4.3.2对数的运算

合集下载

4.3.2对数的运算-高中数学人教A版必修一课件

4.3.2对数的运算-高中数学人教A版必修一课件

(1)loga (MN ) loga M loga N
(2)loga
M N
loga M
loga
N
(3)loga M n n loga M (n R)
2.对数换底公式:
loga b
logc b (a logc a
0, 且a 1;b 0;c 0, 且c
1).
本课结束
自我探究
仿照上述推理过程,结合指数幂的运算性质
am an
amn
和 (am )n amn

推导出对数运算的其他性质.
学习新知
对数的运算性质:
如果 a 0 ,且 a 1,M >0 ,N >0 .那么
(1)loga (MN ) loga M loga N
(2)loga
M N
loga M
loga
2
3
巩固练习
用 lg x ,lg y ,lg z 表示 下列各式.
(1)lg(xyz)
(2)lg xy2
z
(3)lg xy3
z
(4)lg
x y2z
lg x lg y lg z
lg x 2 lg y lg z lg x 3lg y 1 lg z
2 1 lg x 2 lg y lg z 2
2( ln 3 ln 2 ln 3 ln 2 ln 3 ln 2 ln 3 ln 2) ln 4 ln 3 ln 8 ln 3 ln 4 ln 9 ln 8 ln 9
2(1 1 1 1) 23 6
4
课堂小结
1.对数的运算性质:如果 a 0 ,且 a 1,M >0 ,N >0 .那么
第四章 指数函数与对数函数
4.3 对数

4.3.2对数的运算课件(人教版)

4.3.2对数的运算课件(人教版)
对数的定义: loga N b ab N (a 0,且a 1, N 0) .
n
指数幂的运算性质: am an amn; am an amn ; am n amn; m an am .
在上一课中,我们知道,对数式可看作指数运算的逆运算, 你能从指数与对数的关系以及指数幂的运算性质, 得出相应的对数的运算性质吗?
N
b
a n an, N b,即loga M n n loga M.
探究二 对数换底公式
当a 0,且a 1,b 0时,若 ax b ①,则 loga b x ②.
在①的两边取以 c(c 0, 且c 1) 为底的对数,则 logc ax logc b , 即 x logc a logc b ,
log5 5
3 4
log8 8

3
3
log553 log53 而 log884 log85 ,log53 log85,
即 a b ; 55 84 ,5 4log58,log58 1.25,b log85 0.8 ,
134 85 ,4 5log138 ,c log138 0.8 , c b , 综上, c b a .故选:A.
第 四 章 指数函数与对数函数
4.3.2 对数的运算
学习目标
通过指数幂的运算性质推导出对数的运算性质. 掌握对数换底公式,能够用换底公式简化问题.
准备好了吗?一起去探索吧!
对数运算性质及其推导过程. 换底公式及其应用.
换底公式的灵活运用.
难点
重点
导入
首先大家先复习对数的定义及指数幂的运算性质.
xy
√A.2
B.1
C. 1
2
D. 3
2
由题意可知 4x 6 , 9y 6 ,即 x log4 6 , y log9 6 ,

数学人教A版必修第一册4.3.2对数的运算课件

数学人教A版必修第一册4.3.2对数的运算课件
(1)4lg 2+3lg
(2)lg
2
2
5 + lg
3
8+lg 5·lg 20+(lg 2)2
24 ×53
解:原式=lg
1
5
1
5-lg
5
=lg 104=4
【跟踪训练】
(2)lg
2
2
5 + lg
3
8+lg 5·lg 20+(lg 2)2
解:原式=2lg 5+2lg 2+lg 5×(1+lg 2)+(lg 2)2
如果a 0, 且a 1, M 0, N 0, 那么
(1)log(
log a M log a N;
a MN)
M
(2)log a
log a M - log a N;
N
n
(3)log a M n log a M .
对数的运算性质把乘积转化为加法,把商转化为减法,
把乘方转化为乘法,降低了运算级别,简化了运算。
的运算性质.你认为可以怎样研究?
我们知道了对数与指数间的
关系,能否利用指数幂运算性
质得出相应的对数运算性质呢?
(1)a r a s a r s (a 0, r , s R);
(2)(a r ) s a rs (a 0, r , s R);
(3)(ab) r a r b r (a 0, r R);
创始,微积分的建立并称为17世纪数学的三大成就。
2024年11月10日星期日11时4分32秒
课程标准:掌握积、商、幂的对数运算性质,理解
其推导过程和成立的条件.
教学重点:对数的运算性质

4.3.2 对数的运算 课件(共13张PPT) 高一数学人教A版(2019)必修第一册

4.3.2 对数的运算 课件(共13张PPT)  高一数学人教A版(2019)必修第一册
3.对数的运算性质(1)可以推广到若干个正因数积的对数,即以下式子成立: loga (M1 M 2 M3 M k ) loga M1 loga M 2 loga M3 loga M k . (标
新课讲授
课堂总结
例1 求下列各式的值. (1)lg5 100;
(2)原式 (lg 2 lg 2)( lg 3 lg 3)
lg 3 lg 9 lg 4 lg 8
(lg 2 lg 2 )( lg 3 lg 3 ) lg 3 2 lg 3 2 lg 2 3lg 2
3lg 2 5lg 3 5 2 lg 3 6 lg 2 4
学习目标
新课讲授
课堂总结
总结归纳
1.在化简带有对数的表达式时,若对数的底不同,需利用换底公式;
2.常用的公式有:
log a
b logb
a
1,logan
bm
m n
loga
b,
loga
b
1 logb
a
等.
学习目标
新课讲授
课堂总结
练一练
已知log189=a,18b=5,试用a,b表示log3645.
解:∵log189=a,18b=5,
(2)log2(47 25)
解:(1) lg5
1
100 lg1005
1 lg100 2 ;
5
5
(2) log2(47 25) log2 47 log2 25 7 log2 4 5log2 2 7log2 22 5 725
19
学习目标
新课讲授
课堂总结
例2 用 ln x, ln y, ln z 表示 ln x2 y 3z
4.3.2 对数的运算
学习目标

4.3.2对数的运算教学设计-2024-2025学年高一上学期数学人教A版(2019)必修第一册

4.3.2对数的运算教学设计-2024-2025学年高一上学期数学人教A版(2019)必修第一册
- 思考预习问题:学生针对提出的问题,进行独立思考,记录自己的理解和疑问。
- 提交预习成果:学生将预习成果(如笔记、思维导图、问题等)提交至在线平台或老师处。
教学方法/手段/资源:
- 自主学习法:学生自主阅读和思考,培养自主学习能力。
- 信息技术手段:利用在线平台、微信群等,实现预习资源的共享和监控。
- 反馈作业情况:及时批改作业,给予学生反馈和指导。
学生活动:
- 完成作业:学生认真完成老师布置的课后作业,巩固学习效果。
- 拓展学习:学生利用老师提供的拓展资源,进行进一步的学习和思考。
- 反思总结:学生对自己的学习过程和成果进行反思和总结,提出改进建议。
教学方法/手段/资源:
- 自主学习法:引导学生自主完成作业和拓展学习。
教学方法/手段/资源:
- 讲授法:通过详细讲解,帮助学生理解对数的定义、性质和运算法则。
- 实践活动法:设计小组讨论,让学生在实践中掌握对数的运算技能。
- 合作学习法:通过小组讨论等活动,培养学生的团队合作意识和沟通能力。
作用与目的:
- 帮助学生深入理解对数的定义、性质和运算法则,掌握对数的运算技能。
- 提供一些拓展性的题目,鼓励学生进行深入研究和探索,如对数函数的图像分析、对数运算的数学证明等。
作业反馈:
- 及时批改学生的作业,给出明确的评分和评价。
- 在批改过程中,注意指出学生作业中的错误和不足之处,并提供改进建议。
- 对于学生作业中的亮点和优秀表现,给予肯定和鼓励。
- 通过面对面的交流或书面反馈,将作业批改结果告诉学生,并与他们讨论改进的方法。
- 数学教科书和配套练习册,作为教学的主要材料。
- 计算器,用于辅助计算和对数的运算练习。

4.3.2对数的运算法则课件(第一课时)-2024-2025学年高一上学期数学湘教版(2019)必修

4.3.2对数的运算法则课件(第一课时)-2024-2025学年高一上学期数学湘教版(2019)必修

和 =
= ( ∈ ,a > 0, a ≠ 1)
= 称作为对数运算的基础。
巩固练习
例一、设 = = = 用A、B、C表示
2
3


解:

3
3
若 = 不一定有 = ,需要保证, ≠
若 = 也不一定有M=N;
反例: = (−)
但 ≠ −
课堂小结
在学习完对数的基本运算法则后我们一定要掌握:
(1) = + (2) = ( ∈ )

= − Βιβλιοθήκη = + − = + − ;







= − = + −





= + −


巩固练习
50
5
1
(2) 10 12.5 − 10 + 10
8
2
解:





= =
− = ÷


÷ =



. − + = . ÷ ×

= + −

[方法二] = − = × −


= + −
= + − −

= + − − = + −
现在假设
= = 则 = =

4.3.2对数的运算课件(人教版)

M log a M
(2).log a

N log a N
(3).log a ( MN ) log a M log a N
(4).log a M (log a M )
n
n
范例应用
1.计算log510-log52等于(
)A.log58 B.lg 5C.1
D.2
C
解析:log510-log52=log55=1.
+lg 5)+(lg 2)2
=2lg 10+(lg 5+lg 2)2
=2+(lg 10)2=2+1=3.
范例应用
解:
(3)原式=
1.8
21.8
1
=
2
(2+9−10)
1
2
1.8
=

18
10
21.8
=
范例应用
1.利用对数性质求值的解题关键是化
异为同,先使各项底数相同,再找真数间
范例应用
2.log23·log32=
________.
解析:
log23·log32=1.
范例应用
1
32
计算下列各式的值:(1) −
2
49
4
8 + 245
3
2
(2)5 +
2
8
3
+ 5 ∙ 20 + 2
2+3− 10
(3)
1.8
2
范例应用
解:
7
5
(2)
lg 5 100 .
讲授新知
探究
你能根据对数的定义推导出下面
的换底公式吗?
log c b
a 0, 且a 1; c 0, 且c 1; b 0.

高中数学第四章4.3.2对数的运算讲义新人教A版必修第一册

4.3.2 对数的运算知识点一 对数的运算性质若a >0,且a ≠1,M >0,N >0,那么: (1)log a (M ·N )=log a M +log a N , (2)log a M N=log a M -log a N , (3)log a M n=n log a M (n ∈R ).状元随笔 对数的这三条运算性质,都要注意只有当式子中所有的对数都有意义时,等式才成立 . 例如,log 2[(-3)·(-5)]=log 2(-3)+log 2(-5)是错误的.知识点二 对数换底公式log a b =log c blog c a (a >0,a ≠1,c >0,c ≠1,b >0).特别地:log a b ·log b a =1(a >0,a ≠1,b >0,b ≠1). 状元随笔 对数换底公式常见的两种变形 (1)log a b·log b a =1,即1log a b=log b a ,此公式表示真数与底数互换,所得的对数值与原对数值互为倒数 .(2)log N n M m=m n log N M ,此公式表示底数变为原来的n 次方,真数变为原来的m 次方,所得的对数值等于原来对数值的mn倍.[教材解难]换底公式的推导设x =log a b ,化为指数式为a x=b ,两边取以c 为底的对数,得log c a x=log c b ,即x log c a =log c b .所以x =log c b log c a ,即log a b =log c b log c a.[基础自测]1.下列等式成立的是( ) A .log 2(8-4)=log 28-log 24B.log 28log 24=log 284C .log 28=3log 22D .log 2(8+4)=log 28+log 24解析:由对数的运算性质易知C 正确. 答案:C 2.log 49log 43的值为( ) A.12 B .2 C.32 D.92解析:原式=log 39=2. 答案:B3.2log 510+log 50.25=( ) A .0 B .1 C .2 D .4解析:原式=log 5102+log 50.25 =log 5(102×0.25)=log 525=2. 答案:C4.已知ln 2=a ,ln 3=b ,那么log 32用含a ,b 的代数式表示为________. 解析:log 32=ln 2ln 3=a b .答案:a b题型一 对数运算性质的应用[教材P 124例3] 例1 求下列各式的值: (1)lg 5100; (2)log 2(47×25).【解析】 (1)lg 5100=lg 10015=15lg 100=25; (2)log 2(47×25)=log 247+log 225=7log 24+5log 22=7×2+5×1 =19.利用对数运算性质计算. 教材反思1.对于同底的对数的化简,常用方法是:(1)“收”,将同底的两对数的和(差)收成积(商)的对数; (2)“拆”,将积(商)的对数拆成对数的和(差).2.对数式的化简、求值一般是正用或逆用公式,要养成正用、逆用、变形应用公式的习惯,lg 2+lg 5=1在计算对数值时会经常用到,同时注意各部分变形要化到最简形式.跟踪训练1 (1)计算:lg 52+2lg 2-⎝ ⎛⎭⎪⎫12-1=________.(2)求下列各式的值. ①log 53+log 513②(lg 5)2+lg 2·lg 50③l g 25+23lg 8+lg 5·lg 20+(lg 2)2.解析:(1)lg 52+2lg 2-⎝ ⎛⎭⎪⎫12-1=lg 5-lg 2+2lg 2-2=(lg 5+lg 2)-2=1-2=-1.(2)①log 53+log 513=log 5⎝ ⎛⎭⎪⎫3×13=log 51=0.②(lg 5)2+lg 2·lg 50 =(lg 5)2+(1+lg 5)lg 2 =(lg 5)2+lg 2+lg 2·lg 5 =lg 5(lg 5+lg 2)+lg 2 =lg 5+lg 2=lg 10=1.③原式=lg 25+lg 823+lg 102·lg(10×2)+(lg 2)2=lg 25+lg 4+(lg 10-lg 2)(lg 10+lg 2)+(lg 2)2=lg 100+(lg 10)2-(lg 2)2+(lg 2)2=2+1=3. 答案:(1)-1 (2)见解析 利用对数运算性质化简求值.题型二 对数换底公式的应用[经典例题]例2 (1)已知2x =3y=a ,1x +1y=2,则a 的值为( )A .36B .6C .2 6 D. 6 (2)计算下列各式: ①log 89·log 2732.②2lg 4+lg 5-lg 8-⎝ ⎛⎭⎪⎫3382-3.③6413+lg 4+2lg 5.【解析】 (1)因为2x =3y=a , 所以x =log 2a ,y =log 3a ,所以1x +1y =1log 2a +1log 3a =log a 2+log a 3=log a 6=2,所以a 2=6,解得a =± 6. 又a >0,所以a = 6.(2)①log 89·log 2732=lg 9lg 8·lg 32lg 27=lg 32lg 23·lg 25lg 33=2lg 33lg 2·5lg 23lg 3=109. ②2lg 4+lg 5-lg 8-⎝ ⎛⎭⎪⎫3382-3=lg 16+lg 5-lg 8-1⎝⎛⎭⎪⎫32782=lg 16×58-1⎝ ⎛⎭⎪⎫322=1-49=59. ③6413+lg 4+2lg 5=4+lg(4×52)=4+2=6.【答案】 (1)D (2)见解析状元随笔 1.先把指数式化为对数式,再用换底公式,把所求式化为同底对数式,最后用对数的运算性质求值.2.先用换底公式将式子变为同底的形式,再用对数的运算性质计算并约分. 方法归纳(1)换底公式中的底可由条件决定,也可换为常用对数的底,一般来讲,对数的底越小越便于化简,如a n为底的换为a 为底.(2)换底公式的派生公式:log a b =log a c ·log c b ;log an b m=mnlog a b . 跟踪训练2 (1)式子log 916·log 881的值为( ) A.18 B.118C.83D.38(2)(log 43+log 83)(log 32+log 98)等于( ) A.56 B.2512C.94D .以上都不对 解析:(1)原式=log 3224·log 2334=2log 32·43log 23=83.(2)原式=⎝ ⎛⎭⎪⎫log 33log 34+log 33log 38·⎝ ⎛⎭⎪⎫log 32+log 38log 39=⎝ ⎛⎭⎪⎫12log 32+13log 32·⎝ ⎛⎭⎪⎫log 32+3log 322 =56log 32×52log 32=2512. 答案:(1)C (2)B 利用换底公式化简求值. 题型三 用已知对数表示其他对数例3 已知log 189=a,18b=5,用a ,b 表示log 3645. 解析:方法一 因为log 189=a ,所以9=18a. 又5=18b,所以log 3645=log 2×18(5×9)=log 2×1818a +b=(a +b )·log 2×1818.又因为log 2×1818=1log 18(18×2)=11+log 182=11+log 18189=11+1-log 189=12-a,所以原式=a +b 2-a.方法二 ∵18b=5,∴log 185=b . ∴log 3645=log 1845log 1836=log 18(5×9)log 18(4×9)=log 185+log 1892log 182+log 189=a +b2log 18189+log 189=a +b2-2log 189+log 189=a +b 2-a.状元随笔 方法一 对数式化为指数式,再利用对数运算性质求值. 方法二 先求出a 、b ,再利用换底公式化简求值. 方法归纳用已知对数的值表示所求对数的值,要注意以下几点: (1)增强目标意识,合理地把所求向已知条件靠拢,巧妙代换; (2)巧用换底公式,灵活“换底”是解决这种类型问题的关键; (3)注意一些派生公式的使用.跟踪训练3 (1)已知log 62=p ,log 65=q ,则lg 5=________;(用p ,q 表示) (2)①已知log 147=a,14b=5,用a ,b 表示log 3528. ②设3x =4y=36,求2x +1y的值.解析:(1)lg 5=log 65log 610=q log 62+log 65=qp +q .(2)①∵log 147=a,14b=5, ∴b =log 145.∴log 3528=log 1428log 1435=log 141427log 14(5×7)=log 14142-log 147log 145+log 147=2-a a +b . ②∵3x=36,4y=36, ∴x =log 336,y =log 436, ∴1x =1log 336=1log 3636log 363=log 363, 1y=1log 436=1log 3636log 364=log 364, ∴2x +1y=2log 363+log 364=log 36(9×4)=1.答案:(1)qp +q (2)①2-aa +b②1 (1)利用换底公式化简.(2)利用对数运算性质化简求值.课时作业 22一、选择题1.若a >0,a ≠1,x >y >0,下列式子:①log a x ·log a y =log a (x +y );②log a x -log a y =log a (x -y );③log a xy=log a x ÷log a y ;④log a (xy )=log a x ·log a y .其中正确的个数为( )A .0个B .1个C .2个D .3个解析:根据对数的性质知4个式子均不正确. 答案:A2.化简12log 612-2log 62的结果为( )A .6 2B .12 2C .log 6 3 D.12解析:12log 612-2log 62=12(1+log 62)-log 62=12(1-log 62)=12log 63=log 6 3.答案:C3.设lg 2=a ,lg 3=b ,则lg 12lg 5=( )A.2a +b 1+aB.a +2b1+a C.2a +b 1-a D.a +2b1-a解析:lg 12lg 5=lg 3+lg 4lg 5=lg 3+2lg 21-lg 2=2a +b 1-a .答案:C4.若log 34·log 8m =log 416,则m 等于( ) A .3 B .9 C .18 D .27解析:原式可化为log 8m =2log 34,lg m 3lg 2=2lg 4lg 3,即lg m =6lg 2·lg 32lg 2,lg m =lg 27,m =27.故选D. 答案:D 二、填空题5.lg 10 000=________;lg 0.001=________.解析:由104=10 000知lg 10 000=4,10-3=0.001得lg 0.001=-3,注意常用对数不是没有底数,而是底数为10.答案:4 -36.若log 513·log 36·log 6x =2,则x 等于________.解析:由换底公式, 得-lg 3lg 5·lg 6lg 3·lg xlg 6=2, lg x =-2lg 5,x =5-2=125.答案:1257.lg 2+lg 5-lg 12lg 12+lg 8·(lg 32-lg 2)=________.解析:原式=lg (2×5)-0lg ⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫122×8×lg 322=1lg 2·lg 24=4.答案:4 三、解答题8.化简:(1)lg 3+25lg 9+35lg 27-lg 3lg 81-lg 27;(2)(lg 5)2+lg 2lg 50+211+log252.解析:(1)方法一 (正用公式): 原式=lg 3+45lg 3+910lg 3-12lg 34lg 3-3lg 3=⎝ ⎛⎭⎪⎫1+45+910-12lg 3lg 3=115. 方法二 (逆用公式):原式=lg ⎝⎛⎭⎪⎫3×925×2712×35×3-12lg 8127=lg 3115lg 3=115. (2)原式=(lg 5)2+lg 2(lg 5+1)+21·22log =lg 5·(lg 5+lg 2)+lg 2+25=1+2 5.9.计算:(1)log 1627log 8132; (2)(log 32+log 92)(log 43+log 83). 解析:(1)log 1627log 8132=lg 27lg 16×lg 32lg 81=lg 33lg 24×lg 25lg 34=3lg 34lg 2×5lg 24lg 3=1516. (2)(log 32+log 92)(log 43+log 83) =⎝ ⎛⎭⎪⎫log 32+log 32log 39⎝ ⎛⎭⎪⎫log 23log 24+log 23log 28 =⎝ ⎛⎭⎪⎫log 32+12log 32⎝ ⎛⎭⎪⎫12log 23+13log 23 =32log 32×56log 23=54×lg 2lg 3×lg 3lg 2=54. [尖子生题库]10.已知2x =3y =6z≠1,求证:1x +1y =1z.证明:设2x =3y =6z=k (k ≠1), ∴x =log 2k ,y =log 3k ,z =log 6k ,∴1x =log k 2,1y =log k 3,1z=log k 6=log k 2+log k 3,∴1z =1x +1y.。

4.3.2对数的运算课件-高一上学期数学人教A版【03】


1. 已知 3a=5b=15,求1a+1b的值 [解] ∵3a=5b=15,∴a=log315,b=log515, ∴1a+1b=log153+log155=log1515=1.
2. 若 a,b 是正数,且 3a=5b=c,比较 3a 与 5b 的大小.
[解] ∵3a=5b=c,∴a=log3c,b=log5c,
指数运算法则
am an amn (m, n R)
am an
amn (m, n R)
(am )n amn (m, n R)
问题:指数与对数都是一种运算,而且它们互为逆运算,指数运算有 一系列性质,那么对数运算是否也有类似的性质呢?
am an amn (m, n R)
MN
M=am,N=an
logaM=m, logaN=n
Байду номын сангаасMN=am+n
loga(M·N)=m+n
这样,得到了对数的一个运算性质
loga(M·N)=logaM+logaN
如果a>0且a≠1, M>0, N>0,那么
(1) loga(M·N)=logaM+logaN
log2 3 log2 5 log2 15
(2) loga
xy ; z
x2 y (2) loga 3 z
解(1) loga
xy z
loga (xy ) loga
z
loga
x loga
y loga
z
(2)loga
x2
3
y z
1
loga (x2 y 2 ) loga
1
z3
1
1
loga x2 loga y 2 loga z 3

4.3.2对数的运算 课件(共24张PPT)



∴log ( ) = log

− log
练习
练习
练习
对数的运算法则-数乘公式
n个M相乘
log = log ( × × ⋯ … × )
n个log 相加
= log + log + ⋯ … + log
= log
练习
常用对数与自然对数
对数的基本运算
a>0且 ≠ 1,log 1 = 0
a>0且≠1,log = 1
a>0且≠1,log = x
ln = 1
lg 10 = 1
ln 1 = 0
lg 1 = 0
对数恒等式

log
=
令 =
log

=
∴log = log
∵log =
lg
lg Leabharlann lg log b =
lg b
lg lg
∴log × log = × =1
lg
lg b

=

=

= log

练习
练习
练习
即=+
∴log () = +
∴log () = log + log
对数的运算法则-减法公式
令log = , log =
则 = , =

∴ = ÷ = −


即 =−


∴log ( ) = −
∴t=N
log

=
练习
3log3 2 = 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档