运算定律和简便运算
第二课时 运算定律及简便运算

125÷(50÷8)
=3.25÷(2.5×4) =125÷50×8
350÷(35×2) =350÷35÷2
=3.25÷10
=2.5×8
=10÷2
=0.325
=20
=5
差错类型及归纳
类型1 添括号后运算符号的错误使用。 【例1】计算:493-255-145 错解:493-255-145 =493-(255-145) =493-110 =383
104×0.25 =(100+4)×0.25 =100×0.25+4×0.25
=25+1
=26
125÷(50÷8) =125÷50×8
=125×8÷50
=1000÷50
=20
72×101-72 =72×(101-1) =72×100 =7200
69×32+67×69+69 =69×(32+67+1) =69×100 =6900
3. 在○填上“>”“<”或“=”。
(87-87)÷3○= (105-105)÷3
50+<4×5○(50+4)×
750÷15-10○< 750÷(15-10) 69+65÷5○> 69-65÷5
4. 一套校服,上衣每件35元,裤子每条25元,某班订
购了40套校服,需要( 2400 )元。
5.学校新采购了50套课桌椅(1张课桌和1把椅子是1套),
凡 事都 是多棱 镜, 不同 的角 度会
凡 事都是 多棱 镜, 不同 的角度 会看 到不 同的 结果 。若 能把一 些事 看淡 了, 就会 有个好 心境 ,若 把很 多事 看开 了 ,就会 有个 好心 情。 让聚散 离合 犹如 月缺 月圆那 样寻 常, 让得失 利弊 犹如花 开花 谢那 样自然 ,不 计较, 也不 刻意执 着;让 生命 中各 种的喜 怒哀 乐,就 像风 儿一 样,来 了, 不管是 清风 拂面 ,还是 寒风 凛冽, 都报 以自 然 的微笑 ,坦然 的接 受命 运的馈 赠, 把是非 曲折 ,都 当作是 人生 的
(完整版)人教版小学数学四年级下册【运算定律与简便计算】知识篇

加、减法的速算与巧算( 基础篇 )1、加法运算定律(2个):☆加法交换律:两个数相加,交换加数的位置,和不变。
即:a + b = b + a☆加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。
即:(a+b)+c = a+(b+c)(提醒:运用加法结合律时,要注意把结合的两个数用括号括起来。
)连加的简便计算方法:①使用加法交换律、结合律凑整(把和是整十、整百、整千的数先交换再结合在一起。
)②个位:1与9,2与8,3与7,4与6,5与5,结合。
③十位:0与9,1与8,2与7,3与6,4与5,结合。
连加的简便计算例题:50+98+50 488+40+60 165+93+35 65+28+35+72=50+50+98 =488+(40+60)=93+165+35 =(65+35)+(28+72)=100+98 =488+100 =93+(165+35) = 100+100=198 =588 =293 = 2002、连减的性质:☆一个数连续减去几个数等于这个数减去这几个数的和。
即:a – b – c = a – (b + c)注:连减的性质逆用:a – (b + c) = a – b – c = a – c – b☆一个数连续减去两个数,可以用这个数先减去后一个数再减去前一个数。
即:a-b-c=a-c-b连减的简便计算方法:①连续减去几个数就等于减去这几个数的和。
如:106-26-74 = 106-(26+74)②连续减去两个数可以先减去后一个数再减去前一个数。
如:226-58-26=226-26-58③减去几个数的和就等于连续减去这几个数。
如:106-(26+74) = 106-26-74连减的简便计算例题:528—65—35 528—89—128 528—(150+128)=528—(65+35) =528—128—89 =528—128—150=528—100 =400—89 =400—150=428 =311 =2503、加、减法混合运算的性质:在计算没有括号的加、减混合运算时,计算时可以带着运算符号“搬家”。
四年级运算定律与简便计算练习题大全

运算定律与简便计算(一)加减法运算定律1.加法交换律定义:两个加数交换位置,和不变字母表示:a b b a +=+例如:16+23=23+16 546+78=78+5462.加法结合律定义:先把前两个数相加,或者先把后两个数相加,和不变。
字母表示:)()(c b a c b a ++=++注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好是整十、整百、整千的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两个加数结合起来先运算。
例1.用简便方法计算下式:(1)63+16+84 (2)76+15+24 (3)140+639+860举一反三:(1)46+67+54 (2)680+485+120 (3)155+657+2453.减法交换律、结合律注:减法交换律、结合律是由加法交换律和结合律衍生出来的。
减法交换律:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。
字母表示:b c a c b a --=--例2.简便计算:198-75-98减法结合律:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数的和。
字母表示:)(c b a c b a +-=--例3.简便计算:(1)369-45-155 (2)896-580-120(二)乘除法运算定律1.乘法交换律定义:交换两个因数的位置,积不变。
字母表示:a b b a ⨯=⨯例如:85×18=18×85 23×88=88×232.乘法结合律定义:先乘前两个数,或者先乘后两个数,积不变。
字母表示:)()(c b a c b a ⨯⨯=⨯⨯乘法结合律的应用基于要熟练掌握一些相乘后积为整十、整百、整千的数。
例如:25×4=100, 2.5×4=10,0.25×4=1, 25×0.4=10, 0.25×0.4=0.1125×8=1000, 12.5×8=100, 1.25×8=10, 0.125×8=1,…例5.简便计算:(1)25×9×43.乘法分配律定义:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。
小学四年级:运算定律与简便计算公式整理(附练习题)

小学四年级:运算定律与简便计算公式整理(附练习题)小学四年级:运算定律与简便计算一、运算定律必须弄清加法交换律 a b = b a例:25 37=37 25加法结合律 a b c=a (b c)例:25 37 63=25 (37 63)(扩展) a-b-c=a-(b c)例:125-37-63=25-(37 63)a-b c=a-(b-c)例:300-159 59=300-(159-59)乘法交换律a×b×c=a×c×b例:25×9×4=25×4×9乘法结合律a×b×c=(a×c) ×b例:128×3×8=(125×8) ×3乘法分配律a×(b c)=a×b a×c例:8×(125 25)=8×125 8×25(扩展)a÷b÷c=a÷(c×b)例:100÷5÷2=100÷(5×2)a÷(c×b)= a÷b÷c例:100÷(5×2)=100÷5÷2二、必须背下来的几个算式2×5=102×50=1004×25=1008×25=20012×5=608×125=100037×3=111333=111×3999=333×3=111×9三、加法简便计算训练1、凑整法简便计算:例:(28 36) 64=28 (36 64)=28 100=128182 18 276 24=(182 18)(276 24)=200 300=500小结:多数相加,看尾数是否能凑成整数,将凑成整数的配对先加。
人教四下数学【运算定律与简便计算】知识篇

人教版四年级下册数学加、减法的速算与巧算( 基础篇 )1、加法运算定律(2个):☆加法交换律:两个数相加,交换加数的位置,和不变。
即:a + b = b + a☆加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。
即:(a + b) + c = a + (b + c)(提醒:运用加法结合律时,要注意把结合的两个数用括号括起来。
)连加的简便计算方法:①使用加法交换律、结合律凑整(把和是整十、整百、整千的数先交换再结合在一起。
)②个位:1与9,2与8,3与7,4与6,5与5,结合。
③十位:0与9,1与8,2与7,3与6,4与5,结合。
连加的简便计算例题:50+98+50 488+40+60 165+93+35 65+28+35+72=50+50+98 =488+(40+60)=93+165+35=(65+35)+(28+72)=100+98 =488+100 =93+(165+35)= 100+100=198 =588 =293 = 2002、连减的性质:☆一个数连续减去几个数等于这个数减去这几个数的和。
即:a – b – c = a – (b + c)注:连减的性质逆用:a – (b + c) = a – b – c = a – c – b☆一个数连续减去两个数,可以用这个数先减去后一个数再减去前一个数。
即:a-b-c=a—c-b连减的简便计算方法:①连续减去几个数就等于减去这几个数的和。
如:106-26-74 = 106-(26+74)②连续减去两个数可以先减去后一个数再减去前一个数。
如:226-58-26=226-26-58③减去几个数的和就等于连续减去这几个数。
如:106-(26+74) = 106-26-74连减的简便计算例题:528—65—35 528—89—128 528—(150+128)=528—(65+35) =528—128—89 =528—128—150=528—100 =400—89 =400—150=428 =311 =2503、加、减法混合运算的性质:在计算没有括号的加、减混合运算时,计算时可以带着运算符号“搬家”。
运算定律和简便运算

定律与简便计算(一)加减法运算定律1、加法交换律定义:两个加数交换位置,与不变字母表示:例如:16+23=23+16 546+78=78+5462、加法结合律定义:先把前两个数相加,或者先把后两个数相加,与不变.字母表示:注意:加法结合律有着广泛得应用,如果其中有两个加数得与刚好就是整十、整百、整千得话,那么就可以利用加法交换律将原式中得加数进行调换位置,再将这两个加数结合起来先运算。
例1、用简便方法计算下式:(1)63+16+84(2)76+15+24 (3)140+639+860 3、减法交换律、结合律注:减法交换律、结合律就是由加法交换律与结合律衍生出来得。
减法交换律:如果一个数连续减去两个数,那么后面两个减数得位置可以互换。
字母表示:例2、简便计算:198-75-98减法结合律:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数得与。
字母表示:例3、简便计算:(1)369-45—155 (2)896—580-1204、拆分、凑整法简便计算拆分法:当一个数比整百、整千稍微大一些得时候,我们可以把这个数拆分成整百、整千与一个较小数得与,然后利用加减法得交换、结合律进行简便计算。
例如:103=100+3,1006=1000+6,…例4、计算下式,能简便得进行简便计算:(1)89+106(2)56+98 (3)658+997随堂练习:计算下式,怎么简便怎么计算(1)730+895+170(2)820-456+280 (3)900-456-244(4)89+997 (5)103-60 (6)458+996(7)63+71+37+29 (8)85-17+15—33 (9)34+72-43-57+28 (二)乘除法运算定律1、乘法交换律定义:交换两个因数得位置,积不变。
字母表示:例如:85×18=18×85 23×88=88×232、乘法结合律定义:先乘前两个数,或者先乘后两个数,积不变.字母表示:乘法结合律得应用基于要熟练掌握一些相乘后积为整十、整百、整千得数。
运算定律与简便计算

运算定律与简便计算●知识盘点1.主要内容加法和乘法的运算定律与简便计算。
2.主要目标(1)理解并掌握加法、乘法的运算定律,并懂得用字母表示的运算的定律的含义。
(2)懂得运用各项运算定律(含用字母表示)可以进行验算的道理。
(3)会运用加法、乘法的各项运算定律进行简便计算,提高自己运用定律进行简便计算的能力。
(4)在理解、掌握、运用加法、乘法的运用定律中,体会和感受运算定律在生活中的应用。
3.知识要点(1)加法交换律:两个数相加,交换加数的位置,他们的和不变。
字母表示:a+b=b+a(2)加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,它们的和不变。
字母表示:(a+b)+c=a+(b+c)(3)乘法交换律:两个数相乘,交换两个因素的位置,它们的积不变。
字母表示:a×b=b×a(4)乘法结合律:三个数相乘,先乘前两个数,或先乘后两个数,它们的积不变。
字母表示:a×b×c=a×(b×c)(5)乘法分配律:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。
字母表示:(a+b)×c=a×c+b×c(6)从一个数里连续减去几个数,可以先把所有的减数相加,再用被减数减去它们的和。
字母表示:a-b-c=a-(b+c)●例题解析【例1】一家电影院,走廊左边有379个座位,右边有427个座位,一共有几个座位?(用两种方法计算)【分析】这是一道简单的一步加法计算题,要求用两种方法计算,可以用左边的座位数加上右边的座位数,也可以用右边的座位数加上左边的座位数。
【解答】379+427=806(个) 427+379=806(个)【评注】观察上面两种解法,可以看出:两个加数都相同,结果也相等。
但加数的位置不同,刚好互换。
我们可以得出结论:两个数相加,交换加数的位置,和不变。
这就是加法交换律,可以用字母表示:a+b=b+a。
运算律及简便运算

数学简便运算方法归类运算律:1、加法运算定律加法交换律:加数交换位置,和不变。
字母公式:a + b + c = b + a + c加法结合律:先把前两个数相加,或者先把后两个数相加,和不变。
字母公式:a + b + c = a+(b + c)加法的性质:一个加数增加多少,另一个加数减少多少,和不变。
字母公式:a + b= (a + c) + (b — c)2、减法运算定律减法性质1:一个数连续减去几个数,可以先把这几个减数相加,再相减,差不变。
字母公式:a — b — c = a— (b + c)减法性质2:被减数和减数同时增大或缩小,差不变。
a — b= (a + c) 一 (b + c) = (a—c) 一 (b — c)3、乘法运算定律乘法交换律:两个因数交换位置,积不变。
字母公式:aXb = bXa乘法结合律:先乘前两个因数,或者先乘后两个因数,积不变。
字母公式:aXbXc = aX(bXc)乘法的性质:一个因数扩大多少倍,另一个因数缩小多少倍,积不变。
字母公式:aXb= (aXc) X (b — c)乘法分配律:两个数的和(差)与一个数相乘,可以先把它们与这个数分别相乘,积再相加(减)。
字母公式:(a土b)Xc = aXc土bXc提取公因数:几个有相同因数的乘式相加减,可以用相同的因数乘以剩下因数的计算结果。
字母公式:aXd — bXd + cXd = dX(a — b + c)4、除法运算定律除法性质1: 一个数连续除以几个数,可以先把这几个数相乘,再相除,商不变。
字母公式:a — b一c = a一(bXc)除法性质2:被除数和除数同时扩大或同时缩小相同倍数,商不变(余数同样变化)。
a —b= CaX c) 4- CbXc) = CaXc) 4- CbXc)除法性质3:除以一个数,等于乘以一个数的倒数a4b = aX 丄b运算顺序:同级运算调换顺序,需要把数字前边的运算符号一起调换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
187.7×11-187.7 25×8×0.4×1.25
检测三:用简便方法计算。
87 ×
1.5× +6.5×0.8+2×
125×3.2×25
×+
÷
作业:填写课时练第63页 题组六
要求: 书写规范 认真仔细 计算准确
举例说明:b(×c)
)
5分钟后抽生回答,期待大家精
口头检测:
填写课时练第63页题组六第1题,并 说一说运用了哪些运算定律。
检测一:用简便方法计 算:
4.7+56+5.3+44 0.125×4×23..54×101
400÷125÷8
17.15-8.47-1.53
检测二:用简便方法计算。
9123-(123+8.8) 4.38-
运算定律和简便 运算
复习目标:
1.整理加法、乘法的运算定律、减 法的性质和
除法的性质。
2.能准确、熟练运用运算定律进行 简便计算。
复习指导:
1.把课本77页的表格补充2.完减整法。ຫໍສະໝຸດ 性质用字母表示a:-b(-c = a-
)
(b+c) 举例说明:(
3.除法的性质)用字母表示a÷:b(÷c=a÷(
)