一阶线性微分方程(1)

合集下载

一阶线性微分方程

一阶线性微分方程

在工程中的应用
控制工程
01
在控制工程中,一Hale Waihona Puke 线性微分方程可以用来描述系统的动态特
性,如传递函数和稳定性分析。
信号处理
02
在信号处理中,一阶线性微分方程可以用来描述信号的滤波、
放大和传输等过程。
航天工程
03
在航天工程中,一阶线性微分方程可以用来描述火箭的发射、
卫星轨道和姿态控制等过程。
04
一阶线性微分方程的扩 展
一阶线性微分方程
目录
• 一阶线性微分方程的定义与形式 • 一阶线性微分方程的解法 • 一阶线性微分方程的应用 • 一阶线性微分方程的扩展
01
一阶线性微分方程的定 义与形式
定义
总结词
一阶线性微分方程是包含一个未知函数及其导数的一次项的方程。
详细描述
一阶线性微分方程的一般形式为 y' + P(x)y = Q(x),其中 y 是未知函数,P(x) 和 Q(x) 是已知函数,' 表示导数。 这个方程包含未知函数 y 和它的导数 y',且最高次项为一次。
变系数一阶线性微分方程
定义
变系数一阶线性微分方程是指方程中的系数是未知数的函数,而 不是常数。
解法
解变系数一阶线性微分方程需要使用特殊的方法,如换元法、变量 分离法等,以将方程转化为更易于解决的形式。
应用
变系数一阶线性微分方程在物理学、工程学和经济学等领域有广泛 的应用,例如振动问题、电路分析、人口动态等。
03
一阶线性微分方程的应 用
在物理中的应用
自由落体运动
一阶线性微分方程可以用来描述 物体在重力作用下的自由落体运 动,如速度和位移随时间的变化

一阶线性微分方程及其解法

一阶线性微分方程及其解法
§6.2 一阶线性微分方程
一、 一阶线性微分方程及其解法
二、 一阶线性微分方程的简单应用
三、 小结及作业
一、一阶线性微分方程及其解法
1. 一阶线性微分方程的定义
在微分方程中,若未知函数和未知函数的导数都是一次
的,则称其为一阶线性微分方程。 例1 判下列微分方程是否为一阶线性微分方程:
2y x2 (1) 3 y
P ( x )dx C ) ( Q( x )e
ln x
dx C



例4 求 x dy ( 2 xy x 1)dx 0 满足 y x 1 0 的特解.
2

dy 2 x 1 y , 其中 原方程变形为 2 dx x x 2 x 1 P ( x ) , Q( x ) 则通解为 2 x x
y
2 dx e x
dy P ( x ) y Q( x ) dx 3. 一阶线性微分方程的分类
当 分方程。
(1)
Q( x ) 0 时,方程(1)称为一阶线性齐次微

Q( x ) 0 时,方程(1)称为一阶线性非齐次
微分方程。
4.
一阶线性微分方程的解法
(1)一阶线性齐次微分方程 dy P( x) y 0 1)一般式 dx
k k t t m e m g d (e m ) C C k

k t e m (g
m k
k t em
mg Ce C) k

k t m
由 v t 0 0 得
mg c k
k t mg (1 e m )
1 1 1 y 2 x 2x2

第三节 一阶线性微分方程

第三节  一阶线性微分方程

sin 2 y e cos y dy dy C
sin y
dy C
sin y
)C


e sin y [2 sin ye sin y 2 e sin y cos y dy C ]
2(sin y 1) Ce
sin y
将 x 1 , y 0 代入上式 , 得 C 3 ,
x0 P ( x )dx x x0 P ( x )dx ye dx y 0 . x0 Q ( x ) e

x x
小结
1.齐次线性微分方程
y P ( x ) y 0
y Ce P ( x )dx ;
2. 非齐次线性微分方程 (1) 公式
所求特解为 x 2(sin y 1) 3e sin y .
例6 如图所示,平行于 y 轴的动直线被曲 线 y f ( x ) (0 f ( x ) x 3 )与 y x 3 ( x 0) 截下的线段PQ之长数值上等于阴影部分的面积, 求曲线 f ( x ).

1 1 y ln ydy C ln y
1 1 2 2 (ln y ) C ln y
( x cos y sin 2 y ) y 1 例5 求特解 y x 1 0
1 解 将方程变形 , 得 dy , dx x cos y sin 2 y
y P ( x ) y Q ( x )
y e P ( x )dx [ Q( x ) e P ( x )dx dx C ];
P ( x )dx
( 2)令 y u( x )e
用常数变易法求解.

一阶线性微分方程(1)

一阶线性微分方程(1)
作变换 y u( x)e P( x)dx
y u( x)e P( x)dx u( x)[P( x)]e P( x)dx ,
将y和y代入原方程得 u( x)e P( x)dx Q( x),
积分得 u( x) Q( x)e P( x)dxdx C ,
一阶线性非齐次微分方程的通解为:
y [ Q( x)e P( x)dxdx C ]e P( x)dx
dx
dx
代入上式 dz (1 n)P( x)z (1 n)Q( x), dx
求出通解后,将 z y1n 代入即得
y1n z
e ( (1n)P( x)dx Q( x)(1 n)e (1n)P( x)dxdx C ).
例 3 伯努利方程 xy y xy3 的解

原方程可写为:
r 1002 (100 h)2 200h h2 ,
dV (200h h2 )dh,
(2)
比较(1)和(2)得: (200h h2 )dh 0.62 2ghdt,
(200h h2 )dh 0.62 2ghdt,
即为未知函数的微分方程.
可分离变量
dt (200 h h3 )dh, 0.62 2g
解 由力学知识得,水从孔口流 出的流量为
Q dV 0.62 S 2gh , dt
流量系数 孔口截面面积 重力加速度
S 1 cm2 ,
h
dV 0.62 2ghdt, (1)
h
h dh r
设在微小的时间间隔 [t, t dt], o
100 cm
水面的高度由h降至 h dh , 则 dV r 2dh,
C
1 x
si
n
xdx
C
1 cos x C .

一阶线性微分方程及其解法

一阶线性微分方程及其解法

一阶线性微分方程及其解法一阶线性微分方程是微分方程中的一类常见问题,其形式可以表达为dy/dx + P(x)y = Q(x),其中P(x)和Q(x)为已知函数。

解一阶线性微分方程的方法有多种,包括分离变量法、齐次方程法、一致变量法和常数变易法等。

本文将详细介绍这些解法,并通过实例加深理解。

分离变量法是解一阶线性微分方程常用的方法之一。

它的步骤是将方程中的y和x分开,并将含有y的项移到方程的一侧,含有x的项移到另一侧。

例如,对于dy/dx + x*y = x^2,我们可以将方程变形为dy/y = x*dx。

然后对等式两边同时积分,即得到ln|y| = (1/2)x^2 + C,其中C为积分常数。

最后,利用指数函数的性质,我们得到y = Ce^(x^2/2),其中C为任意常数。

齐次方程法是解一阶线性微分方程的另一种常见方法。

当方程为dy/dx + P(x)y = 0时,我们可以将其转化为dy/y = -P(x)dx的形式。

同样地,对等式两边同时积分,即得到ln|y| = -∫P(x)dx + C,其中C为积分常数。

然后,利用指数函数的性质,我们可以得到y = Ce^(-∫P(x)dx),其中C为任意常数。

一致变量法是解一阶线性微分方程的另一种有效方法。

当方程可以写成dy/dx + P(x)y = Q(x)y^n时,我们可以通过将方程除以y^n,并引入新的变量z = y^(1-n)来转化为一致变量的形式。

这样,原方程就变成了dz/dx + (1-n)P(x)z = (1-n)Q(x)。

接下来,我们可以使用分离变量法或者其他已知的解法来求解这个方程。

常数变易法是解特殊形式的一阶线性微分方程的方法之一。

当方程为dy/dx + P(x)y = Q(x)e^(∫P(x)dx)时,我们可以通过将y的解表达形式设为y = u(x)*v(x)来解方程。

其中,u(x)为待定函数,而v(x)为一个满足dv(x)/dx = e^(∫P(x)dx)的函数。

一阶线性微分方程

一阶线性微分方程
dx
的微分方程, 称为伯努利(Bernoulli) 方程.
2.解法 方程两端同除yn,得
yn dy P( x) y1n Q( x) dx
令z y1n , 得 dz (1 n)P( x)z (1 n)Q( x).
dx 求出通解后,将 z y1n 代入即可.
例 3 求方程 dy 4 y x2 y 的通解. dx x
1 而方程两端同乘函数 x2 后,得
xdy ydx x2
d
y x
0
是全微分方程, 所以 1 是原方程的一个 x2
积分因子.
原方程的通解为 y C . x
导数,且
Q P x y
则称该方程为全微分方程,或恰当方程.
2. 解法 若微分方程
P( x, y)dx Q( x, y)dy 0
是全微分方程.
则存在u( x, y),使
du(x, y) P(x, y)dx Q(x, y)dy
原方程变为 du( x, y) 0
全微分方程通解为 u( x, y) C.
将 u x y 代回, 所求通解为
y ln( x y 1) C, 或 x C1e y y 1
另解 方程变形为 dx x y. 一阶线性微分方程. dy
第五节 全微分方程
1. 定义 如果一阶微分方程
P( x, y)dx Q( x, y)dy 0
中的P( x, y),Q( x, y)在单连域G内具有一阶连续偏
(3)
Ce P( x)dx e P( x)dx
Q(
x
)e
P
(
x
)dx
dx
对应齐次 方程通解
非齐次方程的特解
例1 求方程 y 1 y sin x 的通解. xx

一阶线性微分方程

一阶线性微分方程
高等数学之——
8.3 一阶线性微分方程
第三节 一阶线性微分方程
一.一阶线性微分方程的概念 二.一阶线性微分方程的解法
一、一阶线性微分方程的概念
1. 一阶线性微分方程的定义 在微分方程中,若未知函数及其导数都是一次的,则称其为
一阶线性微分方程.其标准式为:
d y P(x)y Q(x) dx
.
A.
A.是
B.否
四、小结
1.一阶线性齐次微分方程 dy P(x) y 0
dx
通解: y Ce P(x)dx
2.一阶线性非齐次微分方程 dy P(x) y Q(x) , Q(x) 0
dx
通解:
y

e P( x)dx

Q(
x)e
P
(
x
)
dx
dx

C

只看等式右端不能下结论,要变形为标准式.
例如: 3x2 5 y 0
y 3 x2
5
是一阶线性非齐次微分方程
二、一阶线性齐次微分方程的解法
1.一般式
dy P( x) y 0 dx
分离变量
(2) 1 dy P(x)dx y
2.解法
分离变量法
两边积分 通解
ln | y | P ( x)dx C1 | y | e P ( x )dx C1 y eC1 e P ( x )dx
则通解为
y

e 1dx

3x

e
1dx
dx

C

ex 3
xe
x
dx

C

ex 3 xd (ex ) C

一阶线性微分方程及其解法

一阶线性微分方程及其解法

二、一阶线性微分方程的应用
应用微分方程解决实际问题的步骤: 应用微分方程解决实际问题的步骤 1. 分析问题 设出所求未知函数,确定初始条件。 分析问题,设出所求未知函数 确定初始条件 设出所求未知函数 确定初始条件。 2. 建立微分方程。 建立微分方程。 3. 确定方程类型 求其通解. 确定方程类型,求其通解 求其通解 4. 代入初始条件求特解. 代入初始条件求特解
Q( x ) = 3 x
= e x 3 ∫ xe x dx + C
= ex
x
( ( 3∫ xde
∫ dx dx + C ∫ 3x e
) + C)
= e x 3( xe x ∫ e x dx ) + C
= ex =e
x x x
( ( 3( xe ( 3( xe
+ ex ) + C +e
例5 求过原点平且在点 x,y) 处的切线斜率等于 (
3x + y 的曲线方程。 的曲线方程。
解 设所求曲线方程为 y = f ( x ) , 则依题有 y =0, x =0 从而 即 y′ y = 3 x 则通解为 y = e
y′ = 3 x + y
其中 P ( x ) = 1 ,
∫ dx
y = Ce
∫ P( x)dx
例2 解
2 . 求 y′ y = 0 的通解 x
2 P( x) = 则通解 x
y = Ce
=
∫ P( x)dx
2 ∫ dx Ce x
= Ce = Cx
2 ln x 2
(2)一阶线性非齐次微分方程 ) dy + P ( x ) y = Q( x ) 1)一般式 ) dx 2)解法 常数变易法 ) 3)通解公式 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光源在(0,0), L : y y( x)
设M ( x, y)为L上任一点, M
R
MT为切线, 斜率为 y,
o
MN为法线, 斜率为 1 , y
OMN NMR,
x N
L
tanOMN tanNMR,
yT
M
R
o
x
N
L
得微分方程
由夹 角正 切公 式得
tanOMN tanNMR
1 1 y
t (400 h3 2 h5 ) C,
0.62 2g 3
5
h |t0 100,
C 14 105 , 0.62 2g 15
所求规律为t (7 105 103 h3 3 h5 ). 4.65 2g
dx
dx
dz dx
y
x(
x
1 sin 2
(
xy
)
y) x
1 sin 2
, z
分离变量法得 2z sin 2z 4x C,
将 z xy 代回,
所求通解为 2xy sin(2xy) 4x C.
3. dy 1 ; dx x y
解 令 x y u, 则 dy du 1, dx dx
Ce P( x)dx e P( x)dx
Q(
x
)e
P
(
x
)dx
dx
对应齐次
非齐次方程特解
方程通解
例1 求方程 y 1 y sin x 的通解. xx
解 P( x) 1 , Q( x) sin x ,
x
x
y
e
1 x
dx
sin x
x
e
1 x
dx
dx
C
e
ln
x
sin x
x
eln
xdx
作变换 y u( x)e P( x)dx
y u( x)e P( x)dx u( x)[P( x)]e P( x)dx ,
将y和y代入原方程得 u( x)e P( x)dx Q( x),
积分得 u( x) Q( x)e P( x)dxdx C ,
一阶线性非齐次微分方程的通解为:
y [ Q( x)e P( x)dxdx C ]e P( x)dx
2.线性非齐次方程 令 y u( x)e P( x)dx ;
3.伯努利方程 令 y1n z;
思考题
求微分方程
y
cos
y
cos sin 2 y
y
x
sin
y
的通解.
思考题解答
dx cos y sin 2 y x sin y sin 2 y x tan y,
dy
cos y
dx tan y x sin 2 y,
x
x
平方化简得
u2
C2 x2
2C x
,
代回 u y , 得 x
y2 2C( x C ) 2
抛物线
所求旋转轴为 ox轴的旋转抛物面方程为
y2 z2 2C( x C ). 2
例 2 有高为1米的半球形容器, 水从它的底部小 孔流出, 小孔横截面积为1平方厘米(如图). 开始 时容器内盛满了水, 求水从小孔流出过程中容器 里水面的高度h(水面与孔口中心间的距离)随时 间t的变化规律.
y
1 x
y
y3

Z y 2 ,

dZ
2 y3
dy
从而
dZ 2 Z 2 dx x
所以
Z
e
2 x
dx
[
(2)e
2 x
dx
dx
Hale Waihona Puke C]x2[( 2 )dx C] x2 ( 2 C)
x2
x
于是
1 Cx 2 2x y2
例4 用适当的变量代换解下列微分方程:
1. 2 yy 2xy2 xex2 ;
dx
dx
代入上式 dz (1 n)P( x)z (1 n)Q( x), dx
求出通解后,将 z y1n 代入即得
y1n z
e ( (1n)P( x)dx Q( x)(1 n)e (1n)P( x)dxdx C ).
例 3 伯努利方程 xy y xy3 的解

原方程可写为:
P(
x)dx,
两边积分
ln
y
Q( x)dx y
P( x)dx,

Q( x)dx为v( y
x
),
ln y v( x) P( x)dx,
即 y e e v( x) P( x)dx . 非齐次方程通解形式
与齐次方程通解相比: C u( x)
常数变易法 把齐次方程通解中的常数变易为待定函数的方法. 实质: 未知函数的变量代换. 新未知函数 u( x) 原未知函数 y( x),
dy P( x) y Q( x) yn (n 0,1)
dx 当n 0,1时, 方程为线性微分方程. 当n 0,1时,方程为非线性微分方程.
解法: 需经过变量代换化为线性微分方程.
两端除以yn,得 yn dy P( x) y1n Q( x), dx
令z y1n , 则 dz (1 n) yn dy ,
r 1002 (100 h)2 200h h2 ,
dV (200h h2 )dh,
(2)
比较(1)和(2)得: (200h h2 )dh 0.62 2ghdt,
(200h h2 )dh 0.62 2ghdt,
即为未知函数的微分方程.
可分离变量
dt (200 h h3 )dh, 0.62 2g
C
1 x
si
n
xdx
C
1 cos x C .
x
例2 如图所示,平行于 y 轴的动直线被曲
线 y f ( x)与 y x3 ( x 0)截下的线段PQ之
长数值上等于阴影部分的面积, 求曲线 f ( x).

x
f ( x)dx
( x3 y)2 ,
0
y
x ydx x3 y, 0
6.3 一阶线性微分方程
一、线性方程
一阶线性微分方程的标准形式:
dy P( x) y Q( x) dx
当Q( x) 0, 上方程称为齐次的.
当Q( x) 0, 上方程称为非齐次的.
例如 dy y x2 , dx x sin t t 2 , 线性的;
dx
dt
yy 2xy 3, y cos y 1, 非线性的.
解 由力学知识得,水从孔口流 出的流量为
Q dV 0.62 S 2gh , dt
流量系数 孔口截面面积 重力加速度
S 1 cm2 ,
h
dV 0.62 2ghdt, (1)
h
h dh r
设在微小的时间间隔 [t, t dt], o
100 cm
水面的高度由h降至 h dh , 则 dV r 2dh,
1 y
y x
y xy
yy2 2xy y 0, 即 y x ( x)2 1. yy
令u y, 得 u x du 1
1 u2 ,
x
dx
u
分离变量
udu
dx ,
(1 u2 ) 1 u2 x
令 1 u2 t 2,
tdt dx , t(t 1) x
积分得 ln t 1 ln C , 即 u2 1 C 1,
代入原式 du 1 1 , dx u
分离变量法得 u ln(u 1) x C,
将 u x y 代回, 所求通解为
y ln( x y 1) C, 或 x C1e y y 1 另解 方程变形为 dx x y.
dy
三、小结
1.齐次方程
y f ( y) x
令 y xu;
y x3
Q
两边求导得 y y 3x2 ,
y f (x) P
解此微分方程
o
xx
y y 3x2
y
e
dx
C
3
x
2e
dx
dx
Cex 3x2 6x 6,
由 y |x0 0, 得 C 6,
所求曲线为 y 3(2ex x2 2x 2).
二、伯努利方程
伯努利(Bernoulli)方程的标准形式
解 y xy 1 xex2 y1 ,
2
令 z y1(1) y2 ,
则 dz 2 y dy , dx dx
dz 2xz xex2 ,
z
e
2
xdx
[
xe
x2
e
2
xdx
dx
C
]
dx
所求通解为 y2 ex2 ( x2 C ). 2
2.
dy dx
1 x sin2 ( xy)
y; x
解 令 z xy, 则 dz y x dy ,
一阶线性微分方程的解法
1.
线性齐次方程
dy dx
P( x) y
0.
(使用分离变量法)
dy P( x)dx, y
dy y
P
(
x)dx,
ln y P( x)dx lnC,
齐次方程的通解为 y Ce P( x)dx .
2.
线性非齐次方程
dy dx
P( x) y
Q( x).
讨论
dy y
Q( x) y
6.4一阶微分方程的应用举例
• 根据未知函数的导数的具体意义,运用有 关学科的基本知识,发现含有未知函数的 导数的等量关系,以建立描述该问题的微 分方程,然后去解这个方程,借助于方程 的解去解释与所讨论问题有关的种种现象。
例 1 抛物线的光学性质
实例: 车灯的反射镜面------旋转抛物面
相关文档
最新文档