运筹学试卷和答案
《运筹学》试题及答案大全

《运筹学》试题及参考答案一、填空题(每空2分,共10分)1、在线性规划问题中,称满足所有约束条件方程和非负限制的解为可行解。
2、在线性规划问题中,图解法适合用于处理变量为两个的线性规划问题。
3、求解不平衡的运输问题的基本思想是设立虚供地或虚需求点,化为供求平衡的标准形式。
4、在图论中,称无圈的连通图为树。
5、运输问题中求初始基本可行解的方法通常有最小费用法、西北角法两种方法。
二、(每小题5分,共10分)用图解法求解下列线性规划问题:1)max z =6x 1+4x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x ,解:此题在“《运筹学》复习参考资料.doc ”中已有,不再重复。
2)min z =-3x 1+2x 2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤-≤-≤+-≤+0,137210422422121212121x x x x x x x x x x 解:可行解域为abcda ,最优解为b 点。
⑴⑵⑶⑷⑸⑹、⑺由方程组⎩⎨⎧==+02242221x x x 解出x 1=11,x 2=0∴X *=⎪⎪⎭⎫⎝⎛21x x =(11,0)T∴min z =-3×11+2×0=-33三、(15分)某厂生产甲、乙两种产品,这两种产品均需要A 、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:AB C 甲94370乙46101203602003001)建立使得该厂能获得最大利润的生产计划的线性规划模型;(5分)2)用单纯形法求该问题的最优解。
(10分)解:1)建立线性规划数学模型:设甲、乙产品的生产数量应为x 1、x 2,则x 1、x 2≥0,设z 是产品售后的总利润,则max z =70x 1+120x 2s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+0300103200643604921212121x x x x x x x x ,2)用单纯形法求最优解:加入松弛变量x 3,x 4,x 5,得到等效的标准模型:max z =70x 1+120x 2+0x 3+0x 4+0x 5s.t.⎪⎪⎩⎪⎪⎨⎧=≥=++=++=++5,...,2,1,03001032006436049521421321j x x x x x x x x x x j 列表计算如下:四、(10分)用大M 法或对偶单纯形法求解如下线性规划模型:min z =5x 1+2x 2+4x 3⎪⎩⎪⎨⎧≥≥++≥++0,,10536423321321321x x x x x x x x x 解:用大M 法,先化为等效的标准模型:max z /=-5x 1-2x 2-4x 3s.t.⎪⎩⎪⎨⎧=≥=-++=-++5,...,2,1,010********214321j y x x x x x x x x j增加人工变量x 6、x 7,得到:max z /=-5x 1-2x 2-4x 3-M x 6-M x 7s.t⎪⎩⎪⎨⎧=≥=+-++=+-++7,...,2,1,010*********2164321j x x x x x x x x x x x j大M 法单纯形表求解过程如下:五、(15分)给定下列运输问题:(表中数据为产地A i 到销地B j 的单位运费)B 1B 2B 3B 4s iA 1A 2A 312348765910119108015d j82212181)用最小费用法求初始运输方案,并写出相应的总运费;(5分)2)用1)得到的基本可行解,继续迭代求该问题的最优解。
运筹学期末试题及答案

运筹学期末试题及答案一、选择题(每题2分,共20分)1. 线性规划问题的基本解是:A. 唯一解B. 可行域的顶点C. 可行域的内部点D. 可行域的边界点2. 以下哪项不是运筹学中的常用数学工具?A. 线性代数B. 微积分C. 概率论D. 量子力学3. 单纯形法是解决哪种类型问题的算法?A. 整数规划B. 非线性规划C. 线性规划D. 动态规划4. 以下哪个是网络流问题中的术语?A. 节点B. 弧C. 流量D. 所有以上5. 以下哪个不是运筹学中的优化问题?A. 最大化问题B. 最小化问题C. 等值问题D. 线性规划问题...(此处省略其他选择题)二、简答题(每题10分,共30分)1. 简述线性规划问题的基本构成要素。
2. 解释单纯形法的基本思想及其在解决线性规划问题中的应用。
3. 描述网络流问题中的最短路径算法,并简述其基本原理。
三、计算题(每题25分,共50分)1. 给定以下线性规划问题:Max Z = 3x1 + 5x2s.t.2x1 + x2 ≤ 10x1 + 3x2 ≤ 15x1, x2 ≥ 0请找出该问题的最优解,并计算最大值。
2. 考虑一个网络流问题,其中有三个节点A、B、C,以及四条边。
边的容量和成本如下表所示:| 起点 | 终点 | 容量 | 成本 ||||||| A | B | 10 | 2 || A | C | 5 | 3 || B | C | 8 | 1 || C | B | 3 | 4 |假设从节点A到节点B的需求量为8,从节点A到节点C的需求量为5。
使用最小成本流算法求解此问题,并计算总成本。
四、论述题(每题30分,共30分)1. 论述运筹学在现代企业管理中的应用,并给出至少两个实际案例。
运筹学期末试题答案一、选择题答案:1. B2. D3. C4. D5. C...(此处省略其他选择题答案)二、简答题答案:1. 线性规划问题的基本构成要素包括目标函数、约束条件和变量。
数学:运筹学试题及答案

数学:运筹学试题及答案1、判断题求最小值问题的目标函数值是各分支函数值的下界。
正确答案:对2、填空题动态规划大体上可以分为()、()、()、()四大类。
正确答案:离散确定型;离散随机型;连续确定型;连续随机(江南博哥)型3、多选系统模型按照抽象模型形式可以分为()A.数学模型B.图象模型C.模糊性模型D.逻辑模型E.仿真模型正确答案:A, B, D, E4、单选线性规划一般模型中,自由变量可以代换为两个非负变量的()A.和B.差C.积D.商正确答案:B5、填空题运筹学的目的在于针所研究的系统求得一个合理应用人才,物力和财力的最佳方案。
发挥和提高系统的(),最终达到系统的()。
正确答案:效能及效益;最优目标6、填空题采用人工变量法时,若基变量中出现了()的人工变量,表示在原问题有解。
正确答案:非零7、填空题满足()的基本解称为基本可行解。
正确答案:非负条件8、填空题在箭线式网络图中从始点出发,由各个关键活动连续相接,直到终点的费时最长的线路称为()。
正确答案:关键线路9、单选在求解运输问题的过程中可运用到下列哪些方法()。
A.西北角法B.位势法C.闭回路法D.以上都是正确答案:D10、问答题请简要回答一般系统模型的三个特征。
正确答案:①它是现实世界一部分的抽象和模仿;②它由那些与分析的问题有关的要素所构成;③它表明了系统有关要素间的逻辑关系或定量关系。
11、名词解释初始基本可行解正确答案:多个基本可行解中一个,一般情况下在求最大时取最小的基本可行解,求最小时取最大的基本可行解。
12、名词解释不确定条件下的决策正确答案:指在需要决策的问题中,只估测到可能出现的状态,但状态发生的概率,由于缺乏资源和经验而全部未知。
它属于不确定情况下的决策.13、名词解释时间优化正确答案:时间优化是在人力材料设备资金等资源基本上有保证的条件下寻求最短的工程周期14、填空题企业在采购时,供应方根据批发量的大小定出不同的优惠价格,这种价格上的优惠称为()正确答案:数量折扣15、填空题常用的两种时差是工作总时差和工作()正确答案:自由时差16、多选根据对偶理论,在求解线性规划的原问题时,可以得到以下结论()A.对偶问题的解B.市场上的稀缺情况C.影子价格D.资源的购销决策E.资源的市场价格正确答案:A, C, D17、问答题运用单纯形法求解线性规划问题的步骤是什么?正确答案:(1)确定初始基可行解(2)检验初始基可行解是否最优(3)无解检验(4)进行基变换(5)进行旋转运算,之后回到步骤2,循环直到完成整个问题的求解18、单选设一个线性规划问题(P)的对偶问题为(D),则关于它们之间的关系的陈述不正确的是()。
运筹学典型考试试题及答案

二、计算题(60分)1、 已知线性规划(20分) MaxZ=3X 1+4X 2 X 1+X 2≤5 2X 1+4X 2≤12 3X 1+2X 2≤8 X 1) 写出该线性规划的对偶问题。
2) 若C2从4变成5, 最优解是否会发生改变, 为什么? 若b2的量从12上升到15, 最优解是否会发生变化, 为什么?如果增加一种产品X6, 其P6=(2,3,1)T, C6=4该产品是否应该投产?为什么? 解:1)对偶问题为Minw=5y1+12y2+8y3 y1+2y2+3y 3≥3y1+4y2+2y 3≥4 y1,y2≥02)当C2从4变成5时, σ4=-9/8 σ5=-1/4由于非基变量的检验数仍然都是小于0的, 所以最优解不变。
3)当若b 2的量从12上升到15 X =9/8 29/8 1/4由于基变量的值仍然都是大于0的, 所以最优解的基变量不会发生变化。
4)如果增加一种新的产品, 则 P6’=(11/8,7/8, -1/4)T σ6=3/8>0所以对最优解有影响,该种产品应该生产计算检验数由于存在非基变量的检验数小于0, 所以不是最优解, 需调整 调整为:重新计算检验数所有的检验数都大于等于0, 所以得到最优解3、某公司要把4个有关能源工程项目承包给4个互不相关的外商投标者, 规定每个承包商只能且必须承包一个项目, 试在总费用最小的条件下确定各个项目的承包者, 总费用为多少?各承包商对工程的报价如表2所示:X= 0 1 0 0 1 0 0 00 0 0 1总费用为504.考虑如下线性规划问题(24分)Max z=-5x1+5x2+13x3s.t..-x1+x2+3x3≤2012x1+4x2+10x3≤90x1, x2, x3≥0回答以下问题:1)求最优解2)求对偶问题的最优解3)当b1由20变为45, 最优解是否发生变化。
4)求新解增加一个变量x6, c6=10, a16=3, a26=5, 对最优解是否有影响5)c2有5变为6, 是否影响最优解。
运筹学试题及详细答案

运筹学试题及详细答案
一、选择题
1、Nash均衡的定义是:
A、每位参与者的行为均达到最佳利益的状态
B、每位参与者的行为均达到得到最大胜利的状态
C、每位参与者的行为均达到合作的最佳状态
D、每位参与者的行为均达到合作的最大胜利的状态
答案:A
2、决策就是参与者用来实现选择的:
A、计划
B、机构
C、程序
D、工具
答案:D
3、运筹学可以分为:
A、组合数学
B、运动学
C、博弈论
D、概率论
答案:A、B、C、D
4、非线性规划有:
A、分支定界法
B、梯度下降法
C、基于格法的解法
D、对偶法
答案:A、B、C、D
5、关于迭代法,下列表述正确的有:
A、可以求解非凸优化问题
B、单次迭代过程简单
C、收敛性较好
D、用于非线性规划
答案:A、B、C
二、填空题:
1、博弈论是研究__参与者之间的__的科学。
答案:多,竞争。
2023年运筹学期末考试试卷A答案

一、判断题(合计10分,每题1分,对旳打√,错旳打X )1. 无孤立点旳图一定是连通图。
2. 对于线性规划旳原问题和其对偶问题,若其中一种有最优解, 另一种也一定有最优解。
3. 假如一种线性规划问题有可行解,那么它必有最优解。
4.对偶问题旳对偶问题一定是原问题。
5.用单纯形法求解原则形式(求最小值)旳线性规划问题时,与>j σ对应旳变量都可以被选作换入变量。
6.若线性规划旳原问题有无穷多种最优解时,其对偶问题也有无穷 多种最优解。
7. 度为0旳点称为悬挂点。
8. 表上作业法实质上就是求解运送问题旳单纯形法。
9. 一种图G 是树旳充足必要条件是边数至少旳无孤立点旳图。
10. 任何线性规划问题都存在且有唯一旳对偶问题。
某农场有100公顷土地及15000元资金可用于发展生产。
农场劳动力状况为秋冬季3500人日;春夏季4000人日。
如劳动力自身用不了时可外出打工,春秋季收入为25元 / 人日,秋冬季收入为20元 / 人日。
该农场种植三种作物:大豆、玉米、小麦,并喂养奶牛和鸡。
种作物时不需要专门投资,而喂养每头奶牛需投资800元,每只鸡投资3元。
养奶牛时每头需拨出1.5公顷土地种饲料,并占用人工秋冬季为100人日,春夏季为50人日,年净收入900元 / 每头奶牛。
养鸡时不占用土地,需人工为每只鸡秋冬季0.6人日,春夏季为0.3人日,年净收入2元 / 每只鸡。
农场既有鸡舍容许最多养1500只鸡,牛栏容许最多养200头。
三种作物每年需要旳人工及收入状况如下表所示:试决定该农场旳经营方案,使年净收入为最大。
三、已知下表为求解某目旳函数为极大化线性规划问题旳最终单纯形表,表中54,x x 为松弛变量,问题旳约束为 ⎽ 形式(共8分)(1)写出原线性规划问题;(4分) (2)写出原问题旳对偶问题;(3分)(3)直接由上表写出对偶问题旳最优解。
(1分) 四、用单纯形法解下列线性规划问题(16分)3212max x x x Z +-=s. t. 3 x 1 + x 2 + x 3 ≤ 60 x 1- x 2 +2 x 3 ≤ 10 x 1+ x 2- x 3 ≤ 20 x 1, x 2 , x 3 ≥0五、求解下面运送问题。
运筹学试卷及参考答案

运筹学试卷及参考答案运筹学试卷一、选择题(每小题2分,共20分)1、下列哪个不是线性规划的标准形式?() A. min z = 3x1 + 2x2B. max z = -4x1 - 3x2C. s.t. 2x1 - x2 <= 1D. s.t. x1 + x2 >= 0答案:C2、以下哪个是最小生成树的Prim算法?() A. 按照权值从小到大的顺序选择顶点 B. 按照权值从大到小的顺序选择顶点 C. 按照距离从小到大的顺序选择顶点 D. 按照距离从大到小的顺序选择顶点答案:B3、下列哪个不是网络流模型的典型应用?() A. 道路交通流量优化 B. 人员部署 C. 最短路径问题 D. 生产计划答案:C4、下列哪个是最小化问题中常用的动态规划解法?() A. 自顶向下的递推求解 B. 自底向上的递推求解 C. 分治算法 D. 回溯法答案:A5、下列哪个是最大流问题的 Ford-Fulkerson 算法?() A. 增广路径的寻找采用深度优先搜索 B. 增广路径的寻找采用广度优先搜索 C. 初始流采用最大边的二分法求解 D. 初始流采用最小边的二分法求解答案:B二、简答题(每小题10分,共40分)1、请简述运筹学在现实生活中的应用。
答案:运筹学在现实生活中的应用非常广泛。
例如,线性规划可以用于生产计划、货物运输和资源配置等问题;网络流模型可以用于解决道路交通流量优化、人员部署和生产计划等问题;动态规划可以用于解决最短路径、货物存储和序列安排等问题;图论模型可以用于解决最大流、最短路径和最小生成树等问题。
此外,运筹学还可以用于医疗资源管理、金融风险管理、军事战略规划等领域。
总之,运筹学的理论和方法可以帮助人们更好地解决实际生活中的问题,提高决策的效率和准确性。
2、请简述单纯形法求解线性规划的过程。
答案:单纯形法是一种求解线性规划问题的常用方法。
它通过不断迭代和修改可行解,最终找到最优解。
具体步骤如下: (1) 将线性规划问题转化为标准形式; (2) 根据标准形式构造初始可行基,通常选取一个非基变量,使其取值为零,其余非基变量的取值均为零; (3) 根据目标函数的系数,计算出目标函数值; (4) 通过比较目标函数值和已选取的非基变量的取值,选取最优的非基变量进行迭代; (5) 在迭代过程中,不断修正基变量和非基变量的取值,直到找到最优解或确定无解为止。
《运筹学》课程考试试卷试题(含答案)

《运筹学》课程考试试卷试题(含答案)一、选择题(每题5分,共25分)1. 运筹学的核心思想是()A. 最优化B. 系统分析C. 预测D. 决策答案:A2. 在线性规划中,约束条件可以用()表示。
A. 等式B. 不等式C. 方程组D. 矩阵答案:B3. 以下哪个不是运筹学的基本模型?()A. 线性规划B. 整数规划C. 非线性规划D. 随机规划答案:D4. 在目标规划中,以下哪个术语描述的是决策变量的偏离程度?()A. 目标函数B. 约束条件C. 偏差变量D. 权重系数答案:C5. 在动态规划中,以下哪个概念描述的是在决策过程中,某一阶段的最优决策对后续阶段的影响?()A. 最优子结构B. 无后效性C. 最优性原理D. 阶段性答案:B二、填空题(每题5分,共25分)1. 运筹学是一门研究在复杂系统中的______、______和______的科学。
答案:决策、优化、实施2. 在线性规划中,若目标函数为最大化,则其标准形式为______。
答案:max z = c^T x3. 在非线性规划中,若目标函数和约束条件均为凸函数,则该规划问题为______。
答案:凸规划4. 在目标规划中,若决策变量x_i的权重系数为w_i,则目标函数可以表示为______。
答案:min Σ(w_i d_i^+ + w_i d_i^-)5. 在动态规划中,若状态变量为s_n,决策变量为u_n,则状态转移方程可以表示为______。
答案:s_{n+1} = f(s_n, u_n)三、判断题(每题5分,共25分)1. 线性规划问题的最优解一定在可行域的顶点处取得。
()答案:正确2. 在整数规划中,若决策变量为整数,则目标函数和约束条件也必须为整数。
()答案:错误3. 目标规划中的偏差变量可以是负数。
()答案:正确4. 在动态规划中,最优策略具有最优子结构。
()答案:正确5. 在非线性规划中,若目标函数为凸函数,则约束条件也必须为凸函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程名称: 运筹学(Ⅱ) 课程编号: 课程类型:√学位课、非学位课 考试方式: 闭卷学科专业、领域: 管理科学与工程 所在学院: 经济管理 任课教师: 刘俊娥河北工程大学研究生2007~ 2008学年第 二 学期考试试卷( )卷1、求解无约束极值问题的下降类一般步骤有哪些?试例举三种你所了解的下降类算法名称。
2、任选一种一维搜索的算法,请写出关于极值点求解的过程。
3、某工厂生产K 种不同花色和款式的衬衣,在一定时期内生产量y 相同,但根据经验或预测,投入市场后顾客对不同品种的需求量q i 却不同;有的畅销,有的滞销,过去工厂对产品价格均按边际销售成本定价,即,ii q c p ∂∂=其中C=C(q 1,q 2,……q k )是销售成本。
现工厂考虑;为了获得最大利润,应不应该将畅销品种的价格提高?若要提高,提高多少为宜?建立数学型并用K —T 条件求解。
4、某种货物由2个仓库A 1,A 2运送到3个配送中心B 1,B 2,B 3。
A 1,A 2的库存量分别为每天13吨、9吨;B 1,B 2,B 3每天的需求分别为9吨、5吨、6吨。
各仓库到配送中心的运输能力、单位运费如表,求:(1)运量最大的运输方案。
(2)运费最省的运输方案。
(注:不能不使用该网络); (3)考虑到运费和运量,使运费最省的调运方案。
5、某工地有4个工点,各工点的位置及对混凝土的需要量列入下表,现需建一中心混凝土搅拌站,以供给各工点所需要的混凝土,要求混凝土的总运输量(运量*运距)最小,试决定搅拌站的位置(建立数学型)。
试分别考虑以下两种情况:(1)搅拌站到各工点的道路均为直线。
(2)道路为相互垂直或平行的网格。
6、某工程所有关键工序组成的网络如下图,图中弧上数字为各关键工序压缩工时所需的费用(单位:百元/天)。
现该工程需将工期压缩一天,试求出使总压缩费用最小的压缩方案,以及该最小的压缩费用。
请详细写出确定过程。
1、解:求解无约束极值问题的下降类一般算法步骤:(1)选取某一初始点X (0) 令k:=0( := 为赋值符号,k:=0表示将0赋给变量k)。
(2)确定搜索方向。
若已得出某一迭代点X (k) ,且X (k) 不是极小点。
这时,就从X (k)出发确定一搜索方向P (k),沿这个方向应能找到使目标函数值下降的点。
对约束极值问题,有时(视所用的算法而定)还要求这样的点是可行点。
(3)确定步长。
沿P (k)方向前进一个步长,得新点X(k+1)。
即在由X(k)出发的射线X=X (k)+λP(k)λ≥0上,通过选定步长(因子)λ=λk ,得下一个迭代点X (k+1)=X (k)+λk P (k)使得f(X (k+1))=f(X (k)+λk P (k))< f(X (k))(4)检验得到的点是否为要求的极小点或者近似极小点,如满足要求,迭代停止。
否则,令K:=k+1返回第二步继续迭代。
下降类算法包括:(1)梯度法(最速下降法)(2)牛顿法(3)共轭梯度法(4)变尺度法 2、解:斐波那契算法(1)确定试点个数n根据缩短率δ≥ 1/ Fn 得到F n或区间精度η, F n ≥ (b 0-a 0)/ η,查表得n 。
或迭代得到n ,迭代的算法如下:①计算F n ≥ (b 0-a 0)/ η 或F n ≥ 1/ δ 得F n ' n=1, F 0=F 1=1转 ② ②n=n+1, F n =F n-2+F n-1转③③若F n < F n ',则转②否则停止,得到n K=1 (2)选取前两个试点的位置(3)计算函数值f(X k ')f(X k ")并比较其大小 若f(X k ')<f(X k "),则a K =a K-1,b K =x K ",x K+1"=x K ' 并令或否则,取a K =x K ',b K =b K-1,x K+1'=x K "并令K=K+1(4)若K ≠n-2,则转(3),否则 若f(x K ')<f(x K "),则a K =a k -1,b K =x K "若f(x K ')>f(x K "),则a K =x k ',b K =b K-1比较函数值f(x K+1'),f(x K+1" )的大小,得到函数y=f(x)的极小值和极小点,从而得到最终区间[a K ,x K+1" ]或[a K ,x K+1"] 。
3、解:121211(,...)ax ()(,...)0,1,2,...k k ki i i k i i i i C q q q M f X p q C q C q q q q q y i k==∂⎧⎪=-=-⎨∂⎪≤≤=⎩∑∑ 转化为121211(,...)in ()(,...)0,1,2,...,k k ki i i k i i i i i C q q q M f X p q C q C q q q q g y q i k==∂⎧⎪=-=-+⎨∂⎪=-≥=⎩∑∑ 设K-T 点为i q *,各函数的梯度为:⎪⎪⎩⎪⎪⎨⎧-+=-+=--+--------)()(1111"1111'K K K n K n K K K K n K n K K a b F Fa x ab F F a x )('21k k Kn K n K K b a F F b x -+=---+)('21k k Kn K n K K a b F F a x -+=---+)("11k k Kn K n K K a b F F a x -+=---+)(21'1k K K b a x +=+))(5.0("1k k K K a b a x -++=+ε11(),1,2,...,k k i i i i i i iC C C f q q i k q q q ==∂∂∂∇=--•=∂∂∂∑∑; ()1,1,2,...,i i g q y i k ∇=-=; 对K 个约束条件分别引入广义拉格朗日乘子12,,...,k μμμ***,则该问题的K-T 条件如下:121112...0(1)0(1)0..................(1)0k k i k i i ii i k C C C q q q q y y y μμμμμμ***==***∂∂∂⎧--•----=⎪∂∂∂⎪-=⎪⎪-=⎨⎪⎪-=⎪⎪⎩∑∑ 4、解:(1)添加两个新点Vs ,Vt ,构造赋权有向图如下((((2) 看做运输问题,用表上作业法求解,由于是产销不平衡问题,虚拟销地B4,销量为2.①第一步,用最小元素法给出初始运量表。
②用闭回路法计算检验数。
λ21=8-7+11-3=9,λ13=10-11+7-4=2,λ42=M-M+11-7=4;所有非基变量的检验数大于零,则初始调运方案为最优调运方案,此时的运费为c=3×9+11×2+7×3+4×6=94(2)构造赋权有向图,求最小费用流,c ij表示由A i到B j的流量(i=1,2;j=1,2,3),则令c ij为∞,将该问题转化为最小费用最大流问题。
最小费用为:9×3+2×11+3×7+4×6=94W(f (2))ev(f (3))=18fW(f (1))cv(f (2))=15dW(f (0))av(f (1))=9b V S(3)构造赋权有向图,求最小费用最大流。
弧旁数字为(b ij ,c ij )。
①取f (0)=0为初始可行流。
②构造赋权有向图W(f (0)),并求出从Vs 到Vt 的最短路(Vs ,A 1,B 1,Vt )。
③在原网络图中,与这条最短路相应的增广链为µ=(Vs ,A 1,B 1,Vt )。
④在µ上进行调整,θ=8,得f (1)(图b )。
按照上述算法依次得W(f (1)), W(f (2)), W(f (3)), W(f (4)), W(f (5)), W(f (6)),流量依次为8,13,16,17,18,20,f (6)中不存在最短路,故f (6)为最小费用最大流,最大流量为20,此时的最小费用为:3×8+11×2+1×10+1×8+3×7+5×4=105。
W(f (4))iW(f (3))gv(f (4))=20h V SW(f )v(f (4))=17hW(f )ev(f (3))=16fW(f (1))cv(f (2))=13dW(f (0))av(f (1))=8b5、解:(1)设搅拌点的坐标为(X ,Y ),则搅拌点各工点的距离为22)()(i i i Y Y X X d -+-=(i 表示到第i 个工点)建立该问题的数学模型为:)4,3,2,1( )()( s.t. min 2241=-+-=⨯=∑=i Y Y X X d Q d f i i i i ii(2)设搅拌点的坐标为(X ,Y ),则搅拌点到各工点的距离为ii i Y Y X X d -+-=W(f )mW(f )v(f (6))=20lW(f )v(f (5))=18j建立该问题的数学模型为:)4,3,2,1( s.t. min 41=-+-=⨯=∑=i Y Y X X d Q d f i i i i ii6、解:看做求网络最大流,令已有的弧上的数据为容量。
(1)首先给网络赋予初始可行流。
方法不唯一,但不同的初始可行流对应的增广链不同。
(2)用标号法求增广链,开始给v1标号(△, +∞);于是检查v2,弧(v1,v2)上,f12=c12;检查v3,给v3标号(v1, 1);检查v4,给v4标号(v3,1),由于弧(v4,v2)上,f42=0,弧(v4,v5)、弧(v4,v5)上可行流等于流量,标号无法继续下去,算法结束。
此时的可行流即为最大流。
同时可以找到最小截集(11,V V ),1V ={①,③,④},1V ={②,⑤,⑥},于是(11,V V )={(v1,v2),(v4,v2),(v4,v5),(v3,v6),(v4,v6)}是最小截集。
则压缩总工期1天的压缩方案为:将工序①-②,工序③-⑥,工序④-⑤,工序④-⑥同时压缩1天,此时的最小费用为2+1+3+2=8.(△。