九年级数学三角形的中位线
九年级数学中位线知识点

九年级数学中位线知识点中位线是数学中一个重要的概念,它在统计学和几何学中都有广泛的应用。
本文将详细介绍九年级数学中位线的相关知识点,包括定义、性质和求解方法等方面。
一、定义中位线是指一条线段,它连接平面上一个三角形的一个顶点和对边中点的线段。
具体来说,对于三角形ABC,若D是边AB的中点,则CD被称为三角形ABC的中位线。
二、性质1. 中位线的长度:中位线的长度等于对边的一半。
即,在三角形ABC中,若D为边AB的中点,则CD = 1/2 AB。
2. 中位线的位置:三角形ABC的三条中位线所交于一点,我们称之为重心(G)。
重心是三角形的一个重要特殊点,它将三角形分成六个小三角形,每个小三角形的面积相等。
3. 中位线的关系:在三角形中,任意两条中位线的交点都在第三条中位线上。
这个交点将每条中位线分成两个部分,其中一个部分是另一条中位线的2倍。
三、求解方法1. 已知三角形的顶点坐标:若已知三角形的顶点坐标A(x1, y1)、B(x2, y2)、C(x3, y3),求中位线CD的方法如下:a) 计算边AB的中点坐标D,D的坐标为((x1+x2)/2,(y1+y2)/2);b) 通过点D和顶点C的坐标,可以得到中位线CD的方程;c) 求解中位线CD的相关参数,如长度、斜率等。
2. 已知三角形的边长:若已知三角形的边长a、b、c,求中位线CD的方法如下:a) 根据已知边长,利用海伦公式计算三角形的面积S;b) 根据面积S和三角形的高公式,计算三角形的高h;c) 通过三角形高的性质,计算出中位线CD的长度。
四、例题解析为了更好地理解中位线的概念和求解方法,我们将通过例题来进行解析:例题1:已知三角形ABC的坐标为A(2, 4)、B(6, 8)、C (8, 2),求中位线CD的长度。
解析:首先计算边AB的中点坐标D,D的坐标为((2+6)/2, (4+8)/2)= (4, 6)。
然后根据两点间的距离公式,计算出CD的长度:CD = √[(8-4)^2 + (2-6)^2] = √[(4^2) + (-4)^2] = √(16+16) = √32 = 4√2例题2:已知三角形的边长分别为a = 5 cm,b = 12 cm,c = 13 cm,求中位线CD的长度。
华师大版九年级数学上册授课课件:23.4 中位线

中点,AD、CE相交于点G.求证: GE GD 1 .
CE AD 3
证明:连结ED. ∵D、E分别是边BC、AB的中点,
∴DE//AC
,
DE AC
=
1 2
.
(三角形的中位线平行于第
三边,并且等于第三边的一半).
∴△ACG∽△DEG, ∴ GE = GD DE 1 .
GC GA AC 2
知1-讲
【例2】 求证:三角形的一条中位线与第三边上的中
线互相平分.
已知:如图,在 △ABC 中,AD =DB,BE=EC,
AF = FC. 求证:AE、DF互相平分.
证明:连结DE、EF.
∵AD = DB,BE = EC,
∴DE//AC(三角形的中位线平行于第
三边,并且 等于第三边的一半).
同理可得EF//BA.
猜想
如图23.4. 2,在△ABC中,点D、E分别 是AB与AC 的中点.根据画出的图形,可 以猜想: DE // BC,且DE = 1 BC.
2 对此,我们可以用演绎推理给出证明.
知1-导 (来自教材)
证明:在△ABC中,
∵点D、E分别是AB与AC的中点,
∴ AD AE 1 .
AB AC 2
(来自《典中点》)
知2-练
2 给出以下判断: (1) 线段的中点是线段的重心; (2) 三角形的三条中线交于一点,这一点就是三角 形的重心; (3) 平行四边形的重心是它的两条对角线的交点; (4) 三角形的重心是它的中线的一个三等分点. 那么以上判断中正确的有( ) A.一个 B.两个 C.三个 D.四个
∴ GE = GD 1 . CE AD 3
拓展
知2-导
华师大版九年级数学三角形的中位线教案精选全文

可编辑修改精选全文完整版三角形的中位线教学目的:1. 使学生掌握三角形中位线概念与三角形中位线定理.2.使学生能熟练应用定理进行有关证明和计算,提高学生分析问题和解决问题的能力.重点难点:三角形中位线的概念和三角形中位线定理是本课的重点;三角形中位线定理的证明是本课的难点.教学过程:一、复习引入1. 复习平行线等分线段定理推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边.2. 如图:B、C两点被池塘隔开,在BC外选一点A,连结AB和AC,并分别找出AB和AC的中点D、E.如果测得DE =20m,那么B、C两点的距离是多少?二、新授1.三角形的中位线的概念:连结三角形两边中点的线段叫做三角形的中位线.2.三角形中位线定理如图,DE是ΔABC的一条中位线,如果过D作DE∥BC,交AC于E’,那么根据平行线等分线段定理推论2,得E’是AC的中点,可见DE’与DE重合,所以DE∥BC.由此得到:三角形中位线平行于第三边.同样,过D作DF∥BC,且DE∥FC,DE=1/2BC.因此,又得出:三角形中位线等于第三边的一半.以上两点就是三角形中位线定理.例1:已知:如图ΔABC中,D、E、F分别是AB、AC、BC的中点(1)指出图中有几个平行四边形(2)图中与ΔDEF全等的三角形有哪几个(3)若AB=10cm,AC=6cm,则四边形ADFE的周长为______cm(4)若ΔABC周长为6cm,面积为12cm2,则ΔDEF的周长是 _____cm,面积是_____cm例2:顺次连结四边形四条边的中点,所得的四边形是平行四边形师生共同写出已知求证,在分析的基础上写出证明过程.然后作适当的变式:(1)(1)若AC=BD,则四边形EFGH是什么图形?(2)(2)若AC⊥BD,则四边形EFGH是什么图形?(3)(3)若AC=BD,且AC⊥BD,则四边形EFGH是什么图形?例3:如图ΔABC的中线BE、CD相交于点O,F、G分别是BO、CO的中点,试猜想DF与GE有怎么的关系?并证明你的猜想.小结:(1)本课所授内容.(2)定理的特征与应用.。
23.4 中位线

图 23-4-4 (1)求证:CF=DE; (2)若 AC=6,AB=10,求四边形 DCFE 的面积.
23.4 中位线
解:(1)证明:∵D,E 分别为 AB,BC 的中点, 1 ∴DE∥AC,DE= AC. 2 1 又 CF= AC, 2 ∴CF=DE. (2)∵AC=6,AB=10, 由勾股定理,得 BC= AB2-AC2=8. 1 1 ∴S 四边形 DCFE=DE· CE= AC· BC=12. 2 2
中点,连结DE,线段BE,CD相交于点O,若OD=2,求OC 的长.
图24-4-6
23.4 中位线
[解析] 解法一:由题意,知 O 点为△ABC 的重心,根据 重心的性质可得出 OC=2OD; 解法二: 由题意, 知 DE 为△ABC 的中位线, 则 DE∥BC, 1 DE= BC,再证明△ODE∽△OCB,由相似三角形对应边成 2 比例即可得出 OC=2OD.
1. 三角形的重心: 三角形三条边上的中线交于 一点 , 这个点就是三角形的 重心 .
2.三角形重心的性质:重心与一边中点的连线的长是 1 对应中线长的 . 3
23.4 中位线
重难互动探究
探究问题 三角形的中位线及其应用 例 如图 23-4-4 所示,在 Rt△ABC 中,∠ACB=90 °,D,E 分别为 AB,BC 的中点,点 F 在 AC 的延长线上, 1 CF= AC,∠FEC=∠B. 2
23.4 中位线
解:解法一:∵点 D,E 分别为 AB,AC 的中点,线段 BE,CD 相交于点 O, ∴O 点为△ABC 的重心, ∴OC=2OD=4; 解法二:∵点 D,E 分别为 AB,AC 的中点, ∴DE 为△ABC 的中位线, 1 ∴DE∥BC,DE= BC, 2 ∴∠ODE=∠OCB, ∠OED=∠OBC, ∴△ODE∽△OCB, ∴OD∶OC=DE∶BC=1∶2, ∴OC=2OD=4. 故 OC 的长为 4.
初中数学华东师大九年级上册(2023年新编)第23章 图形的相似《2三角形中位线》教学设计

《三角形的中位线》教学设计一、教材分析:1、教材中所处的地位:本节课是华东师大数学教材九年级上册第二十三章第四节内容。
三角形中位线是三角形中重要的线段,三角形中位线定理是一个重要性质定理,它是前面已学过的平行线、全等三角形、平行四边形等知识内容的应用和深化,尤其是在判定两直线平行和论证线段倍分关系时常常用到。
在三角形中位线定理的证明及应用中,处处渗透了化归思想。
由于解决这一问题需要师生、生生之间的合作与交流,利于发展学生的合作与交流的意识与能力;由于本节课学生需要经历观察、归纳、猜想、推理及应用的全过程,对于今后的学习具有重要的指导意义。
2、教学背景:通过教材和班级的实际情况,对教材中的三个地方需要稍加处理,才更适合我们的学生的实际情况,更符合学生的认知发展规律,抓住学生的最近发展区,提高课堂教学效率。
(1)设计困惑:①课堂上解决“如何把一个三角形分为四个全等的三角形”这个问题过于费时,学生很多想不到,就算是做出来也不明白为什么。
②教材中给出的定理证明方法为中位线倍长法,难度相当大,学生基本上都无法理解。
③中点四边形的证明如何作辅助线、为什么要这样作辅助线学生感到很困难。
(2)教材处理:①我校正在开展协同教育课题研究,学生是通过我校协同平台来完成学习任务的,于是我充分利用资源,让学生登陆协同平台完成我发布的作业,通过三个问题作铺垫:学生很快就搞定了。
②通过动画演示及教具演示,让学生直观感受中位线倍长法与旋转法、平行法的联系。
③通过教具演示,加上温馨提示,学生自然就明白作辅助线的奥妙了。
二、目标分析:1、教学目标:(一)知识目标:(1)理解三角形中位线的定义;(2)掌握三角形中位线定理证明及其应用。
(3)理解三角形中位线定理的本质与核心,培养学生的化归思想。
(新增)(二)能力目标:(1)通过动手操作与合作交流,发展学生的合作交流、实践操作及推理能力。
(2)通过对三角形中位线定理的猜想及证明,提高学生分析问题及解决问题的能力。
初中数学最新-九年级数学三角形中位线定理 精品

§1.5中位线——三角形中位线定理一、预习导学1、怎样将一张三角形纸片剪成两部分,使分成的两部分能拼与一个平行四边形。
2、三角形中位线及三角形中位线定理(1).三角形中位线定义:叫做三角形的中位线。
(2).三角形中位线性质三角形中位线定理:已知:求证:二、自主探究例题. 求证:顺次连结四边形四条边的中点,所得的四边形是平行四边形.已知:如图所示,在四边形ABCD中,E、F、G、H分别是AB、B C、CD、DA的中点.求证:四边形EFGH是平行四边形.‘G F E DC B A F ED CB A思考:(1)顺次连接矩形各边的中点所得的四边形是怎样的图形?为什么?(2)如果将矩形改成菱形,结果怎样?证明你的结论。
(3)顺次连接四边形ABCD 各边的中点所得的四边形EFGH 时,若四边形EFGH 是菱形,则四边形ABCD 有什么特征?若四边形EFGH 是矩形,则四边形ABCD 有什么特征?三、反馈练习: 1、如图⊿AB C 中,BC=6c m ,点D 、E 分别是AB 、AC 的中点,则DE=2、 如图;三角形三条中位线组成的图形与原三角形有怎样的大小关系(面积和周长)? 说说你的理由。
3、已知:在四边形AB CD 中,AB=CD ,E 、F 、G 分别是BD 、AC 、BC 的中点。
求证:⊿EFG 是等腰三角形。
_ F _ D_ C _ B_ A4、求证:三角形的中位线与第三边上的中线互相平分。
附件1:律师事务所反盗版维权声明附件2:独家资源交换签约学校名录(放大查看)学校名录参见:/wxt/list.aspx?ClassID=3180。
初中数学 什么是三角形的中位线定理

初中数学什么是三角形的中位线定理三角形的中位线定理是指在一个三角形中,连接一个顶点和对边中点的线段被称为中位线。
中位线将三角形分割为两个等面积的小三角形,并且中位线的长度等于对边的一半。
设三角形ABC的顶点为A,对边BC的中点为D,连接AD。
根据中位线定理,有以下结论:1. 中位线AD平分对边BC,并且AD = 1/2 * BC。
2. 中位线AD将三角形ABC分割为两个等面积的小三角形,即△ABD和△ACD的面积相等。
证明中位线定理的方法有多种,下面介绍一种简单的方法:首先,连接两个中位线BD和CE。
根据中位线的定义,BD和CE分别是AC和AB的中点。
由于BD平行于AC,根据平行线性质,△ABC和△BDC是相似的。
同样地,△ABC和△CEA也是相似的。
根据相似三角形的性质,相似三角形的边长成比例。
因此,我们可以得到以下比例关系:AB/BD = AC/CDAC/CE = AB/BE由于BD和CE都是对边的中点,所以BD = CE。
将这个等式代入上述比例关系中,得到:AB/BD = AC/CD --> AB/CE = AC/CD根据等式的传递性,我们可以得到:AB/CE = AC/CD这意味着△ABE和△ACD的边长成比例,根据边比例定理,它们是相似的。
接下来,我们证明△ABD和△ACD的面积相等。
由于BD和CE是对边的中点,所以它们的长度相等,即BD = CE。
这意味着△ABD和△ACD的底边相等。
同时,根据中位线定理,AD = 1/2 * BC,所以△ABD和△ACD的高度也相等。
因此,△ABD和△ACD的底边和高度都相等,根据三角形的面积公式S = 1/2 * 底边* 高度,它们的面积相等。
综上所述,中位线定理成立:连接一个顶点和对边中点的线段是对边的一半,并且将三角形分割为两个等面积的小三角形。
初中数学知识点归纳之三角形中位线

初中数学知识点归纳之三角形中
位线
1.三角形中线:连接三角形两边中点的线段称为三角形中线。
2、三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的'一半。
提示:
(1)一个三角形有三条中线,它们又组成一个新的三角形。
每条中线都与第三条边有对应的位置关系和数量关系。
(三角形的中位线不仅可以证明直线平行,也可以证明线段的倍分关系);
(2)三角形中的中线和三角形的中线不同,要用各自的定义来区分。
3、三角形中位线定理的作用:
位置关系:可以证明两条直线平行。
数量关系:可以证明线段的加倍关系。
常用结论:任一个三角形都有三条中位线,由此有:
结论1:三条中线组成一个三角形,其周长是原三角形的一半。
结论二:三条中线把原来的三角形分成四个全等的三角形。
结论三:三条中线把原来的三角形分成三个面积相等的平行四边形。
结论4:三角形的一条中线和与之相交的中线等分。
结论五:三角形中任意两条中线之间的夹角等于这个夹角所对应的三角形的顶角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[填空题]加压后的液氨气化时体积会膨胀(),并大量(),使周围物质的温度()。 [问答题,简答题]生物进化论研究的对象是什么? [判断题]红外对射在安装过程中对射机的受光端校准电压要不低于1.4伏。A.正确B.错误 [单选,A2型题,A1/A2型题]下列化学发光酶免疫分析特点中错误的是()A.属于酶免疫测定范畴B.整个反应无需固相载体参加,完全液态化C.酶标记抗原或抗体结合稳定D.酶催化发光剂发出的光稳定,持续时间长E.最后一步将底物改为发光剂和测定的仪器为光信号检测仪 [单选]旅客列车发生()人以上食物中毒时,列车长应及时通知前方停车站和所在站的卫生防疫部门。A、4B、3C、1D、6 [单选]下述"Smith骨折"知识,哪项不对()A.手腕"枪刺样"畸形B.可合并尺骨茎突骨折C.可有下尺桡关节脱位D.桡骨近侧3cm以内骨折E.骨折远端向掌侧移位 [单选]以下哪条不符合主动脉瓣关闭不全超声表现A.左心室增大B.左室流出道变窄C.室壁活动幅度增大D.主动脉运动幅度增大E.主动脉瓣关闭呈双线 [问答题,简答题]发动机机械损失有哪几部分组成? [多选]关于近曲小管的描述正确的是()。A.细胞呈锥体形或立方形,界限清楚B.腔面有刷状缘?C.细胞基部有纵纹D.胞质嗜酸性E.细胞核圆形,位于细胞中央 [单选,A1型题]食积兼表证宜选()A.神曲B.麦芽C.鸡内金D.莱菔子E.山楂 [单选]关于分包合同的表述不正确的是()。A.总承建单位只能将自己承包的部分非主体、非关键性工作分包给具有相应资质条件的分承建单位B.分包项目必须经过建设单位同意C.接受分包的分承建单位不能再次分包D.禁止分包关键性工作 [单选]期货市场的套期保值功能是将市场价格风险转移给了()。A.套期保值者B.生产经营者C.期货交易所D.期货投机者 [问答题,简答题]启动或停用引风机时,应注意哪些问题? [单选,A1型题]暑湿感冒,暑热偏盛,热盛烦渴者,治疗方剂宜首选()。A.新加香薷饮B.黄连香薷饮C.藿朴夏苓饮D.三物香薷饮E.藿香正气散 [单选]52岁脑梗死病人,病后第3天,意识不清,血压19/14kPa,左侧偏瘫。颅内压2.74kPa(280mmH2O),宜首先选用()。A.降血压治疗B.扩血管治疗C.尿激酶静脉点滴D.20%甘露醇静脉点滴E.肝素静脉点滴 [单选]船舶搁浅后轮机部应首先检查()的工作情况。A.轴系B.主机C.离合器D.发电机 [单选]检测仪表按被测量分类可分为温度检测仪表、压力检测仪表、流量检测仪表、物位检测仪表、机械量检测仪表以及()仪表等。A、过程分析B、时间检测C、长度检测D、体积检测 [单选]某研究所在装运存有放射性物质的铅箱时,一只箱子从车上掉下来,吴明(8岁)看见后,即取出箱中的放射性物质玩耍,结果因过量吸收放射性物质而得病。吴明的治疗费和其他必要费用应由谁承担?()A.吴明的监护人B.某研究所C.主要由某研究所承担,吴明的监护人适当分担D.主要 [单选]出生1分钟的新生儿,心率94次/分,无呼吸,四肢稍屈,无喉反射,口唇青紫全身苍白。Apgar评分为().A.5分B.4分C.3分D.2分E.1分 [单选]逾期无人认领的托运行李处置的时限规定:可以联系到旅客时,应尽快以电话方式通知旅客,但电话通知一般不超过()次。A.5B.3C.2D.4 [单选,A1型题]佝偻病肾虚骨弱型的治法是()A.健脾补肾,填精补髓B.平肝熄风C.补中益气D.调和营卫E.补气养血 [单选]关于鼻咽部血管纤维瘤的描述,下列哪项正确()A.是有包膜的血管性肿瘤B.是无包膜,浸润性生长的血管性肿瘤C.是浸润性恶性血管性肿瘤D.常见于老年人E.CT不增强 [单选]儿科中最先确认的染色体疾病是()A.先天愚型B.遗传性肾炎C.亚力山大病D.寻常型鱼鳞病E.异染体脑白质营养不良 [单选]风湿性心脏瓣膜病二尖瓣狭窄出现急性肺水肿是由于().A.肺静脉和肺毛细血管压升高B.肺小动脉痉挛造成肺动脉高压C.左心室排血量减低D.左心室充盈压升高E.体循环淤血,静脉压升高 [单选]在双代号网络计划中,如果其计划工期与计算工期相等,且工作i-j的完成节点在关键线路上,则工作i-j的自由时差()。A.等于零B.小于零C.小于其相应的总时差D.等于其相应的总时差 [单选,A1型题]有消食和胃、发散风寒的功效的中药是()A.紫苏B.神曲C.谷芽D.麦芽E.稻芽 [问答题,案例分析题]临床情景:张先生,26岁。右侧前臂被车床切割伤1小时。查体:右侧前臂外侧有一伤口,长约5cm,深及皮下组织,伤口污染严重。要求:请为患者行清创术。 [单选,A2型题,A1/A2型题]分立式生化分析仪与管道式生化分析仪在结构上的主要区别为()A.前者各个标本和试剂在各自的试管中起反应,后者在同一管道中起反应B.后者各个标本和试剂在各自的试管中起反应,前者在同一管道中起反应C.两者吸出血清的方式不同D.两者添加试剂的方式不同E. [单选]患者,男,24岁,超声检查示先天性主动脉瓣二叶瓣,主动脉瓣口舒张期可见中度反流血流信号,该患者经主动脉瓣M型超声检查可见()。A.主动脉瓣M型曲线呈六边盒样B.主动脉瓣瓣叶关闭线偏心C.主动脉瓣关闭曲线可见缝隙D.B+CE.A+B [判断题]CO2(g)的标准摩尔生成焓等于石墨的标准摩尔燃烧热。A.正确B.错误 [单选]1949—1954年秋,我国的最高权力机关是()。A.全国人民代表大会B.中国共产党全国代表大会C.中国人民政治协商会议 [单选]根据企业国有资产法律制度的规定,下列表述中,不正确的是()。A.向国有资本控股公司、国有资本参股公司的股东会、股东大会提出董事、监事人选,但是应当由职工代表出任董事、监事的除外B.未经履行出资人职责的机构同意,国有资本控股公司的董事长不得兼任经理B.经任免机构 [单选]在路基工程中,用于排除地下水的设施是()。A.拦水带B.急流槽C.截水沟D.渗井 [单选]由于遇到了与愿望相违背或愿望不能达到,并一再受到妨碍后,在逐渐累积了紧张的情况下产生的情绪体验为()A.快乐B.悲哀C.愤怒D.恐惧 [单选]常规觉醒脑电图记录时间不应少于()A.10分钟B.20分钟C.30分钟D.60分钟E.无要求 [单选]下列哪项不宜纤维支气管镜检查()A.原因不明的咯血B.原因不明的咳嗽C.原因不明的喉返神经麻痹D.痰检结核菌阳性,X线胸片肺无病灶E.肺心病并肺门肿大,原因未明,PaO240mmHg(5.4kPa) [判断题]不含汞的进出口电池,无需办理《进出口产品备案书》A.正确B.错误 [单选]()属石竹科。A、鸡冠花B、白玉兰C、牡丹D、康乃馨 [单选]甲雇用乙为其火锅店帮工。乙在端送热茶时不慎烫伤在店中玩耍的邻家5岁小孩丙。小孩父母诉诸法院要求赔偿,下列说法何种正确?()A.由乙承担赔偿责任,因乙是直接致害人B.由甲承担赔偿责任,因为甲为雇主C.乙与小孩父母共同承担,因乙是直接致害人,小孩父母也未尽监护职责 [名词解释]称重传感器