湖北省随州市中考数学试卷及答案

合集下载

(精品中考卷)湖北省随州市中考数学真题及答案

(精品中考卷)湖北省随州市中考数学真题及答案

随州市2022年初中毕业升学考试数学试题(考试时间120分钟 满分120分)注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘粘在答题卡上的指定位置.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动。

用橡皮擦干净后,再选涂其他答案标号,答在试卷上无效. 3.非选择题作答:用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内,答在试卷上无效.4.考生必须保持答题卡的整洁,考试结束后,请将本试卷和答题卡一并上交. 一、选择题(本大题共10小题,每小题3分,共30分,每小题给出的四个选项中,只有一个是正确的)1.2022的倒数是A .2022B .2022-C .12022D .12022-2.如图,直线12l l ∥,直线l 与1l ,2l 相交,若图中160∠=︒则∠2为A .30°B .40°C .50°D .60°3.小明同学连续5次测验的成绩分别为:97,97,99,101,106(单位:分),则这组数据的众数和平均数分别为 A .97和99 B .97和100C .99和100D .97和1014.如图是一个放在水平桌面上的半球体,该几何体的三视图中完全相同的是A .主视图和左视图B .主视图和俯视图C .左视图和俯视图D .三个视图均相同5.我国元朝朱世杰所著的《算学启蒙》中记载:“良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何追及之。

”意思是:“跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?”若设快马x 天可以追上慢马,则可列方程为A .()15012240x x +=B .()24012150x x +=C .()15012240x x -=D .()24012150x x -=6.2022年6月5日10时44分07秒,神舟14号飞船成功发射,将陈冬、刘洋、蔡旭哲三位宇航员送入了中国空间站.已知中国空间站绕地球运行的速度约为37.710m /s ⨯,则中国空间站绕地球运行22s 10⨯走过的路程(m )用科学记数法可表示为A .515.410⨯B .61.5410⨯C .615.410⨯D .71.5410⨯7.已知张强家、体育场、文具店在同一直线上.下面的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x 表示时间,y 表示张强离家的距离.则下列结论不正确的是A .张强从家到体育场用了15minB .体育场离文具店1.5kmC .张强在文具店停留了20minD .张强从文具店回家用了35min8.七巧板是一种古老的中国传统智力玩具,如图,在正方形纸板ABCD 中,BD 为对角线,E ,F 分别为BC ,CD 的中点,AP EF ⊥分别交BD ,EF 于O ,P 两点,M ,N 分别为BO ,DC 的中点,连接AP ,NF ,沿图中实线剪开即可得到一副七巧板,则在剪开之前,关于该图形,下列说法正确的有②四边形MPEB 是菱形;③四边形PFDM 的面积占正方形ABCD 面积的14.A .只有①B .①②C .①③D .②③9.如图,已知点B ,D ,C 在同一直线的水平,在点C 处测得建筑物AB 的顶端A 的仰角为α,在点D 处测得建筑物AB 的顶端A 的仰角为β,CD a =,则建筑物AB 的A 度为A .tan tan a αβ-B .tan tan a βα-C .tan tan tan tan a αβαβ-D .tan tan tan tan a αββα-10.如图,已知开口向下的抛物线20y ax bx =++与x 轴交于点()1,0-对称轴为直线1x =.则下列结论正确的有①0abc >; ②20a b +=;③函数20y ax bx =++的最大值为4a -;④若关于x 的方数21ax bx c a ++=+无实数根,则105a -<<.A .1个B .2个C .3个D .4个二、填空题(本大题共有6小题,每小题3分,共18分,只需要将结果直接填写在答题卡对应题号处的横线上)11.计算:()313⨯-+-=.12.如图,点A ,B ,C 在⊙O 60ABC ∠=︒,则∠AOC 的度数为.13.已知二元一次方程维2425x y x y +=⎧⎨+=⎩,则x y -的值为.14.如图,在平面直角坐标系中,直线1y x =+与x 轴,y 轴分别交A 于点A ,B ,与反比例函数ky x=的图象在第一象限交于点C ,若AB BC =,则k 的值为 .15.已知m 3==可知m 有最小值3721⨯=.设n 为正整数,若大于1的整数,则n 的最小值为,最大值为.16.如图1,在矩形ABCD 中,8AB =,6AD =,E ,F 分别为AB ,AD 的中点,连接EF .如图2,将△AEF 绕点A 逆时针旋转角()090θθ<<︒,使EF AD ⊥,连接BE 并延长交DF 于点H ,则∠BHD 的度数为,DH 的长为.三、解答题(本大题共8小题,共72分,解答应写出必要的演算步骤、文字说明或证明过程)17.(本题满分6分) 解分式方程:143x x =+. 18.(本题满分7分)已知关于x 的一元二次方程()222110x k x k ++++=有两个不等实数根1x ,2x . (1)求k 的取值范围; (2)若125x x =,求k 的值. 19.(本题满分8分)如图,在平行四边形ABCD 中,点E ,F 分别在边AB ,CD 上,且四边形BEDF 为正方形.(1)求证AE CF =;(2)已知平行四边形ABCD 的面积为20,5AB =.求CF 的长. 20.(本题满分10分)为落实国家“双减”政策,立德中学在课后托管时间里开展了“音乐社团、体育社团、文学社团,美术社团”活动。

2024年湖北省中考真题数学真题(学生版+解析版)

2024年湖北省中考真题数学真题(学生版+解析版)

2024年湖北省中考数学真题本试卷共6页,满分120分,考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置.2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效,作图一律用2B铅笔或黑色签字笔.4.考试结束后,请将试卷和答题卡一并交回.一、选择题(共10题,每题3分,共30分.在每题给出的四个选项中,只有一项符合题目要求)1.在生产生活中,正数和负数都有现实意义.例如收入20元记作+20元,则支出10元记作()A.+10元B.—10元C.+20元D.—20元2.如图是一个由4个相同的正方体组成的立体图形,它的主视图是(正面「A.IC.D3.2x-3x2的值是()A.5x2B. 5x3C.6x2D. 6x34如图,一条公路的两侧铺设了AB,CD两条平行管道,并有纵向管道AC连通.若乙1=120°'则乙2的度数是()A BCA 50°DB. 60C 70°D 80°5 不等式x +1�2的解集在数轴上表示正确的是()�I)I,A-112B. -12c厂�,.-1]2D. -I O 1 26. 在下列事件中,必然事件是(A. 掷一次骰子,向上一面的点数是3B. 篮球队员在罚球线上投篮一次,未投中C. 经过有交通信号灯的路口,遇到红灯D. 任意画一个三角形,其内角和180°7 我国古代数学著作《九章算术》中记载了一个关千”方程”的问题:“今有牛五、羊二,直金十两.牛二、羊五,直金八两.问牛羊各直金几何?"译文:“今有牛5头,羊2头,共值金10两.牛2头,羊5头,共值金8两.问牛、羊每头各值金多少?“若设牛每头值金x两,羊每头值金y两,则可列方程组是()5x +2y =l0 A. {2x+Sy =8 C. {5x +5y =10 2x +5y =8 B. {2x +5y =I O5x+2y = 8 D. {5x +2y =I O 2x +2y =88. 如图,AB是半圆0的直径,C为半圆0上一点,以点B 为圆心,适当长为半径画弧,交BA 千点M,交1BC 千点N,分别以点M,N 为圆心,大千-MN 的长为半径画弧,两弧在乙ABC 的内部相交千点D,画2射线BD,连接AC.若乙CAB =50°,则乙CED 的度数是()A 30B 25°C 20°D. 15°9.如图,点A的坐标是(-4,6)'将线段O A绕点0顺时针旋转90°,点A的对应点的坐标是(y』A。

2022年湖北省随州市中考数学(word版有解析)

2022年湖北省随州市中考数学(word版有解析)

2022年湖北省随州市中考数学试卷一、选择题〔本大题共10小题,每题3分,共30分〕1.﹣2的绝对值是〔〕A.2 B.﹣2 C.D.【解析】负数的绝对值等于它的相反数,﹣2的绝对值是2,即|﹣2|=2.应选:A.2.以下运算正确的选项是〔〕A.a3+a3=a6 B.〔a﹣b〕2=a2﹣b2 C.〔﹣a3〕2=a6D.a12÷a2=a6【解析】A、原式=2a3,不符合题意;B、原式=a2﹣2ab+b2,不符合题意;C、原式=a6,符合题意;D、原式=a10,不符合题意,应选C.3.如图是某几何体的三视图,这个几何体是〔〕A.圆锥B.长方体C.圆柱D.三棱柱【解析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.可知这个几何体是圆柱体.应选C.4.一组数据2,3,5,4,4的中位数和平均数分别是〔〕A.4和3.5 B.4和3.6 C.5和3.5 D.5和3.6【解析】把这组数据按从大到小的顺序排列是:2,3,4,4,5,故这组数据的中位数是:4.平均数=〔2+3+4+4+5〕÷5=3.6.应选B.5.某同学用剪刀沿直线将一片平整的银杏叶减掉一局部〔如图〕,发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是〔〕A.两点之间线段最短B.两点确定一条直线C.垂线段最短D.经过直线外一点,有且只有一条直线与这条直线平行【解析】某同学用剪刀沿直线将一片平整的银杏叶减掉一局部〔如图〕,发现剩下的银杏叶的周长比原银杏叶的周长要小,能正确解释这一现象的数学知识是两点之间线段最短.应选:A.6.如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是〔〕A.以点F为圆心,OE长为半径画弧B.以点F为圆心,EF长为半径画弧C.以点E为圆心,OE长为半径画弧D.以点E为圆心,EF长为半径画弧【解析】用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,第二步的作图痕迹②的作法是以点E为圆心,EF长为半径画弧.应选D.7.小明到商店购置“五四青年节〞活动奖品,购置20只铅笔和10本笔记本共需110元,但购置30支铅笔和5本笔记本只需85元,设每支铅笔x元,每本笔记本y元,那么可列方程组〔〕A.B.C.D.【解析】设每支铅笔x元,每本笔记本y元,根据题意得.应选B.8.在公园内,牡丹按正方形种植,在它的周围种植芍药,如图反映了牡丹的列数〔n〕和芍药的数量规律,那么当n=11时,芍药的数量为〔〕A.84株B.88株C.92株D.121株【解析】由题图可得,芍药的数量为:4+〔2n﹣1〕×4,∴当n=11时,芍药的数量为:4+〔2×11﹣1〕×4=4+〔22﹣1〕×4=4+21×4=4+84=88,应选B.9.对于二次函数y=x2﹣2mx﹣3,以下结论错误的选项是〔〕A.它的图象与x轴有两个交点B.方程x2﹣2mx=3的两根之积为﹣3C.它的图象的对称轴在y轴的右侧D.x<m时,y随x的增大而减小【解析】A、∵b2﹣4ac=〔2m〕2+12=4m2+12>0,∴二次函数的图象与x轴有两个交点,故此选项正确,不合题意;B、方程x2﹣2mx=3的两根之积为:=﹣3,故此选项正确,不合题意;C、m的值不能确定,故它的图象的对称轴位置无法确定,故此选项错误,符合题意;∴x<m时,y随x的增大而减小,故此选项正确,不合题意;应选:C.10.如图,在矩形ABCD中,AB<BC,E为CD边的中点,将△ADE绕点E顺时针旋转180°,点D的对应点为C,点A的对应点为F,过点E作ME⊥AF交BC于点M,连接AM、BD交于点N,现有以下结论:①AM=AD+MC;②AM=DE+BM;③DE2=AD•CM;④点N为△ABM的外心.其中正确的个数为〔〕A.1个 B.2个 C.3个 D.4个【解析】∵E为CD边的中点,∴DE=CE,又∵∠D=∠ECF=90°,∠AED=∠FEC,∴△ADE≌△FCE,∴AD=CF,AE=FE,又∵ME⊥AF,∴ME垂直平分AF,∴AM=MF=MC+CF,∴AM=MC+AD,故①正确;当AB=BC时,即四边形ABCD为正方形时,设DE=EC=1,BM=a,那么AB=2,BF=4,AM=FM=4﹣a,在Rt△ABM中,22+a2=〔4﹣a〕2,解得a=1.5,即BM=1.5,∴由勾股定理可得AM=2.5,∴DE+BM=2.5=AM,又∵AB<BC,∴AM=DE+BM不成立,故②错误;∵ME⊥FF,EC⊥MF,∴EC2=CM×CF,又∵EC=DE,AD=CF,∴DE2=AD•CM,故③正确;∵∠ABM=90°,∴AM是△ABM的外接圆的直径,∵BM<AD,∴当BM∥AD时,=<1,∴N不是AM的中点,∴点N不是△ABM的外心,故④错误.综上所述,正确的结论有2个,应选:B.二、填空题〔本小题共6小题,每题3分,共18分,只需要将结果直接填写在答题卡对应题号的横线上.〕11.根据中央“精准扶贫〞规划,每年要减贫约11700000人,将数据11700000用科学记数法表示为 1.17×107.【解析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,11700000=1.17×107.故答案为:1.17×107.12.“抛掷一枚质地均匀的硬币,正面向上〞是随机事件〔从“必然〞、“随机〞、“不可能〞中选一个〕.【解析】“抛掷一枚质地均匀的硬币,正面向上〞是随机事件,故答案为:随机.13.如图,AB是⊙O的弦,半径OC垂直AB,点D是⊙O上一点,且点D与点C位于弦AB 两侧,连接AD、CD、OB,假设∠BOC=70°,那么∠ADC=35度.【解析】如图,连接OA.∵OC⊥AB,∴=,∴∠AOC=∠COB=70°,∴∠ADC=AOC=35°,故答案为35.14.在△ABC在,AB=6,AC=5,点D在边AB上,且AD=2,点E在边AC上,当AE=或时,以A、D、E为顶点的三角形与△ABC相似.【解析】当=时,∵∠A=∠A,∴△AED∽△ABC,此时AE===;当=时,∵∠A=∠A,∴△ADE∽△ABC,此时AE===;故答案为:或.15.如图,∠AOB的边OB与x轴正半轴重合,点P是OA上的一动点,点N〔3,0〕是OB上的一定点,点M是ON的中点,∠AOB=30°,要使PM+PN最小,那么点P的坐标为〔,〕.【解析】作N关于OA的对称点N′,连接N′M交OA于P,那么此时,PM+PN最小,∵OA垂直平分NN′,∴ON=ON′,∠N′ON=2∠AON=60°,∴△NON′是等边三角形,∵点M是ON的中点,∴N′M⊥ON,∵点N〔3,0〕,∴ON=3,∵点M是ON的中点,∴OM=1.5,∴PM=,∴P〔,〕.故答案为:〔,〕.16.在一条笔直的公路上有A、B、C三地,C地位于A、B两地之间,甲车从A地沿这条公路匀速驶向C地,乙车从B地沿这条公路匀速驶向A地,在甲车出发至甲车到达C地的过程中,甲、乙两车各自与C地的距离y〔km〕与甲车行驶时间t〔h〕之间的函数关系如下列图.以下结论:①甲车出发2h时,两车相遇;②乙车出发1.5h时,两车相距170km;③乙车出发2h时,两车相遇;④甲车到达C地时,两车相距40km.其中正确的选项是②③④〔填写所有正确结论的序号〕.【解析】①观察函数图象可知,当t=2时,两函数图象相交,∵C地位于A、B两地之间,∴交点代表了两车离C地的距离相等,并不是两车相遇,结论①错误;②甲车的速度为240÷4=60〔km/h〕,乙车的速度为200÷〔3.5﹣1〕=80〔km/h〕,∵÷〔60+80〕=1.5〔h〕,∴乙车出发1.5h时,两车相距170km,结论②正确;③∵÷〔60+80〕=2〔h〕,∴乙车出发2h时,两车相遇,结论③正确;④∵80×〔4﹣3.5〕=40〔km〕,∴甲车到达C地时,两车相距40km,结论④正确.综上所述,正确的结论有:②③④.故答案为:②③④.三、解答题〔此题共9小题,共72分,解容许写出必要演算步骤、文字说明或证明过程.〕17.计算:〔〕﹣2﹣〔2022-π〕0+﹣|﹣2|.【分析】原式利用零指数幂、负整数指数幂法那么,二次根式性质,以及绝对值的代数意义化简,即可得到结果.【解】原式=9﹣1+3﹣2=9.18.解分式方程: +1=.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解】去分母得:3+x2﹣x=x2,解得:x=3,经检验x=3是分式方程的解.19.如图,在平面直角坐标系中,将坐标原点O沿x轴向左平移2个单位长度得到点A,过点A作y轴的平行线交反比例函数y=的图象于点B,AB=.〔1〕求反比例函数的解析式;〔2〕假设P〔x1,y1〕、Q〔x2,y2〕是该反比例函数图象上的两点,且x1<x2时,y1>y2,指出点P、Q各位于哪个象限?并简要说明理由.【分析】〔1〕求出点B坐标即可解决问题;〔2〕结论:P在第二象限,Q在第三象限.利用反比例函数的性质即可解决问题;【解】〔1〕由题意B〔﹣2,〕,把B〔﹣2,〕代入y=中,得到k=﹣3,∴反比例函数的解析式为y=﹣.〔2〕结论:P在第二象限,Q在第三象限.理由:∵k=﹣3<0,∴反比例函数y在每个象限y随x的增大而增大,∵P〔x1,y1〕、Q〔x2,y2〕是该反比例函数图象上的两点,且x1<x2时,y1>y2,∴P、Q在不同的象限,∴P在第二象限,Q在第三象限.20.风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成〔如图1〕,图2是从图1引出的平面图.假设你站在A处测得塔杆顶端C的仰角是55°,沿HA 方向水平前进43米到达山底G处,在山顶B处发现正好一叶片到达最高位置,此时测得叶片的顶端D〔D、C、H在同一直线上〕的仰角是45°.叶片的长度为35米〔塔杆与叶片连接处的长度忽略不计〕,山高BG为10米,BG⊥HG,CH⊥AH,求塔杆CH的高.〔参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35°≈0.6〕【分析】作BE⊥DH,知GH=BE、BG=EH=10,设AH=x,那么BE=GH=43+x,由CH=AH·tan∠CAH=tan55°•x,知CE=CH﹣EH=tan55°•x﹣10,根据BE=DE可得关于x的方程,解之可得.【解】如图,作BE⊥DH于点E,那么GH=BE、BG=EH=10,设AH=x,那么BE=GH=GA+AH=43+x,在Rt△ACH中,CH=AHtan∠CAH=tan55°•x,∴CE=CH﹣EH=tan55°•x﹣10,∵∠DBE=45°,∴BE=DE=CE+DC,即43+x=tan55°•x﹣10+35,解得:x≈45,∴CH=tan55°•x=1.4×45=63,答:塔杆CH的高为63米.21.某校为组织代表队参加市“拜炎帝、诵经典〞吟诵大赛,初赛后对选手成绩进行了整理,分成5个小组〔x表示成绩,单位:分〕,A组:75≤x<80;B组:80≤x<85;C组:85≤x <90;D组:90≤x<95;E组:95≤x<100.并绘制出如图两幅不完整的统计图.请根据图中信息,解答以下问题:〔1〕参加初赛的选手共有40名,请补全频数分布直方图;〔2〕扇形统计图中,C组对应的圆心角是多少度?E组人数占参赛选手的百分比是多少?〔3〕学校准备组成8人的代表队参加市级决赛,E组6名选手直接进入代表队,现要从D组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.【分析】〔1〕用A组人数除以A组所占百分比得到参加初赛的选手总人数,用总人数乘以B 组所占百分比得到B组人数,从而补全频数分布直方图;〔2〕用360度乘以C组所占百分比得到C组对应的圆心角度数,用E组人数除以总人数得到E组人数占参赛选手的百分比;〔3〕首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽到一男生和一女生的情况,再利用概率公式即可求得答案.【解】〔1〕参加初赛的选手共有:8÷20%=40〔人〕,B组有:40×25%=10〔人〕.频数分布直方图补充如下:故答案为40;〔2〕C组对应的圆心角度数是:360°×=108°,E组人数占参赛选手的百分比是:×100%=15%;〔3〕画树状图得:∵共有12种等可能的结果,抽取的两人恰好是一男生和一女生的有8种结果,∴抽取的两人恰好是一男生和一女生的概率为=.22.如图,在Rt△ABC中,∠C=90°,AC=BC,点O在AB上,经过点A的⊙O与BC相切于点D,交AB于点E.〔1〕求证:AD平分∠BAC;〔2〕假设CD=1,求图中阴影局部的面积〔结果保存π〕.【分析】〔1〕连接DE,OD.利用弦切角定理,直径所对的圆周角是直角,等角的余角相等证明∠DAO=∠CAD ,进而得出结论;〔2〕根据等腰三角形的性质得到∠B=∠BAC=45°,由BC 相切⊙O 于点D ,得到∠ODB=90°,求得OD=BD ,∠BOD=45°,设BD=x ,那么OD=OA=x ,OB=x ,根据勾股定理得到BD=OD=,于是得到结论.【解】〔1〕证明:连接DE ,OD .∵BC 相切⊙O 于点D ,∴∠CDA=∠AED ,∵AE 为直径,∴∠ADE=90°,∵AC ⊥BC ,∴∠ACD=90°,∴∠DAO=∠CAD ,∴AD 平分∠BAC ;〔2〕∵在Rt △ABC 中,∠C=90°,AC=BC ,∴∠B=∠BAC =45°,∵BC 相切⊙O 于点D ,∴∠ODB=90°,∴OD=BD ,∴∠BOD=45°,设BD=x ,那么OD=OA=x ,OB=x ,∴BC=AC=x +1,∵AC 2+BC 2=AB 2,∴2〔x +1〕2=〔x +x 〕2,∴x=,∴BD=OD=,∴图中阴影局部的面积=S △BOD ﹣S 扇形DOE =﹣=1﹣.23.某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.〔1〕求该种水果每次降价的百分率;〔2〕从第一次降价的第1天算起,第x 天〔x 为整数〕的售价、销量及储存和损消耗用的相关信息如表所示.该种水果的进价为4.1元/斤,设销售该水果第x 〔天〕的利润为y 〔元〕,求y 与x 〔1≤x <15〕之间的函数关系式,并求出第几天时销售利润最大?时间x 〔天〕1≤x <9 9≤x <15 x ≥15 售价〔元/斤〕第1次降价后的价格 第2次降价后的价格 销量〔斤〕80﹣3x 120﹣x 储存和损消耗用〔元〕40+3x 3x 2﹣64x +400 〔3〕在〔2〕的条件下,假设要使第15天的利润比〔2〕中最大利润最多少127.5元,那么第15天在第14天的价格根底上最多可降多少元?【分析】〔1〕设这个百分率是x ,根据某商品原价为10元,由于各种原因连续两次降价,降价后的价格为8.1元,可列方程求解;〔2〕根据两个取值先计算:当1≤x <9时和9≤x <15时销售单价,由利润=〔售价﹣进价〕×销量﹣费用列函数关系式,并根据增减性求最大值,作比照;〔3〕设第15天在第14天的价格根底上最多可降a 元,根据第15天的利润比〔2〕中最大利润最多少127.5元,列不等式可得结论.【解】〔1〕设该种水果每次降价的百分率是x ,10〔1﹣x〕2=8.1,x=10%或x=190%〔舍去〕,答:该种水果每次降价的百分率是10%;〔2〕当1≤x<9时,第1次降价后的价格:10×〔1﹣10%〕=9,∴y=〔9﹣4.1〕〔80﹣3x〕﹣〔40+3x〕=﹣17.7x+352,∵﹣17.7<0,∴y随x的增大而减小,∴当x=1时,y有最大值,y大=﹣17.7×1+352=334.3〔元〕,当9≤x<15时,第2次降价后的价格:8.1元,∴y=〔8.1﹣4.1〕﹣〔3x2﹣64x+400〕=﹣3x2+60x+80=﹣3〔x﹣10〕2+380,∵﹣3<0,∴当9≤x≤10时,y随x的增大而增大,当10<x<15时,y随x的增大而减小,∴当x=10时,y有最大值,y大=380〔元〕,综上所述,y与x〔1≤x<15〕之间的函数关系式为:y=,第10天时销售利润最大;〔3〕设第15天在第14天的价格根底上最多可降a元,由题意得:380﹣127.5≤〔4﹣a〕﹣〔3×152﹣64×15+400〕,252.5≤105〔4﹣a〕﹣115,a≤0.5,答:第15天在第14天的价格根底上最多可降0.5元.24.如图,分别是可活动的菱形和平行四边形学具,平行四边形较短的边与菱形的边长相等.〔1〕在一次数学活动中,某小组学生将菱形的一边与平行四边形较短边重合,摆拼成如图1所示的图形,AF经过点C,连接DE交AF于点M,观察发现:点M是DE的中点.下面是两位学生有代表性的证明思路:思路1:不需作辅助线,直接证三角形全等;思路2:不证三角形全等,连接BD交AF于点H.…请参考上面的思路,证明点M是DE的中点〔只需用一种方法证明〕;〔3〕在〔2〕的条件下,假设=k〔k为大于的常数〕,直接用含k的代数式表示的值.【分析】〔1〕证法一,利用菱形性质得AB=CD,AB∥CD,利用平行四边形的性质得AB=EF,AB∥EF,那么CD=EF,CD∥EF,再根据平行线的性质得∠CDM=∠FEM,那么可根据“AAS〞判断△CDM≌△FEM,所以DM=EM;证法二,利用菱形性质得DH=BH,利用平行四边形的性质得AF∥BE,再根据平行线分线段成比例定理得到==1,所以DM=EM;〔2〕由△CDM≌△FEM得到CM=FM,设AD=a,CM=b,那么FM=b,EF=AB=a,再证明四边形ABCD为正方形得到AC=a,接着证明△ANF为等腰直角三角形得到NF=a+b,那么NE=NF+EF=2a+b,然后计算的值;〔4〕由于==+=k,那么=,然后表示出==•+1,再把=代入计算即可.【解】〔1〕如图1,证法一:∵四边形ABCD为菱形,∴AB=CD,AB∥CD,∵四边形ABEF为平行四边形,∴AB=EF,AB∥EF,∴CD=EF,CD∥EF,∴∠CD M=∠FEM,在△CDM和△FEM中,∴△CDM≌△FEM,∴DM=EM,即点M是DE的中点;证法二:∵四边形ABCD为菱形,∴DH=BH,∵四边形ABEF为平行四边形,∴AF∥BE,∵HM∥BE,∴==1,∴DM=EM,即点M是DE的中点;〔2〕∵△CDM≌△FEM,∴CM=FM,设AD=a,CM=b,∴∠BAF=45°,∵四边形ABCD为菱形,∴∠NAF=45°,∴四边形ABCD为正方形,∴AC=AD=a,∵AB∥EF,∴∠AFN=∠BAF=45°,∴△ANF为等腰直角三角形,∴NF=AF=〔a+b+b〕=a+b,∴NE=NF+EF=a+b+a=2a+b,∴===;〔4〕∵==+=k,∴=k﹣,∴=,∴==•+1=•+1=.25.在平面直角坐标系中,我们定义直线y=ax﹣a为抛物线y=ax2+bx+c〔a、b、c为常数,a ≠0〕的“梦想直线〞;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“梦想三角形〞.抛物线y=﹣x2﹣x+2与其“梦想直线〞交于A、B两点〔点A在点B的左侧〕,与x轴负半轴交于点C.〔1〕填空:该抛物线的“梦想直线〞的解析式为y=﹣x+,点A的坐标为〔﹣2,2〕,点B的坐标为〔1,0〕;〔2〕如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,假设△AMN为该抛物线的“梦想三角形〞,求点N的坐标;〔3〕当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线〞上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?假设存在,请直接写出点E、F的坐标;假设不存在,请说明理由.【分析】〔1〕由梦想直线的定义可求得其解析式,联立梦想直线与抛物线解析式可求得A、B 的坐标;〔2〕过A作AD⊥y轴于点D,那么可知AN=AC,结合A点坐标,那么可求得ON的长,可求得N点坐标;〔3〕当AC为平行四边形的一边时,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,可证△EFH≌△ACK,可求得DF的长,那么可求得F点的横坐标,从而可求得F点坐标,由HE的长可求得E点坐标;当AC为平行四边形的对角线时,设E〔﹣1,t〕,由A、C的坐标可表示出AC中点,从而可表示出F点的坐标,代入直线AB的解析式可求得t的值,可求得E、F的坐标.【解】〔1〕∵抛物线y=﹣x2﹣x+2,∴其梦想直线的解析式为y=﹣x+,联立梦想直线与抛物线解析式可得,解得或,∴A〔﹣2,2〕,B〔1,0〕,故答案为:y=﹣x+;〔﹣2,2〕;〔1,0〕;〔2〕如图1,过A作AD⊥y轴于点D,在y=﹣x2﹣x+2中,令y=0可求得x=﹣3或x=1,∴C〔﹣3,0〕,且A〔﹣2,2〕,∴AC==,由翻折的性质可知AN=AC=,∵△AMN为梦想三角形,∴N点在y轴上,且AD=2,在Rt△AND中,由勾股定理可得DN===3,∵OD=2,∴ON=2﹣3或ON=2+3,∴N点坐标为〔0,2﹣3〕或〔0,2+3〕;〔3〕①当AC为平行四边形的边时,如图2,过F作对称轴的垂线FH,过A作AK⊥x轴于点K,那么有AC∥EF且AC=EF,∴∠ACK=∠EFH,在△ACK和△EFH中∴△ACK≌△EFH〔AAS〕,∴FH=CK=1,HE=AK=2,∵抛物线对称轴为x=﹣1,∴F点的横坐标为0或﹣2,∵点F在直线AB上,∴当F点横坐标为0时,那么F〔0,〕,此时点E在直线AB下方,∴E到y轴的距离为EH﹣OF=2﹣=,即E点纵坐标为﹣,∴E〔﹣1,﹣〕;当F点的横坐标为﹣2时,那么F与A重合,不合题意,舍去;②当AC为平行四边形的对角线时,∵C〔﹣3,0〕,且A〔﹣2,2〕,∴线段AC的中点坐标为〔﹣2.5,〕,设E〔﹣1,t〕,F〔x,y〕,那么x﹣1=2×〔﹣2.5〕,y+t=2,∴x=﹣4,y=2﹣t,代入直线AB解析式可得2﹣t=﹣×〔﹣4〕+,解得t=﹣,∴E〔﹣1,﹣〕,F〔﹣4,〕;综上可知存在满足条件的点F,此时E〔﹣1,﹣〕、F〔0,〕或E〔﹣1,﹣〕、F〔﹣4,〕.。

2024年湖北随州中考数学试题及答案

2024年湖北随州中考数学试题及答案

2024年湖北随州中考数学试题及答案一、选择题(每小题3分,共30分)1. 在生产生活中,正数和负数都有现实意义.例如收入20元记作20+元,则支出10元记作( )A. 10+元B. 10-元C. 20+元D. 20-元2. 如图,是由4个相同的正方体组成的立方体图形,其主视图是( )A. B. C. D.3. 223x x ⋅的值是( )A. 25xB. 35xC. 26xD. 36x 4. 如图,直线AB CD ∥,已知1120∠=︒,则2∠=( )A. 50︒B. 60︒C. 70︒D. 80︒5. 不等式12x +≥的解集在数轴上表示为( )A.B. C.D.6. 下列各事件是,是必然事件的是( )A. 掷一枚正方体骰子,正面朝上恰好是3B. 某同学投篮球,一定投不中C. 经过红绿灯路口时,一定是红灯D. 画一个三角形,其内角和为180︒7. 《九章算术》中记载这样一个题:牛5头和羊2只共值10金,牛2头和羊5只共值8金,问牛和羊各值多少金?设每头牛值x 金,每只羊值y 金,可列方程为( )A. 5210258x y x y +=⎧⎨+=⎩ B. 2510528x y x y +=⎧⎨+=⎩C. 5510258x y x y +=⎧⎨+=⎩ D. 5210228x y x y +=⎧⎨+=⎩8. AB 为半圆O 的直径,点C 为半圆上一点,且50CAB ∠=︒.①以点B 为圆心,适当长为半径作弧,交,AB BC 于,D E ;②分别以DE 为圆心,大于12DE 为半径作弧,两弧交于点P ;③作射线BP ,则ABP ∠=( )A. 40︒B. 25︒C. 20︒D. 15︒9. 平面坐标系xOy 中,点A 的坐标为()4,6-,将线段OA 绕点O 顺时针旋转90︒,则点A 的对应点A '的坐标为( )A. ()4,6B. ()6,4C. ()4,6--D. ()6,4--10. 抛物线2y ax bx c =++的顶点为()1,2--,抛物线与y 轴的交点位于x 轴上方.以下结论正确的是( )A. 0a <B. 0c <C. 2a b c -+=-D. 240b ac -=二、填空题(每小题3分,共15分)11. 写一个比1-大的数______.12. 中国古代杰出的数学家祖冲之、刘徽、赵爽、秦九韶、杨辉,从中任选一个,恰好是赵爽的概率是______.13. 计算:111m m m +=++______.14. 铁的密度约为37.9kg /cm ,铁的质量()kg m 与体积()3cmV 成正比例.一个体积为310cm 的铁块,它的质量为______kg .15. DEF 等边三角形,分别延长FD DE EF ,,,到点A B C ,,,使DA EB FC ==,连接AB AC ,,BC ,连接BF 并延长交AC 于点G .若2AD DF ==,则DBF ∠=______,FG =______.为三、解答题(75分)16. 计算:()201322024-⨯-17. 已知:如图,E ,F 为□ABCD 对角线AC 上的两点,且AE =CF ,连接BE ,DF ,求证:BE =DF .18. 小明为了测量树AB 的高度,经过实地测量,得到两个解决方案:方案一:如图(1),测得C 地与树AB 相距10米,眼睛D 处观测树AB 的顶端A 的仰角为32︒:方案二:如图(2),测得C 地与树AB 相距10米,在C 处放一面镜子,后退2米到达点E ,眼睛D 在镜子C 中恰好看到树AB 的顶端A .已知小明身高1.6米,试选择一个方案求出树AB 的高度.(结果保留整数,tan320.64︒≈)19. 为促进学生全面发展,学校开展了丰富多彩的体育活动.为了解学生引体向上的训练成果,调查了七年级部分学生,根据成绩,分成了ABCD 四组,制成了不完整的统计图.分组:05A ≤<,510B ≤<,1015C ≤<,1520D ≤<.(1)A 组的人数为______:(2)七年级400人中,估计引体向上每分钟不低于10个有多少人?(3)从众数、中位数、平均数中任选一个,说明其意义.20. 一次函数y x m =+经过点()3,0A -,交反比例函数k y x=于点(),4B n .(1)求m n k ,,;(2)点C 在反比例函数k y x =第一象限的图象上,若AO OB C A S S <△△,直接写出C 的横坐标a 的取值范围.21. Rt ABC △中,90ACB ∠=︒,点O 在AC 上,以OC 为半径的圆交AB 于点D ,交AC 于点E .且BD BC =.(1)求证:AB 是O 的切线.(2)连接OB 交O 于点F,若1AD AE ==,求弧CF 长.22. 学校要建一个矩形花圃,其中一边靠墙,另外三边用篱笆围成.已知墙长42m ,篱笆长80m .设垂直于墙的边AB 长为x 米,平行于墙的边BC 为y 米,围成的矩形面积为2cm S .(1)求y 与,x s 与x 的关系式.的的(2)围成的矩形花圃面积能否为2750cm ,若能,求出x 的值.(3)围成的矩形花圃面积是否存在最大值?若存在,求出这个最大值,并求出此时x 的值.23. 如图,矩形ABCD 中,,E F 分别在,AD BC 上,将四边形ABFE 沿EF 翻折,使A 对称点P 落在AB 上,B 的对称点为G PG ,交BC 于H .(1)求证:EDP PCH △∽△.(2)若P 为CD 中点,且2,3AB BC ==,求GH 长.(3)连接BG ,若P 为CD 中点,H 为BC 中点,探究BG 与AB 大小关系并说明理由.24. 如图1,二次函数23y x bx =-++交x 轴于()1,0A -和B ,交y 轴于C .(1)求b 的值.(2)M 为函数图象上一点,满足MAB ACO ∠=∠,求M 点的横坐标.(3)如图2,将二次函数沿水平方向平移,新的图象记为,L L 与y 轴交于点D ,记DC d =,记L 顶点横坐标为n .①求d 与n 的函数解析式.②记L 与x 轴围成的图象为,U U 与ABC 重合部分(不计边界)记为W ,若d 随n 增加而增加,且W 内恰有2个横坐标与纵坐标均为整数的点,直接写出n 的取值范围.的参考答案一、选择题(每小题3分,共30分)【1题答案】【答案】B【2题答案】【答案】A【3题答案】【答案】D【4题答案】【答案】B【5题答案】【答案】A【6题答案】【答案】D【7题答案】【答案】A【8题答案】【答案】C【9题答案】【答案】B【10题答案】【答案】C二、填空题(每小题3分,共15分)【11题答案】【答案】0【12题答案】【答案】1 5【13题答案】【答案】1【14题答案】【答案】79【15题答案】【答案】 ①. 30︒##30度 ②.三、解答题(75分)【16题答案】【答案】3【17题答案】【答案】证明见解析.【18题答案】【答案】树AB 的高度为8米【19题答案】【答案】(1)12 (2)180(3)见解析【20题答案】【答案】(1)3m =,1n =,4k =;(2)1a >.【21题答案】【答案】(1)见解析 (2)弧CF 的长为3π.【22题答案】【答案】(1)()8021940y x x =-≤<;2280s x x =-+(2)能,25x =(3)s 的最大值为800,此时20x =【23题答案】【答案】(1)见详解 (2)34GH =(3)AB =【24题答案】【答案】(1)2b =;(2)103m=或83m=;(3)①()()22111111n n ndn n⎧-><⎪=⎨--<<⎪⎩或;②nn≤<或11n-<≤-.的。

随州市中考数学试卷及答案(Word解析版二)

随州市中考数学试卷及答案(Word解析版二)

湖北省随州市中考数学试卷一、选择题(本题有共10个小题,每小题4分,共40分。

每小题给出的四个选项中,只有一个是正确的)1.(4分)(•随州)与﹣3互为倒数的是()A.﹣B.﹣3 C.D.3考点:倒数分析:根据乘积是1的两个数叫做互为倒数解答.解答:解:∵(﹣3)×(﹣)=1,∴与﹣3互为倒数的是﹣.故选A.点评:本题考查了倒数的定义,熟记概念是解题的关键.2.(4分)(•随州)不等式2x+3≥1的解集在数轴上表示为()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式专题:计算题.分析:求出不等式的解集,表示在数轴上即可.解答:解:不等式2x+3≥1,解得:x≥﹣1,表示在数轴上,如图所示:故选C点评:此题考查了在数轴上表示不等式的解集,以及解一元一次不等式,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.(4分)(•随州)如图,直线a,b与直线c,d相交,若∠1=∠2,∠3=70°,则∠4的度数是()A.35°B.70°C.90°D.110°考点:平行线的判定与性质.分析:首先根据∠1=∠2,可根据同位角相等,两直线平行判断出a∥b,可得∠3=∠5,再根据邻补角互补可以计算出∠4的度数.解答:解:∵∠1=∠2,∴a∥b,∴∠3=∠5,∵∠3=70°,∴∠5=70°,∴∠4=180°﹣70°=110°,故选:D.点评:此题主要考查了平行线的判定与性质,关键是掌握平行线的判定定理与性质定理,平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系4.(4分)(•随州)下列运算正确的是()A.a2+a3=a5B.a2•a3=a5C.(a2)3=a5D.a10÷a2=a5考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方分析:根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解.解答:解:A、a2与a3不是同类项,不能合并,故本选项错误;B、a2•a3=a5,正确;C、应为(a2)3=a2×3=a6,故本选项错误;D、应为a10÷a2=a10﹣2=a8,故本选项错误.故选B.点评:本题考查了合并同类项,同底数幂的乘法,幂的乘方,同底数幂的除法,熟练掌握运算性质是解题的关键,合并同类项时,不是同类项的一定不能合并.5.(4分)(•随州)如图,在菱形ABCD中,∠BAD=120°.已知△ABC的周长是15,则菱形ABCD的周长是()A.25 B.20 C.15 D.10考点:菱形的性质;等边三角形的判定与性质分析:由于四边形ABCD是菱形,AC是对角线,根据菱形对角线性质可求∠BAC=60°,而AB=BC=AC,易证△BAC是等边三角形,结合△ABC的周长是15,从而可求AB=BC=5,那么就可求菱形的周长.解答:解:∵四边形ABCD是菱形,AC是对角线,∴AB=BC=CD=AD,∠BAC=∠CAD=∠BAD,∴∠BAC=60°,∴△ABC是等边三角形,∵△ABC的周长是15,∴AB=BC=5,∴菱形ABCD的周长是20.故选B.点评:本题考查了菱形的性质、等边三角形的判定和性质.菱形的对角线平分对角,解题的关键是证明△ABC是等边三角形.6.(4分)(•随州)数据4,2,6的中位数和方差分别是()A.2,B.4,4 C.4,D.4,考点:方差;中位数.分析:根据方差和中位数的概念求解;方差公式为S2=[(x1﹣)2+(x2﹣)2+…+(x n ﹣)2],排序后的第2就是中位数.解答:解:从小到大排列为:2,4,6,最中间的数是4,则中位数是4;平均数是:(2+4+6)÷3=4,方差=[(2﹣4)2+(4﹣4)2+(6﹣4)2]=;故选C.点评:本题考查了方差和中位数,方差公式为:S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.7.(4分)(•随州)如图是一个长方体形状包装盒的表面展开图.折叠制作完成后得到长方体的容积是(包装材料厚度不计)()A.40×40×70 B.70×70×80 C.80×80×80 D.40×70×80考展开图折叠成几何体分析:根据所给的图形,折成长方体,再根据长方体的容积公式即可得出答案.解答:解:根据图形可知:长方体的容积是:40×70×80;故选D.点评:此题考查了展开图折叠成几何体,解决本题的关键是根据展开图确定出长方体的长、宽、高,再根据公式列出算式即可.8.(4分)(•随州)我市围绕“科学节粮减损,保障食品安全”,积极推广农户使用“彩钢小粮仓”.每套小粮仓的定价是350元,为了鼓励农户使用,、省、市财政给予补贴,补贴部分是农户实际出资的三倍还多30元,则购买一套小货仓农户实际出资是()A.80元B.95元C.135元D.270元考点:一元一次方程的应用分析:设购买一套小货仓农户实际出资是x元,根据政府补贴是农户实际出资的三倍还多30元后,每套小粮仓的定价是350元,可列方程求解.解答:解:设购买一套小货仓农户实际出资是x元,依题意有x+3x+30=350,4x=320,x=80.答:购买一套小货仓农户实际出资是80元.故选A.点评:本题考查理解题意的能力,设出购买一套小货仓农户实际出资,以每套小粮仓的定价作为等量关系列方程求解.9.(4分)(•随州)正比例函数y=kx和反比例函数y=﹣(k是常数且k≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.考点:反比例函数的图象;正比例函数的图象分析:首先判断出反比例函数所在象限,再分情况讨论正比例函数y=kx所在象限,进而选出答案.解答:解:反比例函数y=﹣(k是常数且k≠0)中﹣(k2+1)<0,图象在第二、四象限,故A、D不合题意,当k>0时,正比例函数y=kx的图象在第一、三象限,经过原点,故C符合;当k<0时,正比例函数y=kx的图象在第二、四象限,经过原点,故B不符合;故选:C.点评:此题主要考查了反比例函数与正比例函数图象,关键是掌握两个函数图象的性质.10.(4分)(•随州)如图,正方形ABCD中,AB=3,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG,CF.下列结论:①点G是BC中点;②FG=FC;③S△FGC=.其中正确的是()A.①②B.①③C.②③D.①②③考点:正方形的性质;翻折变换(折叠问题)分析:先求出DE、CE的长,再根据翻折的性质可得AD=AF,EF=DE,∠AFE=∠D=90°,再利用“HL”证明Rt△ABG和Rt△AFG全等,根据全等三角形对应边相等可得BG=FG,再设BG=FG=x,然后表示出EG、CG,在Rt△CEG中,利用勾股定理列出方程求出x=,从而可以判断①正确;根据∠AGB的正切值判断∠AGB≠60°,从而求出∠CGF≠60°,△CGF不是等边三角形,FG≠FC,判断②错误;先求出△CGE 的面积,再求出EF:FG,然后根据等高的三角形的面积的比等于底边长的比求解即可得到△FGC的面积,判断③正确.解答:解:∵正方形ABCD中,AB=3,CD=3DE,∴DE=×3=1,CE=3﹣1=2,∵△ADE沿AE对折至△AFE,∴AD=AF,EF=DE=1,∠AFE=∠D=90°,∴AB=AF=AD,在Rt△ABG和Rt△AFG中,,∴Rt△ABG≌Rt△AFG(HL),∴BG=FG,设BG=FG=x,则EG=EF+FG=1+x,CG=3﹣x,在Rt△CEG中,EG2=CG2+CE2,即(1+x)2=(3﹣x)2+22,解得,x=,∴CG=3﹣=,∴BG=CG=,即点G是BC中点,故①正确;∵tan∠AGB===2,∴∠AGB≠60°,∴∠CGF≠180°﹣60°×2≠60°,又∵BG=CG=FG,∴△CGF不是等边三角形,∴FG≠FC,故②错误;△CGE的面积=CG•CE=××2=,∵EF:FG=1:=2:3,∴S△FGC=×=,故③正确;综上所述,正确的结论有①③.故选B.点评:本题考查了正方形的性质,翻折变换的性质,全等三角形的判定与性质,勾股定理的应用,根据各边的熟量关系利用勾股定理列式求出BG=FG的长度是解题的关键,也是本题的难点.二、填空题(共6小题,每小题4分,共24分)11.(4分)(•随州)实数4的平方根是±2.考点:平方根分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.解答:解:∵(±2)2=4,∴4的平方根是±2.故答案为±2.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.(4分)(•随州)如图是一圆锥,在它的三视图中,既是中心对称图形,又是轴对称图形的是它的俯视图(填“主”,“俯”或“左”).考点:中心对称图形;轴对称图形;简单几何体的三视图分析:先判断圆锥的三视图,然后结合中心对称及轴对称的定义进行判断即可.解答:解:圆锥的主视图是等腰三角形,是轴对称图形,但不是中心对称图形;圆锥的左视图是等腰三角形,是轴对称图形,但不是中心对称图形;圆锥的俯视图是圆,是轴对称图形,也是中心对称图形;故答案为:俯.点评:本题考查了简单几何体的三视图、轴对称及中心对称的定义,解答本题关键是判断出圆锥的三视图.13.(4分)(•随州)我市生态竞争指数全国第四,仅次于澳门、香港和南昌,目前全市现有林地面积57.3万公顷,数据573000用科学记数法表示为 5.73×105.考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将573000用科学记数法表示为5.73×105.故答案为:5.73×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(4分)(•随州)高为4,底面半径为3的圆锥,它的侧面展开图的面积是15π.考点:圆锥的计算;勾股定理分析:利用勾股定理易得圆锥的母线长,圆锥的侧面积=π×底面半径×母线长.解答:解:∵圆锥的底面半径是3,高是4,∴圆锥的母线长为5,∴这个圆锥的侧面展开图的面积是π×3×5=15π.故答案为:15π.点评:本题考查了圆锥的计算;掌握圆锥的侧面积的计算公式是解决本题的关键.15.(4分)(•随州)甲乙两地相距50千米.星期天上午8:00小聪同学在父亲陪同下骑山地车从甲地前往乙地.2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程y(千米)与小聪行驶的时间x(小时)之间的函数关系如图所示,小明父亲出发或小时时,行进中的两车相距8千米.考点:一次函数的应用专题:分类讨论.分析:根据图象求出小明和父亲的速度,然后设小明的父亲出发x小时两车相距8千米,再分相遇前和相遇后两种情况列出方程求解即可.解答:解:由图可知,小明的速度为:36÷3=12千米/时,父亲的速度为:36÷(3﹣2)=36千米/时,设小明的父亲出发x小时两车相距8千米,则小明出发的时间为(x+2)小时,根据题意得,12(x+2)﹣36x=8或36x﹣12(x+2)=8,解得x=或x=,所以,出发或小时时,行进中的两车相距8千米.故答案为:或.点评:本题考查了一次函数的应用,主要利用了路程、速度、时间三者之间的关系,从图中准确获取信息求出两人的速度是解题的关键,易错点在于要分两种情况求解.16.(4分)(•随州)如图是一组密码的一部分.为了,许多情况下可采用不同的密码,请你运用所学知识找到破译的“钥匙”.目前,已破译出“今年考试”的真实意思是“努力发挥”.若“今”所处的位置为(x,y),你找到的密码钥匙是对应文字横坐标加1,纵坐标加2,破译“正做数学”的真实意思是祝你成功.考点:推理与论证分析:根据坐标中文字位置得出“今”所处的位置为(x,y),则对应文字位置是:(x+1,y+2),进而得出密码钥匙,即可得出“正做数学”的真实意思.解答:解:∵已破译出“今年考试”的真实意思是“努力发挥”.“今”所处的位置为(x,y),则对应文字位置是:(x+1,y+2),∴找到的密码钥匙是:对应文字横坐标加1,纵坐标加2,∴“正”的位置为(4,2)对应字母位置是(5,4)即为“祝”,“做”的位置为(5,6)对应字母位置是(6,8)即为“你”,“数”的位置为(7,2)对应字母位置是(8,4)即为“成”,“学”的位置为(2,4)对应字母位置是(3,6)即为“功”,∴“正做数学”的真实意思是:祝你成功.故答案为:对应文字横坐标加1,纵坐标加2,祝你成功.点评:此题主要考查了推理论证,根据已知得出“今”对应文字位置是:(x+1,y+2)进而得出密码钥匙是解题关键.三、解答题(共9小题,共86分)17.(8分)(•随州)计算:|﹣2|+(3﹣π)0﹣2﹣1+.考点:实数的运算;零指数幂;负整数指数幂专题:计算题.分析:分别根据绝对值的性质、0指数幂及负整数指数幂的运算法则计算出各数,再根据实数混合运算的法则进行计算即可.解答:解:原式=2+1﹣﹣3=﹣.点评:本题考查的是实数的运算,熟知实数混合运算的法则是解答此题的关键.18.(8分)(•随州)先化简,再求值:÷,其中x=2.考点:分式的化简求值分析:原式利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,将x的值代入计算即可2求出值.解答:解:原式=•=,当x=2时,原式=.点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.19.(8分)(•随州)如图,点F、B、E、C在同一直线上,并且BF=CE,∠ABC=∠DEF.能否由上面的已知条件证明△ABC≌△DEF?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使△ABC≌△DEF,并给出证明.提供的三个条件是:①AB=DE;②AC=DF;③AC∥DF.考点:全等三角形的判定.分析:由BF=CE可得EF=CB,再有条件∠ABC=∠DEF不能证明△ABC≌△DEF;可以加上条件①AB=DE,利用SAS定理可以判定△ABC≌△DEF.解答:解:不能;选择条件:①AB=DE;∵BF=CE,∴BF+BE=CE+BE,即EF=CB,在△ABC和△DFE中,∴△ABC≌△DFE(SAS).点评:此题主要考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.20.(9分)(•随州)为迎接癸巳年炎帝故里寻根节,某校开展了主题为“炎帝文化知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,整理调查数据制成了如图不完整的表格和扇形统计图.等级非常了解比较了解基本了解不太了解频数50 m 40 20根据以上提供的信息解答下列问题:(1)本次问卷调查共抽取的学生数为200人,表中m的值为90.(2)计算等级为“非常了解”的频数在扇形统计图中对应扇形的圆心角的度数,并补全扇形统计图.(3)若该校有学生1500人,请根据调查结果估计这些学生中“不太了解”炎帝文化知识的人数约为多少?考点:扇形统计图;用样本估计总体;频数(率)分布表.分析:(1)利用基本了解的人数÷基本了解的人数所占百分比即可算出本次问卷调查共抽取的学生数;m=抽查的学生总数×比较了解的学生所占百分比;(2)等级为“非常了解”的频数在扇形统计图中对应扇形的圆心角的度数=360°×所占百分比,再补图即可;(3)利用样本估计总体的方法,用1500人×调查的学生中“不太了解”的学生所占百分比.解答:解:(1)40÷20%=200(人),200×45%=90(人),故答案为:200;90.(2)×100%×360°=90°,如图所示:(3)1500×(1﹣25%﹣20%﹣45%)=150(人),答:这些学生中“不太了解”炎帝文化知识的人数约150人.点评:此题主要考查了扇形统计图,以及样本估计总体,关键是正确从扇形统计图和表中得到所用信息.21.(9分)(•随州)为了维护海洋权益,新组建的国家加强了海洋巡逻力度.如图,一艘海监船位于灯塔P的南偏东45°方向,距离灯塔100海里的A处,沿正北方向航行一段时间后,到达位于灯塔P的北偏东30°方向上的B处.(1)在这段时间内,海监船与灯塔P的最近距离是多少?(结果用根号表示)(2)在这段时间内,海监船航行了多少海里?(参数数据:, 1.732,2.449.结果精确到0.1海里)考点:解直角三角形的应用-方向角问题分析:(1)过点P作PC⊥AB于C点,则线段PC的长度即为海监船与灯塔P的最近距离.解等腰直角三角形APC,即可求出PC的长度;(2)海监船航行的路程即为AB的长度.先解Rt△PCB,求出BC的长,再由(1)得出AC=PC,则AB=AC+BC.解答:解:(1)过点P作PC⊥AB于C点,则线段PC的长度即为海监船与灯塔P的最近距离.由题意,得∠APC=90°﹣45°=45°,∠B=30°,AP=100海里.在Rt△APC中,∵∠ACP=90°,∠APC=45°,∴PC=AC=AP=50海里.答:在这段时间内,海监船与灯塔P的最近距离是50海里.(2)在Rt△PCB中,∵∠BCP=90°,∠B=30°,PC=50海里,BC=PC=50海里,∴AB=AC+BC=50+50=50(+)≈50(1.414+2.449)≈193.2(海里),答:轮船航行的距离AB约为193.2海里.点评:此题主要考查了解直角三角形的应用﹣方向角问题,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.22.(9分)(•随州)在一个不透明的布袋中有2个红色和3个黑色小球,它们只有颜色上的区别.(1)从布袋中随机摸出一个小球,求摸出红色小球的概率.(2)现从袋中取出1个红色和1个黑色小球,放入另一个不透明的空布袋中,甲乙两人约定做如下游戏:两人分别从这两个布袋中各随机摸出一个小球,若颜色相同,则甲获胜;若颜色不同,则乙获胜.请用树状图(或列表)的方法表示游戏所有可能结果,并用概率知识说明这个游戏是否公平.考点:游戏公平性;概率公式;列表法与树状图法分析:(1)根据概率公式直接求出摸出红色小球的概率即可;(2)利用树状图法表示出所有可能,进而得出甲、乙获胜的概率即可.解答:解:(1)∵布袋中有2个红色和3个黑色小球,∴摸出红色小球的概率为:=;(2)∵现从袋中取出1个红色和1个黑色小球,放入另一个不透明的空布袋中,∴画树状图得出:∵两小球颜色相同的情况有3种,∴甲获胜的概率为:=,∴乙获胜的概率为:=,∴这个游戏是公平的.点评:此题主要考查了游戏公平性以及树状图法求概率,根据已知画出树状图是解题关键.23.(10分)(•随州)如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平行线交⊙O与点D,过点D的切线分别交AB、AC的延长线与点E、F.(1)求证:AF⊥EF.(2)小强同学通过探究发现:AF+CF=AB,请你帮忙小强同学证明这一结论.考点:切线的性质;全等三角形的判定与性质.分析:(1)首先连接OD,由EF是⊙O的切线,可得OD⊥EF,由∠BAC的平行线交⊙O 与点D,易证得OD⊥BC,即可得BC∥EF,由AB为直径,根据直径所对的圆周角是直角,可得AC⊥BC,继而证得AF⊥EF.(2)首先连接BD并延长,交AF的延长线于点H,连接CD,易证得△ADH≌△ADB,△CDF≌△HDF,继而证得AF+CF=AB.解答:证明:(1)∵EF是⊙O的切线,∴OD⊥EF,∵AD平分∠BAC,∴∠CAD=∠BAD,∴=,∴OD⊥BC,∴BC∥EF,∵AB为直径,∴∠ACB=90°,即AC⊥BC,∴AF⊥EF;(2)连接BD并延长,交AF的延长线于点H,连接CD,∵AB是直径,∴∠ADB=90°,即AD⊥BH,∴∠ADB=∠ADH=90°,在△ABD和△ADH中,,∴△ABD≌△AHD(ASA),∴AH=AB,∵EF是切线,∴∠CDF=∠CAD,∠HDF=∠EDB=∠BAD,∴∠EDF=∠HDF,∵DF⊥AF,DF是公共边,∴△CDF≌△HDF(ASA),∴FH=CF,∴AF+CF=AF+FH=AH=AB.即AF+CF=AB,点评:此题考查了切线的性质、弦切角定理、圆周角定理以及全等三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.24.(12分)(•随州)某公司700万元购甲、乙两种产品的生产技术和设备后,进行这两种产品加工.已知生产甲种产品每件还需成本费30元,生产乙种产品每件还需成本费20元.经市场调研发现:甲种产品的销售单价为x(元),年销售量为y(万件),当35≤x<50时,y与x之间的函数关系式为y=20﹣0.2x;当50≤x≤70时,y与x的函数关系式如图所示,乙种产品的销售单价,在25元(含)到45元(含)之间,且年销售量稳定在10万件.物价部门规定这两种产品的销售单价之和为90元.(1)当50≤x≤70时,求出甲种产品的年销售量y(万元)与x(元)之间的函数关系式.(2)若公司第一年的年销售量利润(年销售利润=年销售收入﹣生产成本)为W(万元),那么怎样定价,可使第一年的年销售利润最大?最大年销售利润是多少?(3)第二年公司可重新对产品进行定价,在(2)的条件下,并要求甲种产品的销售单价x(元)在50≤x≤70范围内,该公司希望到第二年年底,两年的总盈利(总盈利=两年的年销售利润之和﹣成本)不低于85万元.请直接写出第二年乙种产品的销售单价m(元)的范围.考点:二次函数的应用分析:(1)设y与x的函数关系式为y=kx+b(k≠0),然后把点(50,10),(70,8)代入求出k、b的值即可得解;(2)先根据两种产品的销售单价之和为90元,根据乙种产品的定价范围列出不等式组求出x的取值范围是45≤x≤65,然后分45≤<50,50≤x≤65两种情况,根据销售利润等于两种产品的利润之和列出W与x的函数关系式,再利用二次函数的增减性确定出最大值,从而得解;(3)用第一年的最大利润加上第二年的利润,然后根据总盈利不低于85万元列出不等式,整理后求解即可.解答:解:(1)设y与x的函数关系式为y=kx+b(k≠0),∵函数图象经过点(50,10),(70,8),∴,解得,所以,y=﹣0.1x+15;(2)∵乙种产品的销售单价在25元(含)到45元(含)之间,∴,解之得45≤x≤65,①45≤x<50时,W=(x﹣30)(20﹣0.2x)+10(90﹣x﹣20),=﹣0.2x2+16x+100,=﹣0.2(x2﹣80x+1600)+320+100,=﹣0.2(x﹣40)2+420,∵﹣0.2<0,∴x>40时,W随x的增大而减小,∴当x=45时,W有最大值,W最大=﹣0.2(45﹣40)2+420=415万元;②50≤x≤65时,W=(x﹣30)(﹣0.1x+15)+10(90﹣x﹣20),=﹣0.1x2+8x+250,=﹣0.1(x2﹣80x+1600)+160+250,=﹣0.1(x﹣40)2+410,∵﹣0.1<0,∴x>40时,W随x的增大而减小,∴当x=50时,W有最大值,W最大=﹣0.1(50﹣40)2+410=400万元.综上所述,当x=45,即甲、乙两种产品定价均为45元时,第一年的年销售利润最大,最大年销售利润是415万元;(3)根据题意得,W=﹣0.1x2+8x+250+415﹣700=﹣0.1x2+8x﹣35,令W=85,则﹣0.1x2+8x﹣35=85,解得x1=20,x2=60.又由题意知,50≤x≤65,根据函数性质分析,50≤x≤60,即50≤90﹣m≤60,∴30≤m≤40.点评:本题考查了二次函数的性质在实际生活中的应用,最大销售利润的问题常利函数的增减性来解答,本题最大的特点就是要根据x的范围的不同分情况列出不同的函数关系式,其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=时取得.25.(13分)(•随州)在平面直角坐标系xOy中,矩形ABCO的顶点A、C分别在y 轴、x轴正半轴上,点P在AB上,PA=1,AO=2.经过原点的抛物线y=mx2﹣x+n的对称轴是直线x=2.(1)求出该抛物线的解析式.(2)如图1,将一块两直角边足够长的三角板的直角顶点放在P点处,两直角边恰好分别经过点O和C.现在利用图2进行如下探究:①将三角板从图1中的位置开始,绕点P顺时针旋转,两直角边分别交OA、OC于点E、F,当点E和点A重合时停止旋转.请你观察、猜想,在这个过程中,的值是否发生变化?若发生变化,说明理由;若不发生变化,求出的值.②设(1)中的抛物线与x轴的另一个交点为D,顶点为M,在①的旋转过程中,是否存在点F,使△DMF为等腰三角形?若不存在,请说明理由.考点:二次函数综合题.分析:(1)根据①过原点,②对称轴为直线x=2这两个条件确定抛物线的解析式;(2)①如答图1所述,证明Rt△PAE∽Rt△PGF,则有==,的值是定值,不变化;②若△DMF为等腰三角形,可能有三种情形,需要分类讨论,避免漏解.解答:解:(1)∵抛物线y=mx2﹣x+n经过原点,∴n=0.∵对称轴为直线x=2,∴﹣=2,解得m=.∴抛物线的解析式为:y=x2﹣x.(2)①的值不变.理由如下:如答图1所示,过点P作PG⊥x轴于点G,则PG=AO=2.∵PE⊥PF,PA⊥PG,∴∠APE=∠GPF.在Rt△PAE与Rt△PGF中,∵∠APE=∠GPF,∠PAE=∠PGF=90°,∴Rt△PAE∽Rt△PGF.∴==.②存在.抛物线的解析式为:y=x2﹣x,令y=0,即x2﹣x=0,解得:x=0或x=4,∴D(4,0).又y=x2﹣x=(x﹣2)2﹣1,∴顶点M坐标为(2,﹣1).若△DMF为等腰三角形,可能有三种情形:(I)FM=FD.如答图2所示:过点M作MN⊥x轴于点N,则MN=1,ND=2,MD===.设FM=FD=x,则NF=ND﹣FD=2﹣x.在Rt△MNF中,由勾股定理得:NF2+MN2=MF2,即:(2﹣x)2+1=x2,解得:x=,∴FD=,OF=OD﹣FD=4﹣=,∴F(,0);(II)若FD=DM.如答图3所示:此时FD=DM=,∴OF=OD﹣FD=4﹣.∴F(4﹣,0);(III)若FM=MD.由抛物线对称性可知,此时点F与原点O重合.而由题意可知,点E与点A重合后即停止运动,故点F不可能运动到原点O.∴此种情形不存在.综上所述,存在点F(,0)或F(4﹣,0),使△DMF为等腰三角形.点评:本题是二次函数综合题型,难度不大.试题的背景是图形的旋转,需要对旋转的运动过程有清楚的理解;第(3)问主要考查了分类讨论的数学思想,需要考虑全面,避免漏解.。

2023年湖北省随州市数学中考真题

2023年湖北省随州市数学中考真题

随州市2023年初中毕业升学考试数学试题(考试时间120分钟满分120分)注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如雷改动,用橡皮擦干净后,再选涂其他答案标号,答在试卷上无效。

3.非选择题作答:用0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内,答在试卷上无效。

4.考生必须保持答题卡的整洁,考试结束后,请将本试卷和答题卡一并上交。

一、选择题(本大题共10小题,每小题3分,共30分。

每小题给出的四个选项中,只有一个是正确的)1.的绝对值是()A.2023 B.C.D.2.如图,直线,直线l与相交,若图中,则为()A.B.C.D.3.如图是一个放在水平桌面上的圆柱体,该几何体的三视图中完全相同的是()A.主视图和俯视图B.左视图和俯视图C.主视图和左视图D.三个视图均相同4.某班在开展劳动教育课程调查中发现,第一小组6名同学每周做家务的天数依次为3,7,5,6,5,4(单位:天),则这组数据的众数和中位数分别为()A.5和5 B.5和4 C.5和6 D.6和55.甲、乙两个工程队共同修一条道路,其中甲工程队需要修9千米,乙工程队需要修12千米.已知乙工程队每个月比甲工程队多修1千米,最终用的时间比甲工程队少半个月.若设甲工程队每个月修x千米,则可列出方程为()A.B.C.D.6.甲、乙两车沿同一路线从A城出发前往B城,在整个行程中,汽车离开A城的距离y与时刻t的对应关系如图所示,关于下列结论:①A,B两城相距;②甲车的平均速度是,乙车的平均速度是;③乙车先出发,先到达B城;④甲车在追上乙车.正确的有()A.①②B.①③C.②④D.①④7.如图,在中,分别以B,D为圆心,大于的长为半径画弧,两弧相交于点M,N,过M,N两点作直线交BD于点O,交AD,BC于点E,F,下列结论不正确的是()A.B.C.D.8.已知蓄电池的电压为定值,使用某蓄电池时,电流I(单位:A)与电阻R(单位:)是反比例函数关系,它的图象如图所示,则当电阻为时,电流为()A.B.C.D.9.设有边长分别为a和b()的A类和B类正方形纸片、长为a宽为b的C类矩形纸片若干张.如图所示要拼一个边长为的正方形,需要1张A类纸片、1张B类纸片和2张C类纸片.若要拼一个长为、宽为的矩形,则需要C类纸片的张数为()A.6 B.7 C.8 D.910.如图,已知开口向下的抛物线与x轴交于点,对称轴为直线.则下列结论正确的有()①;②;③方程的两个根为;④抛物线上有两点和,若且,则.A.1个B.2个C.3个D.4个二、填空题(本大题共有6小题,每小题3分,共18分。

随州市中考数学试题及答案

随州市中考数学试题及答案

随州市中考数学试题及答案第一部分选择题(共15小题,每小题4分,共60分)1. 计算:12 × 5 + 8 × 3 = 60 + 24 = 84。

2. A 杯中有 200 毫升水,B 杯中有 300 毫升水,C 杯中有 500 毫升水。

求三个杯中水的总容量,即 200 + 300 + 500 = 1000 毫升。

3. 解方程 7x + 8 = 22:首先,将方程两边减去 8:7x = 14;然后,将方程两边除以 7:x = 2。

4. 以下是一个无根号化的例子:√15 = √(3 × 5) = √3 × √5 = √3 × √5。

5. 把 92 分解质因数得到:92 = 2 × 2 × 23。

6. 根据乘法分配律,可以得到以下等式:27 × 15 + 27 × 9 = 27 × (15 + 9) = 27 × 24。

7. 使用倒数的概念计算:4/5 + 3/10 = (8/10) + (3/10) = 11/10。

8. 首先要找到一个数 9 的倍数且最接近 100 的数,这个数是 90。

然后将这个数 90 除以 9,得到商 10。

所以答案是 10。

9. 使用十进制除法计算:0.6 ÷ 0.2 = 3。

10. 首先,计算等式两边:左边:(7x - 3)² = 49x² - 42x + 9;右边:3x² + 5x - 10。

将上面两个等式相等,得到 49x² - 42x + 9 = 3x² + 5x - 10;整理得 46x² - 47x + 19 = 0。

11. 80 除以 90 的百分比为:80 ÷ 90 × 100% = 88.89%。

12. 计算:5² + 6² + 7² = 25 + 36 + 49 = 110。

2022年湖北省随州市中考数学试题(解析版)

2022年湖北省随州市中考数学试题(解析版)

2022年湖北省随州市中考数学试卷一、选择题〔本大题共10小题,每题3分,共30分.每题给出的四个选项中,只有一个是正确的〕1.﹣的相反数是〔〕A.﹣B.C.D.﹣【考点】实数的性质.【分析】利用相反数的定义计算即可得到结果.【解答】解:﹣的相反数是,应选C2.随着我国经济快速开展,轿车进入百姓家庭,小明同学在街头观察出以下四种汽车标志,其中既是中心对称图形,又是轴对称图形的是〔〕A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、不是轴对称图形,是中心对称图形.应选C.3.以下运算正确的选项是〔〕A.a2•a3=a6B.a5÷a2=a3C.〔﹣3a〕3=﹣9a3D.2x2+3x2=5x4【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】直接根据同底数幂的乘除法以及幂的乘方运算法那么计算出各选项结果,进而作出判断.【解答】解:A、a2•a3=a5,此选项错误;B、a5÷a2=a3,此选项正确;C、〔﹣3a〕3=﹣27a3,此选项错误;D、2x2+3x2=5x2,此选项错误;应选B.4.如图,直线a∥b,直线c分别与a、b相交于A、B两点,AC⊥AB于点A,交直线b于点C.∠1=42°,那么∠2的度数是〔〕A.38° B.42° C.48° D.58°【考点】平行线的性质.【分析】先根据平行线的性质求出∠ACB的度数,再根据垂直的定义和余角的性质求出∠2的度数.【解答】解:∵直线a∥b,∴∠1=∠BCA,∵∠1=42°,∴∠BCA=42°,∵AC⊥AB,∴∠2+∠BCA=90°,∴∠2=48°,应选C.5.不等式组的解集表示在数轴上,正确的选项是〔〕A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心〞的原那么分析选项可得答案.【解答】解:解不等式x﹣1≤7﹣x,得:x≤4,解不等式5x﹣2>3〔x+1〕,得:x>,∴不等式组的解集为:<x≤4,应选:A.6.为了响应学校“书香校园〞建设,阳光班的同学们积极捐书,其中宏志学习小组的同学捐书册数分别是:5,7,x,3,4,6.他们平均每人捐5本,那么这组数据的众数、中位数和方差分别是〔〕A.5,5,B.5,5,10 C.6,5.5,D.5,5,【考点】方差;中位数;众数.【分析】根据平均数,可得x的值,根据众数的定义、中位数的定义、方差的定义,可得答案.【解答】解:由5,7,x,3,4,6.他们平均每人捐5本,得x=5.众数是5,中位数是5,方差=,应选:D.7.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,假设S△DOE:S△COA=1:25,那么S△BDE与S△CDE的比是〔〕A.1:3 B.1:4 C.1:5 D.1:25【考点】相似三角形的判定与性质.【分析】根据相似三角形的判定定理得到△DOE∽△COA,根据相似三角形的性质定理得到=,==,结合图形得到=,得到答案.【解答】解:∵DE∥AC,∴△DOE∽△COA,又S△DOE:S△COA=1:25,∴=,∵DE∥AC,∴==,∴=,∴S△BDE与S△CDE的比是1:4,应选:B.8.随州市尚市“桃花节〞欣赏人数逐年增加,据有关部门统计,2022年约为20万人次,2022年约为28.8万人次,设欣赏人数年均增长率为x,那么以下方程中正确的选项是〔〕A.20〔1+2x〕=28.8 B.28.8〔1+x〕2=20C.20〔1+x〕2=28.8 D.20+20〔1+x〕+20〔1+x〕2=28.8【考点】由实际问题抽象出一元二次方程.【分析】设这两年欣赏人数年均增长率为x,根据“2022年约为20万人次,2022年约为28.8万人次〞,可得出方程.【解答】解:设欣赏人数年均增长率为x,那么依题意得20〔1+x〕2=28.8,应选C.9.如图是某工件的三视图,那么此工件的外表积为〔〕A.15πcm2B.51πcm2C.66πcm2D.24πcm2【考点】由三视图判断几何体.【分析】根据三视图,可得几何体是圆锥,根据勾股定理,可得圆锥的母线长,根据扇形的面积公式,可得圆锥的侧面积,根据圆的面积公式,可得圆锥的底面积,可得答案.【解答】解:由三视图,得,OB=3cm,0A=4cm,由勾股定理,得AB==5cm,圆锥的侧面积×6π×5=15πcm2,圆锥的底面积π×〔〕2=9πcm,圆锥的外表积15π+9π=24π〔cm2〕,应选:D.10.二次函数y=ax2+bx+c〔a≠0〕的局部图象如下列图,图象过点〔﹣1,0〕,对称轴为直线x=2,以下结论:〔1〕4a+b=0;〔2〕9a+c>3b;〔3〕8a+7b+2c>0;〔4〕假设点A〔﹣3,y1〕、点B〔﹣,y2〕、点C〔,y3〕在该函数图象上,那么y1<y3<y2;〔5〕假设方程a〔x+1〕〔x﹣5〕=﹣3的两根为x1和x2,且x1<x2,那么x1<﹣1<5<x2.其中正确的结论有〔〕A.2个B.3个C.4个D.5个【考点】二次函数图象与系数的关系.【分析】〔1〕正确.根据对称轴公式计算即可.〔2〕错误,利用x=﹣3时,y<0,即可判断.〔3〕正确.由图象可知抛物线经过〔﹣1,0〕和〔5,0〕,列出方程组求出a、b即可判断.〔4〕错误.利用函数图象即可判断.〔5〕正确.利用二次函数与二次不等式关系即可解决问题.【解答】解:〔1〕正确.∵﹣=2,∴4a+b=0.故正确.〔2〕错误.∵x=﹣3时,y<0,∴9a﹣3b+c<0,∴9a+c<3b,故〔2〕错误.〔3〕正确.由图象可知抛物线经过〔﹣1,0〕和〔5,0〕,∴解得,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵a<0,∴8a+7b=2c>0,故〔3〕正确.〔4〕错误,∵点A〔﹣3,y1〕、点B〔﹣,y2〕、点C〔,y3〕,∵﹣2=,2﹣〔﹣〕=,∴<∴点C离对称轴的距离近,∴y3>y2,∵a<0,﹣3<﹣<2,∴y1<y2∴y1<y2<y3,故〔4〕错误.〔5〕正确.∵a<0,∴〔x+1〕〔x﹣5〕=﹣3/a>0,即〔x+1〕〔x﹣5〕>0,故x<﹣1或x>5,故〔5〕正确.∴正确的有三个,应选B.二、填空题〔本大题共6个小题,每题3分,共18分〕11.2022年“圣地车都〞﹣﹣随州改装车的总产值为14.966亿元,其中14.966亿元用科学记数法表示为 1.4966×109元.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:14.966亿=1.4966×109.故答案为:1.4966×109.12.等腰三角形的一边长为9,另一边长为方程x2﹣8x+15=0的根,那么该等腰三角形的周长为19或21或23.【考点】解一元二次方程-因式分解法;三角形三边关系;等腰三角形的性质.【分析】求出方程的解,分为两种情况,看看是否符合三角形三边关系定理,求出即可.【解答】解:由方程x2﹣8x+15=0得:〔x﹣3〕〔x﹣5〕=0,∴x﹣3=0或x﹣5=0,解得:x=3或x=5,当等腰三角形的三边长为9、9、3时,其周长为21;当等腰三角形的三边长为9、9、5时,其周长为23;当等腰三角形的三边长为9、3、3时,3+3<9,不符合三角形三边关系定理,舍去;当等腰三角形的三边长为9、5、5时,其周长为19;综上,该等腰三角形的周长为19或21或23,故答案为:19或21或23.13.如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD=BD,连接DM、DN、MN.假设AB=6,那么DN=3.【考点】三角形中位线定理;直角三角形斜边上的中线;平行四边形的判定与性质.【分析】连接CM,根据三角形中位线定理得到NM=CB,MN∥BC,证明四边形DCMN是平行四边形,得到DN=CM,根据直角三角形的性质得到CM=AB=3,等量代换即可.【解答】解:连接CM,∵M、N分别是AB、AC的中点,∴NM=CB,MN∥BC,又CD=BD,∴MN=CD,又MN∥BC,∴四边形DCMN是平行四边形,∴DN=CM,∵∠ACB=90°,M是AB的中点,∴CM=AB=3,∴DN=3,故答案为:3.14.如图,直线y=x+4与双曲线y=〔k≠0〕相交于A〔﹣1,a〕、B两点,在y轴上找一点P,当PA+PB的值最小时,点P的坐标为〔0,〕.【考点】反比例函数与一次函数的交点问题;轴对称-最短路线问题.【分析】根据一次函数和反比例函数的解析式求出点A、B的坐标,然后作出点A关于y轴的对称点C,连接BC,与y轴的交点即为点P,然后求出直线BC的解析式,求出点P的坐标.【解答】解:把点A坐标代入y=x+4得,﹣1+4=a,a=3,即A〔﹣1,3〕,把点A坐标代入双曲线的解析式:3=﹣k,解得:k=﹣3,联立两函数解析式得:,解得:,,即点B坐标为:〔﹣3,1〕,作出点A关于y轴的对称点C,连接BC,与y轴的交点即为点P,使得PA+PB的值最小,那么点C坐标为:〔1,3〕,设直线BC的解析式为:y=ax+b,把B、C的坐标代入得:,解得:,函数解析式为:y=x+,那么与y轴的交点为:〔0,〕.故答案为:〔0,〕.15.如图〔1〕,PT 与⊙O 1相切于点T ,PAB 与⊙O 1相交于A 、B 两点,可证明△PTA ∽△PBT ,从而有PT 2=PA•PB .请应用以上结论解决以下问题:如图〔2〕,PAB 、PCD 分别与⊙O 2相交于A 、B 、C 、D 四点,PA=2,PB=7,PC=3,那么CD=.【考点】相似三角形的判定与性质;切线的性质.【分析】如图2中,过点P 作⊙O 的切线PT ,切点是T ,根据PT 2=PA•PB=PC•PD ,求出PD 即可解决问题.【解答】解:如图2中,过点P 作⊙O 的切线PT ,切点是T .∵PT 2=PA•PB=PC•PD ,∵PA=2,PB=7,PC=3,∴2×7=3×PD ,∴PD=∴CD=PD ﹣PC=﹣3=. 16.如图,边长为1的正方形ABCD 的对角线AC 、BD 相交于点O .有直角∠MPN ,使直角顶点P 与点O 重合,直角边PM 、PN 分别与OA 、OB 重合,然后逆时针旋转∠MPN ,旋转角为θ〔0°<θ<90°〕,PM 、PN 分别交AB 、BC 于E 、F 两点,连接EF 交OB 于点G ,那么以下结论中正确的选项是 〔1〕,〔2〕,〔3〕,〔5〕 .〔1〕EF=OE ;〔2〕S 四边形OEBF :S 正方形ABCD =1:4;〔3〕BE+BF=OA ;〔4〕在旋转过程中,当△BEF 与△COF 的面积之和最大时,AE=;〔5〕OG•BD=AE 2+CF 2.【考点】四边形综合题.【分析】〔1〕由四边形ABCD 是正方形,直角∠MPN ,易证得△BOE ≌△COF 〔ASA 〕,那么可证得结论; 〔2〕由〔1〕易证得S 四边形OEBF =S △BOC =S 正方形ABCD ,那么可证得结论; 〔3〕由BE=CF ,可得BE+BF=BC ,然后由等腰直角三角形的性质,证得BE+BF=OA ;〔4〕首先设AE=x ,那么BE=CF=1﹣x ,BF=x ,继而表示出△BEF 与△COF 的面积之和,然后利用二次函数的最值问题,求得答案;〔5〕易证得△OEG ∽△OBE ,然后由相似三角形的对应边成比例,证得OG•OB=OE 2,再利用OB 与BD 的关系,OE 与EF 的关系,即可证得结论.【解答】解:〔1〕∵四边形ABCD 是正方形,∴OB=OC ,∠OBE=∠OCF=45°,∠BOC=90°,∴∠BOF+∠COF=90°,∵∠EOF=90°,∴∠BOF+∠COE=90°,∴∠BOE=∠COF ,在△BOE 和△COF 中,,∴△BOE ≌△COF 〔ASA 〕,∴OE=OF ,BE=CF ,∴EF=OE ;故正确;〔2〕∵S 四边形OEBF =S △BOE +S △BOE =S △BOE +S △COF =S △BOC =S 正方形ABCD ,∴S 四边形OEBF :S 正方形ABCD =1:4;故正确;〔3〕∴BE+BF=BF+CF=BC=OA ;故正确;〔4〕过点O 作OH ⊥BC ,∵BC=1,∴OH=BC=,设AE=x,那么BE=CF=1﹣x,BF=x,∴S△BEF+S△COF=BE•BF+CF•OH=x〔1﹣x〕+〔1﹣x〕×=﹣〔x﹣〕2+,∵a=﹣<0,∴当x=时,S△BEF+S△COF最大;即在旋转过程中,当△BEF与△COF的面积之和最大时,AE=;故错误;〔5〕∵∠EOG=∠BOE,∠OEG=∠OBE=45°,∴△OEG∽△OBE,∴OE:OB=OG:OE,∴OG•OB=OE2,∵OB=BD,OE=EF,∴OG•BD=EF2,∵在△BEF中,EF2=BE2+BF2,∴EF2=AE2+CF2,∴OG•BD=AE2+CF2.故正确.故答案为:〔1〕,〔2〕,〔3〕,〔5〕.三、解答题〔此题共9小题,共72分,解容许写出必要演算步骤,文字说明或证明过程〕17.计算:﹣|﹣1|+•cos30°﹣〔﹣〕﹣2+〔π﹣3.14〕0.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】此题涉及绝对值、二次根式化简、特殊角的三角函数值、负指数幂、零指数幂5个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法那么求得计算结果.【解答】解:原式=﹣1+2×﹣4+1=﹣1+3﹣4+1=﹣1.18.先化简,再求值:〔﹣x+1〕÷,其中x=﹣2.【考点】分式的化简求值.【分析】首先将括号里面的通分相减,然后将除法转化为乘法,化简后代入x的值即可求解.【解答】解:原式=[﹣]•=•=,当x=﹣2时,原式===2.19.某校学生利用双休时间去距学校10km的炎帝故里参观,一局部学生骑自行车先走,过了20min后,其余学生乘汽车沿相同路线出发,结果他们同时到达.汽车的速度是骑车学生速度的2倍,求骑车学生的速度和汽车的速度.【考点】分式方程的应用.【分析】求速度,路程,根据时间来列等量关系.关键描述语为:“一局部学生骑自行车先走,过了20min后,其余学生乘汽车沿相同路线出发,结果他们同时到达〞,根据等量关系列出方程.【解答】解:设骑车学生的速度为x千米/小时,汽车的速度为2x千米/小时,可得:,解得:x=15,经检验x=15是原方程的解,2x=2×15=30,答:骑车学生的速度和汽车的速度分别是每小时15km,30km.20.国务院办公厅2022年3月16日发布了中国足球改革的总体方案,这是中国足球历史上的重大改革.为了进一步普及足球知识,传播足球文化,我市举行了“足球进校园〞知识竞赛活动,为了解足球知识的普及情况,随机抽取了局部获奖情况进行整理,得到以下不完整的统计图表:获奖等次频数频率一等奖10 0.05二等奖200.10三等奖30 b优胜奖 a 0.30鼓励奖80 0.40请根据所给信息,解答以下问题:〔1〕a=60,b=0.15,且补全频数分布直方图;〔2〕假设用扇形统计图来描述获奖分布情况,问获得优胜奖对应的扇形圆心角的度数是多少〔3〕在这次竞赛中,甲、乙、丙、丁四位同学都获得一等奖,假设从这四位同学中随机选取两位同学代表我市参加上一级竞赛,请用树状图或列表的方法,计算恰好选中甲、乙二人的概率.【考点】列表法与树状图法;频数〔率〕分布表;频数〔率〕分布直方图;扇形统计图.【分析】〔1〕根据公式频率=频数÷样本总数,求得样本总数,再根据公式得出a,b的值即可;〔2〕根据公式优胜奖对应的扇形圆心角的度数=优胜奖的频率×360°计算即可;〔3〕画树状图或列表将所有等可能的结果列举出来,利用概率公式求解即可.【解答】解:〔1〕样本总数为10÷0.05=200人,a=200﹣10﹣20﹣30﹣80=60人,b=30÷200=0.15,故答案为200,0.15;〔2〕优胜奖所在扇形的圆心角为0.30×360°=108°;〔2〕列表:甲乙丙丁分别用ABCD表示,A B C DA AB AC ADB BA BC BDC CA CB CDD DA DB DC∵共有12种等可能的结果,恰好选中A、B的有2种,画树状图如下:∴P〔选中A、B〕==.21.某班数学兴趣小组利用数学活动课时间测量位于烈山山顶的炎帝雕像高度,烈山坡面与水平面的夹角为30°,山高857.5尺,组员从山脚D处沿山坡向着雕像方向前进1620尺到达E点,在点E处测得雕像顶端A的仰角为60°,求雕像AB的高度.【考点】解直角三角形的应用-仰角俯角问题.【分析】构造直角三角形,利用锐角三角函数,进行简单计算即可.【解答】解:如图,过点E作EF⊥AC,EG⊥CD,在Rt△DEG中,∵DE=1620,∠D=30°,∴EG=DEsin∠D=1620×=810,∵BC=857.5,CF=EG,∴BF=BC﹣CF=47.5,在Rt△BEF中,tan∠BEF=,∴EF=BF,在Rt△AEF中,∠AEF=60°,设AB=x,∵tan∠AEF=,∴AF=EF×tan∠AEF,∴x+47.5=3×47.5,∴x=95,答:雕像AB的高度为95尺.22.如图,AB是⊙O的弦,点C为半径OA的中点,过点C作CD⊥OA交弦AB于点E,连接BD,且DE=DB.〔1〕判断BD与⊙O的位置关系,并说明理由;〔2〕假设CD=15,BE=10,tanA=,求⊙O的直径.【考点】直线与圆的位置关系;垂径定理;相似三角形的判定与性质.【分析】〔1〕连接OB,由圆的半径相等和条件证明∠OBD=90°,即可证明BD是⊙O的切线;〔2〕过点D作DG⊥BE于G,根据等腰三角形的性质得到EG=BE=5,由两角相等的三角形相似,△ACE∽△DGE,利用相似三角形对应角相等得到sin∠EDG=sinA=,在Rt△EDG中,利用勾股定理求出DG的长,根据三角形相似得到比例式,代入数据即可得到结果.【解答】〔1〕证明:连接OB,∵OB=OA,DE=DB,∴∠A=∠OBA,∠DEB=∠ABD,又∵CD⊥OA,∴∠A+∠AEC=∠A+∠DEB=90°,∴∠OBA+∠ABD=90°,∴OB⊥BD,∴BD是⊙O的切线;〔2〕如图,过点D作DG⊥BE于G,∵DE=DB,∴EG=BE=5,∵∠ACE=∠DGE=90°,∠AEC=∠GED,∴∠GDE=∠A,∴△ACE∽△DGE,∴sin∠EDG=sinA==,即CE=13,在Rt△ECG中,∵DG==12,∵CD=15,DE=13,∴DE=2,∵△ACE∽△DGE,∴=,∴AC=•DG=,∴⊙O的直径2OA=4AD=.23.九年级〔3〕班数学兴趣小组经过市场调查整理出某种商品在第x天〔1≤x≤90,且x为整数〕的售价与销售量的相关信息如下.商品的进价为30元/件,设该商品的售价为y〔单位:元/件〕,每天的销售量为p〔单位:件〕,每天的销售利润为w〔单位:元〕.时间x〔天〕 1 30 60 90每天销售量p〔件〕198 140 80 20〔1〕求出w与x的函数关系式;〔2〕问销售该商品第几天时,当天的销售利润最大并求出最大利润;〔3〕该商品在销售过程中,共有多少天每天的销售利润不低于5600元请直接写出结果.【考点】二次函数的应用;一元一次不等式的应用.【分析】〔1〕当0≤x≤50时,设商品的售价y与时间x的函数关系式为y=kx+b,由点的坐标利用待定系数法即可求出此时y关于x的函数关系式,根据图形可得出当50<x≤90时,y=90.再结合给定表格,设每天的销售量p与时间x的函数关系式为p=mx+n,套入数据利用待定系数法即可求出p关于x的函数关系式,根据销售利润=单件利润×销售数量即可得出w关于x的函数关系式;〔2〕根据w关于x的函数关系式,分段考虑其最值问题.当0≤x≤50时,结合二次函数的性质即可求出在此范围内w的最大值;当50<x≤90时,根据一次函数的性质即可求出在此范围内w的最大值,两个最大值作比较即可得出结论;〔3〕令w≥5600,可得出关于x的一元二次不等式和一元一次不等式,解不等式即可得出x的取值范围,由此即可得出结论.【解答】解:〔1〕当0≤x≤50时,设商品的售价y与时间x的函数关系式为y=kx+b〔k、b为常数且k≠0〕,∵y=kx+b经过点〔0,40〕、〔50,90〕,∴,解得:,∴售价y与时间x的函数关系式为y=x+40;当50<x≤90时,y=90.∴售价y与时间x的函数关系式为y=.由书记可知每天的销售量p与时间x成一次函数关系,设每天的销售量p与时间x的函数关系式为p=mx+n〔m、n为常数,且m≠0〕,∵p=mx+n过点〔60,80〕、〔30,140〕,∴,解得:,∴p=﹣2x+200〔0≤x≤90,且x为整数〕,当0≤x≤50时,w=〔y﹣30〕•p=〔x+40﹣30〕〔﹣2x+200〕=﹣2x2+180x+2000;当50<x≤90时,w=〔90﹣30〕〔﹣2x+200〕=﹣120x+12000.综上所示,每天的销售利润w与时间x的函数关系式是w=.〔2〕当0≤x≤50时,w=﹣2x2+180x+2000=﹣2〔x﹣45〕2+6050,∵a=﹣2<0且0≤x≤50,∴当x=45时,w取最大值,最大值为6050元.当50<x≤90时,w=﹣120x+12000,∵k=﹣120<0,w随x增大而减小,∴当x=50时,w取最大值,最大值为6000元.∵6050>6000,∴当x=45时,w最大,最大值为6050元.即销售第45天时,当天获得的销售利润最大,最大利润是6050元.〔3〕当0≤x≤50时,令w=﹣2x2+180x+2000≥5600,即﹣2x2+180x﹣3600≥0,解得:30≤x≤50,50﹣30+1=21〔天〕;当50<x≤90时,令w=﹣120x+12000≥5600,即﹣120x+6400≥0,解得:50<x≤53,∵x为整数,∴50<x≤53,53﹣50=3〔天〕.综上可知:21+3=24〔天〕,故该商品在销售过程中,共有24天每天的销售利润不低于5600元.【特例探究】〔1〕如图1,当tan∠PAB=1,c=4时,a=4,b=4;如图2,当∠PAB=30°,c=2时,a=,b=;【归纳证明】〔2〕请你观察〔1〕中的计算结果,猜想a2、b2、c2三者之间的关系,用等式表示出来,并利用图3证明你的结论.【拓展证明】〔3〕如图4,▱ABCD中,E、F分别是AD、BC的三等分点,且AD=3AE,BC=3BF,连接AF、BE、CE,且BE⊥CE于E,AF与BE相交点G,AD=3,AB=3,求AF的长.【考点】四边形综合题.【分析】〔1〕①首先证明△APB,△PEF都是等腰直角三角形,求出PA、PB、PE、PF,再利用勾股定理即可解决问题.②连接EF,在RT△PAB,RT△PEF中,利用30°性质求出PA、PB、PE、PF,再利用勾股定理即可解决问题.〔2〕结论a2+b2=5c2.设MP=x,NP=y,那么AP=2x,BP=2y,利用勾股定理分别求出a2、b2、c2即可解决问题.〔3〕取AB中点H,连接FH并且延长交DA的延长线于P点,首先证明△ABF是中垂三角形,利用〔2〕中结论列出方程即可解决问题.【解答】〔1〕解:如图1中,∵CE=AE,CF=BF,∴EF∥AB,EF=AB=2,∵tan∠PAB=1,∴∠PAB=∠PBA=∠PEF=∠PFE=45°,∴PF=PE=2,PB=PA=4,∴AE=BF==2.∴b=AC=2AE=4,a=BC=4.故答案为4,4.如图2中,连接EF,,∵CE=AE,CF=BF,∴EF∥AB,EF=AB=1,∵∠PAB=30°,∴PB=1,PA=,在RT△EFP中,∵∠EFP=∠PAB=30°,∴PE=,PF=,∴AE==,BF==,∴a=BC=2BF=,b=AC=2AE=,故答案分别为,.〔2〕结论a2+b2=5c2.证明:如图3中,连接EF.∵AF、BE是中线,∴EF∥AB,EF=AB,∴△FPE∽△APB,∴==,设FP=x,EP=y,那么AP=2x,BP=2y,∴a2=BC2=4BF2=4〔FP2+BP2〕=4x2+16y2,b2=AC2=4AE2=4〔PE2+AP2〕=4y2+16x2,c2=AB2=AP2+BP2=4x2+4y2,∴a2+b2=20x2+20y2=5〔4x2+4y2〕=5c2.〔3〕解:如图4中,在△AGE和△FGB中,,∴△AGE≌△FGB,∴BG=FG,取AB中点H,连接FH并且延长交DA的延长线于P点,同理可证△APH≌△BFH,∴AP=BF,PE=CF=2BF,即PE∥CF,PE=CF,∴四边形CEPF是平行四边形,∴FP∥CE,∵BE⊥CE,∴FP⊥BE,即FH⊥BG,∴△ABF是中垂三角形,由〔2〕可知AB2+AF2=5BF2,∵AB=3,BF=AD=,∴9+AF2=5×〔〕2,∴AF=4.25.抛物线y=a〔x+3〕〔x﹣1〕〔a≠0〕,与x轴从左至右依次相交于A、B两点,与y轴相交于点C,经过点A的直线y=﹣x+b与抛物线的另一个交点为D.〔1〕假设点D的横坐标为2,求抛物线的函数解析式;〔2〕假设在第三象限内的抛物线上有点P,使得以A、B、P为顶点的三角形与△ABC相似,求点P的坐标;〔3〕在〔1〕的条件下,设点E是线段AD上的一点〔不含端点〕,连接BE.一动点Q从点B出发,沿线段BE以每秒1个单位的速度运动到点E,再沿线段ED以每秒个单位的速度运动到点D后停止,问当点E的坐标是多少时,点Q在整个运动过程中所用时间最少【考点】二次函数综合题.【分析】〔1〕根据二次函数的交点式确定点A、B的坐标,求出直线的解析式,求出点D的坐标,求出抛物线的解析式;〔2〕作PH⊥x轴于H,设点P的坐标为〔m,n〕,分△BPA∽△ABC和△PBA∽△ABC,根据相似三角形的性质计算即可;〔3〕作DM∥x轴交抛物线于M,作DN⊥x轴于N,作EF⊥DM于F,根据正切的定义求出Q的运动时间t=BE+EF 时,t最小即可.【解答】解:〔1〕∵y=a〔x+3〕〔x﹣1〕,∴点A的坐标为〔﹣3,0〕、点B两的坐标为〔1,0〕,∵直线y=﹣x+b经过点A,∴b=﹣3,∴y=﹣x﹣3,当x=2时,y=﹣5,那么点D的坐标为〔2,﹣5〕,∵点D在抛物线上,∴a〔2+3〕〔2﹣1〕=﹣5,解得,a=﹣,那么抛物线的解析式为y=﹣〔x+3〕〔x﹣1〕=﹣x2﹣2x+3;〔2〕作PH⊥x轴于H,设点P的坐标为〔m,n〕,当△BPA∽△ABC时,∠BAC=∠PBA,∴tan∠BAC=tan∠PBA,即=,∴=,即n=﹣a〔m﹣1〕,∴,解得,m1=﹣4,m2=1〔不合题意,舍去〕,当m=﹣4时,n=5a,∵△BPA∽△ABC,∴=,即AB2=AC•PB,∴42=•,解得,a1=〔不合题意,舍去〕,a2=﹣,那么n=5a=﹣,∴点P的坐标为〔﹣4,﹣〕;当△PBA∽△ABC时,∠CBA=∠PBA,∴tan∠CBA=tan∠PBA,即=,∴=,即n=﹣3a〔m﹣1〕,∴,解得,m1=﹣6,m2=1〔不合题意,舍去〕,当m=﹣6时,n=21a,∵△PBA∽△ABC,∴=,即AB2=BC•PB,∴42=•,解得,a1=〔不合题意,舍去〕,a2=﹣,那么点P的坐标为〔﹣6,﹣〕,综上所述,符合条件的点P的坐标为〔﹣4,﹣〕和〔﹣6,﹣〕;〔3〕作DM∥x轴交抛物线于M,作DN⊥x轴于N,作EF⊥DM于F,那么tan∠DAN===,∴∠DAN=60°,∴∠EDF=60°,∴DE==EF,∴Q的运动时间t=+=BE+EF,∴当BE和EF共线时,t最小,那么BE⊥DM,y=﹣4.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖北省随州市中考数学试卷及答案
(考题时间120分钟 满分120分)
一、填空题(共10道题,每小题3分,共30分)
1.2的平方根是_________.
2.分解因式:x 2-x =__________.
3.函数31
x y x -=+的自变量x 的取值范围是__________________. 4.如图,⊙O 中,MAN 的度数为320°,则圆周角∠MAN =____________.
第4题图 第5题图 5.如图,在等腰梯形ABCD 中,AC ⊥BD ,AC =6cm ,则等腰梯形ABCD 的面积为_____cm 2.
6.通信市场竞争日益激烈,某通信公司的手机市话费标准按原标准每分钟降低a 元后,再次下调了20%,现在收费标准是每分钟b 元,则原收费标准每分钟是
_______元.
7.如图是由棱长为1的正方体搭成的积木三视图,则图中棱长为1的正方体的个数是______.
主视图 左视图 俯视图
第7题
8.已知,1,2,_______.b a ab a b a b
=-==+则式子= 9.如图矩形纸片ABCD ,AB =5cm ,BC =10cm ,CD 上有一点E ,ED =2cm ,AD 上有一点P ,PD =3cm ,过P 作PF ⊥AD 交BC 于F ,将纸片折叠,使P 点与E 点重合,折痕与PF 交于Q 点,则PQ 的长是____________cm.
10.将半径为4cm 的半圆围成一个圆锥,在圆锥内接一个圆柱(如图示),当圆柱的侧面的面积最大时,圆柱的底面半径是___________cm.
第9题图 第10题图
二、选择题(A ,B ,C ,D 四个答案中,有且只有一个是正确的,每小题3分,共18分)
11.下列运算正确的是( )
A .1331-÷=
B .2a a =
C .3.14 3.14ππ-=-
D .32621
1()24
a b a b = 12.化简:211(
)(3)31
x x x x +-•---的结果是( ) A .2 B .21x - C .23x - D .41
x x -- 13.在△ABC 中,∠C =90°,sinA =45
,则tanB = ( ) A .43 B .34 C .35 D .45 14.若函数22(2)2x x y x ⎧+=⎨⎩ ≤ (x>2)
,则当函数值y =8时,自变量x 的值是( )
A .±6
B .4
C .±6或4
D .4或-6
15.如图,过边长为1的等边△ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当PA =CQ 时,连PQ 交AC 边于D ,则DE 的长为( )
A .13
B .12
C .23
D .不能确定
第15题图
16.已知四条直线y =kx -3,y =-1,y =3和x =1所围成的四边形的面积是12,则k 的值为( )
A .1或-2
B .2或-1
C .3
D .4
三、解答题(共9道大题,共72分)
17.(6分)解不等式组110334(1)1
x x +⎧-⎪⎨⎪--<⎩≥
18.(6分)如图,一个含45°的三角板HBE的两条直角边与正方形ABCD的两邻边重合,过E点作EF⊥AE 交∠DCE的角平分线于F点,试探究线段AE与EF的数量关系,并说明理由。

第18题图
19.(6分)如图是我市某校八年级学生为玉树灾区捐款情况抽样调查的条形图和扇形统计图.
(1)求该样本的容量;
(2)在扇形统计图中,求该样本中捐款15元的人数所占的圆心角度数;
(3)若该校八年级学生有800人,据此样本求八年级捐款总数.
第19题图
20.(6分)如图,点P为△ABC的内心,延长AP交△ABC的外接圆于D,在AC延长线上有一点E,满足AD2=AB·AE,求证:DE是⊙O的切线.
第20题图
21.(7分)黄冈某地“杜鹃节”期间,某公司70名职工组团前往参观欣赏,旅游景点规定:①门票每人60元,无优惠;②上山游玩可坐景点观光车,观光车有四座和十一座车,四座车每辆60元,十一座车每人10元.公司职工正好坐满每辆车且总费用不超过5000元,问公司租用的四座车和十一座车各多少辆?
22.(6分)甲、乙两同学投掷一枚骰子,用字母p 、q 分别表示两人各投掷一次的点数.
(1)求满足关于x 的方程2
0x px q ++=有实数解的概率.
(2)求(1)中方程有两个相同实数解的概率.
23.(9分)如图,某天然气公司的主输气管道从A 市的东偏北30°方向直线延伸,测绘员在A 处测得要
安装天然气的M 小区在A 市东偏北60°方向,测绘员沿主输气管道步行2000米到达C 处,测得小区M 位于C 的北偏西60°方向,请你在主输气管道上寻找支管道连接点N ,使到该小区铺设的管道最短,并求AN 的长.
第23题图
24.(11分)某同学从家里出发,骑自行车上学时,速度v (米/秒)与时间t (秒)的关系如图a ,A (10,
5),B (130,5),C (135,0).
(1)求该同学骑自行车上学途中的速度v 与时间t 的函数关系式;
(2)计算该同学从家到学校的路程(提示:在OA 和BC 段的运动过程中的平均速度分别等于它们中点时刻的速度,路程=平均速度×时间);
(3)如图b ,直线x =t (0≤t ≤135),与图a 的图象相交于P 、Q ,用字母S 表示图中阴影部分面积,试求S 与t 的函数关系式;
(4)由(2)(3),直接猜出在t 时刻,该同学离开家所超过的路程与此时S 的数量关系.
图a 图b
25.(15分)已知抛物线2(0)y ax bx c a =++≠顶点为C (1,1)且过原点O.过抛物线上一点P (x ,y )向直线54
y =作垂线,垂足为M ,连FM (如图). (1)求字母a ,b ,c 的值; (2)在直线x =1上有一点3
(1,)4F ,求以PM 为底边的等腰三角形PFM 的P 点的坐标,并证明此时△PFM 为
正三角形;
(3)对抛物线上任意一点P,是否总存在一点N(1,t),使PM=PN恒成立,若存在请求出t值,若不存在请说明理由.
参照答案
1.±2 2.x(x+1)(x-1) 3. x≠-1 4.20° 5.18 6.(a+1.25b)7.6
8.-6 9. 3
4
10. 23π11.D 12.B 13.B 14.D 15.B 16.A
17.3
2 2
x
<≤
18.提示:由∠H=∠FCE,AH=CE,∠HAE=∠FCE可证△HAE≌△CEF,从而得到
AE=EF.
19.(1)15÷30%=50(人)(2)30%×360°=108°
(3)400×25+240×15+160×10=15200元
20.证明:连结DC,DO并延长交⊙O于F,连结AF.∵AD2=AB·AE,∠BAD=∠DAE,∴△BAD∽△DAE,∴
∠ADB=∠E. 又∵∠ADB=∠ACB,∴∠ACB=∠E,BC∥DE,∴∠CDE=∠BCD=∠BAD=∠DAC,又∵∠CAF=∠CDF,∴∠FDE=∠CDE+∠CDF=∠DAC+∠CDF=∠DAF=90°,故DE是⊙O的切线
21.解:设四座车租x辆,十一座车租y辆.
则有
4117050
7060601110500011
x y
x y
+=



⨯++⨯≤

解得y,又∵y≤
70
11
,故y=5,6,当y=5时,x=
15
4

故舍去. ∴x=1,y=6.
22.解:两人投掷骰子共有36种等可能情况.(1)其中方程有实数解共有19种情况,故其概率为19
36。

(2)
方程有相等实数解共有2种情况,故其概率为
1 18。

23.解:过M作MN⊥AC,此时MN最小,AN=1500米
24.(1)
1
(010)
2
5(10130)
135(130135) v t t
v t
v t t

=≤<


=≤<

⎪=-≤≤


(2)2.5×10+5×120+2×5=635(米)
(3)221(010)4525(10130)
1(130135)2S t t S t t S t t ⎧=≤<⎪⎪=-≤<⎨⎪⎪=-≤≤⎩
+135t-8475 (4) 相等的关系
25.(1)a =-1,b =2,c =0
(2)过P 作直线x=1的垂线,可求P 的纵坐标为14
,横坐标为1+.此时,MP =MF =PF =1,故△MPF 为正三角形.
(3)不存在.因为当t <
54,x <1时,PM 与PN 不可能相等,同理,当t >54,x >1时,PM 与PN 不可能相等.。

相关文档
最新文档