 的转置矩阵。

(14分)JDy97-4设A, B 为n 阶方阵,AB=BA ,且A k =0,对某一个k ≥1整数,证明 |A+B|=|B|。

(14分) JDy97-5设R n [x]为次数<n 的多项式线性空间,δ 为求导变换(即δf(x)=f ’(x)),求证 ι-δ 为非退化线性变换(其中 ι 为恒等变换),并求出 δ 的所有不变子空间。

(14分)JDy97-6已知线性无关向量组e 1,e 2,…,e s 和两个非零向量的正交组f 1,f 2,…,f s 与g 1,g 2,…,g s 使得f k 和g k (k=1,2,…,s)可由e 1,e 2,…,e k 线性表示,求证f k =a k g k (k=1,2,…,s),其中a k ≠0。

(14分) JDy97-7(1) 设J(x)为方阵X 的若当标准形,证明J(A+aE)=J(A)+aE ,其中A 是任一方矩阵,a 是一个数。

(8分)(2) 求幂等方阵A (即满足条件A 2=A )的若当标准形。

(8分)JDy98-1叙述下列概念:1)数域;2)对称多项式;3)向量的线性相关;4)矩阵的秩;5)欧氏空间。

(每小题4分,共20分)JDy98-2求线性方程组的解:⎩⎪⎨⎪⎧(α+β)x 1+αβx 2 =0x 1 +(α+β)x 2+αβx 3 =0x 2 +(α+β)x 3+αβx 4 =0 … …. … x n-1+(α+β)x n =0JDy98-3求出一切仅与自己相似的n 阶复方阵。

上海交通大学2019高等代数考研试题word资料3页

上海交通大学2019高等代数考研试题word资料3页

上海交通大学2002年硕士研究生入学考试高等代数1、(12))()()(1x bg x af x f +=,)()()(1x dg x cf x g +=且0≠dc b a ,证()())(),()(),(11x g x f x g x f =。

2、(14)计算xa a a a a axaa a a a x a a a a axa x a a a a a a x aa a a a x nn n -------=+++O ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ,321321321。

3、(15)k 取何值时,下列方程组β=AX :(1)有唯一解;(2)无解;(3)有无穷多解,此时求其通解。

其中⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=111,2111111βk k A 。

4、(12)设A 为数域P 上n 阶可逆矩阵,任意将A 分为两个子块⎪⎪⎭⎫⎝⎛=21A A A ,证n 维线性空间n P 是齐线性方程组01=X A 的解空间1V 与02=X A 的解空间2V 的直和。

5、(10)f(x)是方阵A 的特征多项式,g(x)为任多项式,())()(),(x d x g x f =,证r(g(A))=r(d(A)).6、(12)求正交变换化二次型323121232221844552x x x x x x x x x f --+++=为标准型。

7、(15)设σ为线性空间V 的一线性变换,σσ=2.证(1)σ的特征值只能为1或0(2)若用1V 与0V 分别表示对应于特征值1和0的特征子空间,则V V σ=1,)0(10-=σV (3))0(101-⊕=⊕=σσV V V V 。

8、(10)设A ,B 为n 阶对角化矩阵,AB=BA 。

证明A ,B 可同时对角化。

上海交通大学2003年硕士研究生一 判断以下各题,正确的给出证明,错误的举出反例并给出理由(每小题6分,共24分)1)若f (x )在R 上有定义,且在所有的无理点上连续,则f (x )在R 上处处连续2)若f (x ),g (x )连续,则))(),(min()(x g x f x =φ连续 3)任意两个周期函数之和仍为周期函数4)若函数f (x ,y )在区域D 内关于x ,y 的偏导数均存在,则f (x ,y )在D 内连续二.设f (x )在[a ,b]上无界,试证:对任意的],[,0b a 在>δ上至少有一点0x ,使得f (x )在δ的0x 邻域上无界.(12分)三 设f (x )对任意的R x ∈有)()(2x f x f =且)(x f 在x=0和x=1 处连续,试证明f (x )在R 上为常数.(12分) 四 已知)(,....)()2(,0,....,,lim 01121x f n aa x f n a a a x xx nx n →⎪⎪⎭⎫⎝⎛++=≥>试求且(12分) 五,若实系数多项式)0(,)(01110≠++⋅⋅⋅⋅⋅++=--a a x a x a x a x P n n n n n 的一切根均为实数,试证导函数)('x P n 也仅有实根。

上海交大考研试题(高代)

上海交大考研试题(高代)

上海交通大学研究生入学试题(高等代数)JDy97-1方程组⎩⎪⎨⎪⎧3x 1+4x 2-5x 3+7x 4=02x 1-3x 2+3x 3-2x 4=04x 1+11x 2-13x 3+16x 4=07x 1-2x 2+ x 3+3x 4=0是否有非零解? 若有,求其通解,并写出解空间维数。

(14分)JDy97-2用正交线性变换把二次型 x 12+2x 22+3x 32 -4x 1x 2 - 4x 2x 3化为标准形,并写出该变换。

(14分)JDy97-3证明:矩阵A 是正定或半正定实对称的充要条件是:存在实矩阵S ,使得A=S T S ,其中S T 表示S 的转置矩阵。

(14分)JDy97-4设A, B 为n 阶方阵,AB=BA ,且A k =0,对某一个k ≥1整数,证明 |A+B|=|B|。

(14分) JDy97-5设R n [x]为次数<n 的多项式线性空间,δ 为求导变换(即δf(x)=f ’(x)),求证 ι-δ 为非退化线性变换(其中 ι 为恒等变换),并求出 δ 的所有不变子空间。

(14分)JDy97-6已知线性无关向量组e 1,e 2,…,e s 和两个非零向量的正交组f 1,f 2,…,f s 与g 1,g 2,…,g s 使得f k 和g k (k=1,2,…,s)可由e 1,e 2,…,e k 线性表示,求证f k =a k g k (k=1,2,…,s),其中a k ≠0。

(14分) JDy97-7(1) 设J(x)为方阵X 的若当标准形,证明J(A+aE)=J(A)+aE ,其中A 是任一方矩阵,a 是一个数。

(8分)(2) 求幂等方阵A (即满足条件A 2=A )的若当标准形。

(8分)JDy98-1叙述下列概念:1)数域;2)对称多项式;3)向量的线性相关;4)矩阵的秩;5)欧氏空间。

(每小题4分,共20分)JDy98-2求线性方程组的解:⎩⎪⎨⎪⎧(α+β)x 1+αβx 2 =0x 1 +(α+β)x 2+αβx 3 =0x 2 +(α+β)x 3+αβx 4 =0 … …. … x n-1+(α+β)x n =0JDy98-3求出一切仅与自己相似的n 阶复方阵。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海交通大学1999年硕士研究生入学考试试题试卷名称:高等代数1.(10分)设P 为数域。

()()[]x P x g x f ∈,令()()()()()x g x x x f x X F 1122++++=;()()()()x g x x xf x G 1++=。

证明:若()x f 与()x g 互素,则()x F 与()x G 也必互素。

2.(10分)设J 为元素全为1的阶方阵。

(1) 求J 的特征多项式与最小多项式;(2) 设()x f 为复数域上多项式。

证明()J f 必相似于对角阵。

3.(10分)(1) 设n 阶实对称矩阵()ij x A =,其中1+=j i ij a a x 且0...21=+++n a a a ,求A 的n 个特征值。

(2) 设A 为复数域上n 阶方阵。

若A 的特征根全为零,证明:1=+E A 。

此处E 为n 阶单位阵。

4(10分)设()x f 是数域F 上的二次多项式,在F 内有互异的根21,x x ,设A 是F 上线性空间L 的一个线性变换且I x A 1≠,I x A 2≠(I 为单位变换)且满足()0=A f ,证明21,x x 为A 的特征值;且L 可以分解为A 的属于21,x x 的特征子空间的直和。

5(10分)用正交线性变换将下列二次型化为标准形,并给出所施行的正交变换:32312123222184422x x x x x x x x x ++---6(10分)对的不同取值,讨论下面方程组的可解性并求解:7(10分)假设A 为n m ⨯实矩阵,B 为1⨯n 实矩阵,TA 表示A 的转置矩阵。

证明: (1) AB=0的充要条件是0=AB A T; (2) 矩阵A A T与矩阵A 有相同的秩。

8(10分)设p A A A ,...,,21均为n 阶矩阵且0...21=p A A A 。

证明这p 个矩阵的秩之和小于等于()n p 1-,并举例说明等式可以达到。

9(10分)证明任一可逆实矩阵可分解为一个正定阵和一个正交阵之积。

10(10分)设W 为欧氏空间V 的一个子空间。

W a V b ∈∈,证明若对任意W a ∈,ab a b -≤-则W a b ⊥-上海交通大学2003年硕士研究生入学考试试题试卷名称:高等代数1(15分)设⎪⎪⎪⎭⎫ ⎝⎛-=121012001A ,求100A .2(15分)以22⨯P 表示数域P 上的2阶矩阵的集合。

假设4321,,,a a a a 为两两互异的数而且他们的和不等于零。

试证明⎪⎪⎭⎫ ⎝⎛=4121111a a a A ,⎪⎪⎭⎫ ⎝⎛=4222221a a a A ,⎪⎪⎭⎫ ⎝⎛=4323331a a a A ,⎪⎪⎭⎫⎝⎛=4424441a a a A 是P 上线性空间的一组基。

3(15分)证明:阶实对称矩阵A 的秩为r,()n r ≤,当且仅当A 可以写成TCbC A =,其中B 为r n ⨯阶满秩矩阵,C 为r 阶可逆实对称阵。

4(15分)假设()()()()()25442033152210140x f x x f x x f x x xf x f ++++被1234++++x x x x 整除。

证明:()x f i ,()4,3,2,1,0=i 被1-x 整除。

5(15分)设A 为阶反对称实矩阵,{}n a a a diag B ,...,,21=,其中0 i a ,证明0 B A +。

6(15分)n 阶方阵A 满足等式2A A =,当且仅当()()A E r A r n -+=。

7(20分)设A ,B 都是n 阶实方阵,并设λ为BA 的非零特征值;以BAV λ表示BA 关于λ的特征子空间。

(1)证明:λ也是AB 的特征值;(1)证明:维数()BA V λ=维数()ABV λ。

8(20分)设A ,B 都是n 阶正定方阵。

试证明:AB 的特征值为实数。

9(20分)记nn PV ⨯=,P 为数域。

假设V A ∈有特征值()n i i ,...,2,1=λ,但()n i i ,...,2,1=-λ均不是A 的特征值。

试证明:V 的变换X A XA X T +→:ψ为同构。

上海交通大学1999年硕士研究生入学考试试题试卷名称:数学分析一 选择题(每题3分,共15分)1.设()⎪⎩⎪⎨⎧=≠=001sinx x xx x f α在0=x 处连续但不可导,则α满足不等式A .0 αB .1 αC .10≤αD .21 α2.若()[]b a R x f ,∈,则下列结论正确的是 A .()[]b a C x f ,∈B .()x f 在()b a ,内的任一子区间内至少有一个连续点;C .()x f 可能在[]b a ,上每一点都不连续;D .()x f 可能在[]b a ,上所有无理点处都不连续。

3.若曲线b ax x y ++=22与123-=xy y 在点()1,1-处相切,则系数b a ,的值为A .⎩⎨⎧=-=03b aB .⎩⎨⎧=-=25b a C .⎩⎨⎧=-=23b aD .⎩⎨⎧-==21b a4.二次积分()dy y x f dx xx ⎰⎰102,的另一积分次序为A .()dx y x f dy xx ⎰⎰102,B .()dx y x f dy yy⎰⎰102,C .()dx y x f dy yy ⎰⎰1,D .()dx y x f dy xx⎰⎰21,5.曲线积分⎰+-Cy x xdyydx 22的值为()。

其中C 是闭曲线1=+y x 的正向。

A .0B .πC .π2D .π2-二 下列命题是否正确,若正确证明之,若错误试举例说明。

(每题5分,共25分) 1. 若()x f 在[)+∞,0连续且有界,则()x f 在[)+∞,0上必一致连续。

2. 若()x f 在0=x 点的邻域内二阶可导,且()00='f ,()1lim=''→xx f x 则()0f 为()x f 的极小值。

3. 若广义积分()⎰+∞dx x f 收敛,且()A x f x =→0lim ,则A=0。

4. 若()()y x f y x f y x ,,,在点()00,y x 的任何邻域内均无界,则()y x f ,在()00,y x 处必不可微。

5. 若级数∑∞=1n na收敛,则对{}n a 的任一子列{}k n a 都有∑∞=1k n ka收敛。

三计算下列极限(试写出计算过程及理由。

共18分)1.202lim h a a a hh x h x h -+-+→,()1,0≠a a 2.03!lim=⋅∞→nnn n n 3.dx xpx p ⎰-+∞→21221sin lim四(10分)设{}n a 为实数列,0lim =∞→n n a .证明必存在子列{}k n a ⊂{}n a ,使∑∞=1k n ka收敛。

五(10分)设函数()x g 在[)+∞,0上非负,()α=⎰+∞→dx x g AA 0lim(α为有限数),又()x f 在[]1,0上连续。

试证()()()0lim 10110f dx x f x t g t t α=⎰--→+六(12分)设函数列(){}x f n 在区间I 上一致收敛于()x f ,且()x f n 在I 上一致连续(N n ∈)。

证明:()x f 在I 上也一致连续。

七(10分)设函数()()x g x f ,都在[]b a ,上连续,且()0≠⎰bax g ,又()()0≠+x g x f ,[]b a x ,∈∀证明:至少存在一点[]b a ,∈ξ,使()()()()⎰⎰=b aba dxx g dx x f g f ξξ。

上海交通大学2003年硕士研究生入学考试试题试卷名称:数学分析一判断以下各题,正确的给出证明,错误的举反例并说明理由。

(每小题6分,共24分) 1. 若()x f 在R 上有定义,且在所有无理点处连续,则()x f 在R 上处处连续。

2. 若()x f ,()x g 连续,则()()()()x g x f x ,m in =ϕ连续。

3. 任意两个周期函数之和仍为周期函数。

4. 若函数()y x f ,在区域D 内关于x,y 的偏导数均存在,则()y x f ,在D 内必连续。

二(12分)设()x f 在[]b a ,上无界,试证对任意0 δ,在[]b a ,上至少有一点x ,使得()x f 在0x 的δ邻域上无界。

三(12分)设()x f 对任意R x ∈有()()2xf x f =且()x f 在0=x 和1=x 处连续。

试证明()x f 在R 上为常数。

四(12分)已知0,...,,21 n a a a ,()2≥n 且()xx nx xn aa a x f 121...⎪⎪⎭⎫⎝⎛+++=,试求()n n x a a a x f ...lim 210=→五(12分)若实系数多项式()n n n n n a x a x a x a x P +++=--1110,00≠a 的一切根均为实数。

试证明导函数()x P n '也仅有实根。

六(12分)设{}n na 收敛,级数()∑∞=--21n n na an 收敛。

试证级数∑∞=1n n a 收敛。

七(12分)设()x y ϕ=,0≥x 是严格单调增加的连续函数,()00=ϕ是它的反函数。

试证明对0,0 b a 有()()ab dy y dx x ba ≥+⎰⎰0ψϕ八计算题(每小题12分,共24分)1. 求函数()444,,z y x z y x f ++=在条件1=xyz 下的极值。

2. 计算积分()dz arctgzdxdy z y I V⎰⎰⎰-=,其中V 为由曲面()22221R z y x =-+,0=z 和h z =所围成的区域。

九(10分)设()x g 在[)+∞,a 上一致连续,且对任意的a x ≥有()A n x g n =++∞→lim ,是试证()A x g x =+∞→lim十(10分)试证:()x x x +⎪⎭⎫ ⎝⎛+1111ln 2十一(10分)设函数()x f 在[]b a ,上连续,在()b a ,内可导,且()x f 是非线性函数。

试证存在()b a ,∈ξ,使得()()()ab a f b f f --' ξ上海交通大学2002年硕士研究生入学考试试题试卷名称:数学分析一判断题(以下个题,对的要证明,错的要举反例并说明理由,每题6分,共24分)1. 若n n n b x a ≤≤,N n ∈而数列{}n x 收敛,()∞→→-n a b n n 0则数列{}n a ,{}n b 必都收敛。

2. 若函数()x f 在R 上连续且有界,则()x f 在R 上必一致连续。

相关文档
最新文档