2019-2020年高一数学必修一课堂综合训练题含答案

合集下载

(北师大版2019课标)高中数学必修第一册 第七章综合测试(含答案)

(北师大版2019课标)高中数学必修第一册 第七章综合测试(含答案)

第七章综合测试一、选择题(每小题5分,共40分) 1.下列事件是随机事件的是( )①同种电荷,互相排斥;②明天是晴天;③自由下落的物体做匀速直线运动;④函数01xy a a a =≠(>且)在定义域上是增函数. A .①③B .①④C .②④D .③④2.从装有红球、白球和黑球各2个的口袋内一次取出2个球,则与事件“两球都为白球”互斥而非对立的事件是以下事件:“①两球都不是白球;②两球恰有一白球;③两球至少有一个白球”中的( ) A .①②B .①③C .②③D .①②③3.西周初数学家商高在公元前1000年发现勾股定理的一个特例,勾三,股四,弦五.此发现早于毕达哥拉斯定理五百到六百年,我们把可以构成一个直角三角形三边的一组正整数(a ,b ,c )称为勾股数.现从(3,4,5),(5,12,13),(6,8,10),(7,24,25),(8,15,17),(9,40,41),(9,12,15),(10,24,26),(15,20,25),(15,36,39)这几组勾股数中随机抽取1组,则被抽出的这组勾股数满足2b a c =+的概率为( ) A .25B .79C .78D .9104.抛掷一枚质地均匀的骰子,观察掷出的点数,设事件A 为“出现奇数点”,事件B 为“出现2点”,已知()12P A =,()16P B =,则“出现奇数点或2点”的概率为( ) A .16B .13C .12D .235.下列试验属于古典概型的有( )①从装有大小、形状完全相同的红、黑、绿各一球的袋子中任意取出一球,取出的球为红色的概率; ②在公交车站候车不超过10分钟的概率;③同时抛掷两枚硬币,观察出现“两正”“两反”“一正一反”的次数; A .0个B .1个C .2个D .3个6.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为( ) A .23B .25C .35D .9107.某运动会期间,从来自A 大学的2名志愿者和来自B 大学的4名志愿者中随机抽取2人到体操比赛场馆服务,至少有一名A 大学志愿者的概率是( ) A .115B .25C .35D .14158.一位家长送孩子去幼儿园的路上要经过4个有红绿灯的路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是13,遇到红灯时停留的时间都是2 min .则这位家长送孩子上学到第三个路口时首次遇到红灯的概率为( ) A .13B .227C .427D .527二、多选题(每小题5分,共20分,全部选对得5分,选对但不全的得3分,有选错的得0分)9.在一个古典概型中,若两个不同的随机事件A ,B 发生的概率相等,则称A 和B 是“等概率事件”,如:随机抛掷一枚骰子一次,事件“点数为奇数”和“点数为偶数”是“等概率事件”.关于“等概率事件”,以下判断正确的是( )A .在同一个古典概型中,所有的样本点之间都是“等概率事件”B .若一个古典概型的事件总数大于2,则在这个古典概型中除样本点外没有其他“等概率事件”C .因为所有必然事件的概率都是1,所以任意两个必然事件都是“等概率事件”D .同时抛掷三枚硬币一次,则事件“仅有一个正面”和“仅有两个正面”是“等概率事件”10.某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成统计表,其中“√”表示购买,“×”表示未购买.A .顾客购买乙商品的概率最大B .顾客同时购买乙和丙的概率约为0.2C .顾客在甲、乙、丙、丁中同时购买3种商品的概率约为0.3D .顾客仅购买1种商品的概率不大于0.311.某篮球运动员在最近几次参加的比赛中的得分情况如表:C ,用频率估计概率的方法,得到的下述结论中,正确的是( ) A .()0.55P A =B .()0.18P B =C .()0.27P C =D .()0.55P B C +=12.一个袋子中装有3件正品和1件次品,按以下要求抽取2件产品,其中结论正确的是( ) A .任取2件,则取出的2件中恰有1件次品的概率是12B .每次抽取1件,不放回抽取两次,样本点总数为16C .每次抽取1件,不放回抽取两次,则取出的2件中恰有1件次品的概率是12D .每次抽取1件,有放回抽取两次,样本点总数为16 三、填空题(每小题5分,共20分) 13.若A ,B 是相互独立事件,且()12P A =,()23P B =,则()P AB =________,()P AB =________.14.《九章算术》是中国古代数学专著,全书采用问题集的形式,收有246个与生产、生活实践有联系的应用问题,其中“均赋粟”问题讲的是古代劳动人民的赋税问题.现拟编试题如下:已知甲、乙、丙、丁四县向国家交税,则甲必须第一个交且乙不是第三个交的概率为________.15.用红、黄、蓝三种不同颜色给图中的3个矩形随机涂色,每个矩形只涂一种颜色,则3个矩形颜色都相同的概率是________,3个矩形颜色都不同的概率是________.16.在一次数学考试中,第.设4名学生选做这两题的可能性均为12.则其中甲、乙2名学生选做同一道题的概率为________;甲、乙2名学生都选做第22题的概率为________.四、解答题(共70分)17.(10分)某校在教师外出培训学习活动中,在一个月派出的培训人数及其概率如表所示:(1(2)求至少有3个人培训的概率.18.(12分)用一台自动机床加工一批螺母,从中抽出100个逐个进行直径(单位:cm)检验,结果如表:从这100(1)事件A:螺母的直径在(6.93,6.95]内;(2)事件B:螺母的直径在(6.91,6.95]内;(3)事件C :螺母的直径大于6.96.19.(12分)甲、乙两人玩一种游戏,每次由甲、乙各出1到5根手指,若和为偶数算甲赢,否则算乙赢. (1)若以A 表示和为6的事件,求P (A );(2)现连玩三次,若以B 表示甲至少赢一次的事件,C 表示乙至少赢两次的事件,试问B 与C 是否为互斥事件?为什么?(3)这种游戏规则公平吗?试说明理由.20.(12分)A ,B 两个箱子分别装有标号为0,1,2的三种卡片,每种卡片的张数如表所示.(1)从A ,B 箱中各取12x =的概率;(2)从A ,B 箱中各取1张卡片,用y 表示取出的2张卡片的数字之和,求0x =且2y =的概率.21.(12分)某产品的三个质量指标分别为x ,y ,z ,用综合指标S x y z =++评价该产品的等级.若4S ≤,则该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标如表:(1)利用表中提供的样本数据估计该批产品的一等品率;(2)在该样本的一等品中,随机抽取2件产品.①用产品编号列出所有可能的结果;②设事件B为“在取出的2件产品中,每件产品的综合指标S都等于4”,求事件B发生的概率.22.(12分)某重点中学为了解高一年级学生身体发育情况,对全校700名高一年级学生按性别进行分层随机抽样检查,测得身高(单位:cm)频数分布表如表1、表2.表1:男生身高频数分布表表2(1(2)估计该校学生身高在[165,180)的概率;(3)以样本频率为概率,现从高一年级的男生和女生中分别选出1人,求这2人中至少有1人的身高在[165,180)内的概率.第七章综合测试答案解析一、 1.【答案】C【解析】②④是随机事件,①是必然事件,③是不可能事件. 2.【答案】A【解析】从装有红球、白球和黑球各2个的口袋内一次取出2个球,所有的样本点为:白白,白红,白黑,红红,红黑,黑黑.除“两球都不是白球”外,还有其他事件如白红可能发生,故①与“两球都为白球”互斥但不对立.除“两球都为白球”和“两球恰有一白球”外,还有其他事件,如无白球,故②与“两球都为白球”互斥但不对立.③两球至少有一个白球,其中包含两个都是白球,故不互斥. 3.【答案】A【解析】从这10组勾股数随机抽取1组,共10种抽取方法,其中满足2b a c =+的有:(3,4,5),(6,8,10),(9,12,15),(15,20,25),共4种,故所求概率为42105P ==. 4.【答案】D【解析】因为“出现奇数点”与“出现2点”两事件互斥,所以()()111263P P A P B =+=+=. 5.【答案】B【解析】古典概型的两个基本特征是有限性和等可能性,①符合两个特征,是古典概型;②中的样本点的个数无限多;对于③,出现“两正”“两反”“一正一反”的可能性不相等,故不是古典概型. 6.【答案】D【解析】事件“甲或乙被录用”的对立事件是“甲和乙都未被录用”,从五位学生中选三人的总的样本点的个数为10,“甲和乙都未被录用”只有1种情况,根据古典概型和对立事件的概率公式可得,甲或乙被录用的概率1911010P =-=. 7.【答案】C【解析】用列举法可得样本空间中样本点的总数为15,所求概率的事件包括的样本点的个数为9,所以93155P ==. 8.【答案】C【解析】设“这位家长送孩子上学到第三个路口时首次遇到红灯”为事件A ,因为事件A 等于事件“这位家长送孩子在第一个路口和第二个路口没有遇到红灯,在第三个路口遇到红灯”,所以事件A 的概率为()111433327P A ⨯⨯==(1-)(1-). 二、9.【答案】AD【解析】对于A ,由古典概型的定义知,所有样本点的概率都相等,故所有样本点之间都是“等概率事件”,故A 正确;对于B ,如在1,3,5,7,9五个数中,任取两个数,所得和为8和10这两个事件发生的概率相等,故B 错误;对于C ,由题可知“等概率事件”是针对同一个古典概型的,故C 不正确;对于D ,同时抛掷三枚硬币一次共有8种不同的结果,其中“仅有一个正面”包含3种结果,其概率为38,“仅有两个正面”包含3种结果,其概率为38,故这两个事件是“等概率事件”,故D 正确. 10.【答案】BCD【解析】对于A ,由于购买甲商品的顾客有685位,购买乙商品的顾客有515位,故A 错误;对于B ,因为从统计表可以看出,在这1 000位顾客中,有200位顾客同时购买了乙和丙,所以顾客同时购买乙和丙的概率可以估计为2000.21000=,故B 正确;对于C ,因为从统计表可以看出,在这1000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品,所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为1002000.31000+=,故C 正确;对于D ,因为从统计表可以看出,在这1000位顾客中,有183位顾客仅购买1种商品,所以顾客仅购买1种商品的概率可以估计为0.1830.2<,故D 正确. 11.【答案】ABC【解析】由题意可知,()550.55100P A ==,()180.18100P B ==,事件A B +与事件C 为对立事件,且事件A ,B ,C 互斥,所以()()()()110.27P C P A B P A P B =+==---,()()()0.45P B C P B P C +=+=. 12.【答案】ACD【解析】记4件产品分别为1,2,3,a ,其中a 表示次品.A 选项,样本空间Ω={(1,2),(1,3),(1,a ),(2,3),(2,a ),(3,a )},“恰有1件次品”的样本点为(1,a ),(2,a ),(3,a ),因此其概率3162P ==,A 正确;B 选项,每次抽取1件,不放回抽取两次,样本空间Ω={(1,2),(1,3),(1,a ),(2,1),(2,3),(2,a ),(3,1),(3,2),(3,a ),(a ,1),(a ,2),(a ,3)},因此()12n Ω=,B 错误;C 选项,“取出的2件中恰有1件次品”的样本点数为6,其概率为12,C 正确;D 选项,每次抽取1件,有放回抽取两次,样本空间Ω={(1,1),(1,2),(1,3),(1,a ),(2,1),(2,2),(2,3),(2,a ),(3,1),(3,2),(3,3),(3,a ),(a ,1),(a ,2),(a ,3),(a ,a )},因此()16n Ω=,D 正确. 三、 13.【答案】16 16【解析】因为()()1223P A P B ==,,所以()()11122P A P A =-=-=1,()21133P B =-=.因为A ,B 相互独立,所以A 与B ,A 与B 相互独立,所以()()()111236P AB P A P B ==⨯=,()()()111236P AB P A P B ==⨯=.14.【答案】16【解析】依题意,所有的样本点为:甲—乙—丙—丁,甲—乙—丁—丙,甲—丙—乙—丁,甲—丙—丁—乙,甲—丁—丙—乙,甲—丁—乙—丙,乙、丙、丁第一个交的情况也各有6种,故总的样本点数有24种,其中满足条件的样本点为:甲—乙—丁—丙,甲—乙—丙—丁,甲—丙—丁—乙,甲—丁—丙—乙,共4种,故所求概率为41246=. 15.【答案】19 29【解析】以“红黄蓝”表示从左到右三个矩形所涂的颜色,则所有的样本点有:红红红、红红黄、红红蓝、红黄红、红黄黄、红黄蓝、红蓝红、红蓝黄、红蓝蓝、黄红红、黄红黄、黄红蓝、黄黄红、黄黄黄、黄黄蓝、黄蓝红、黄蓝黄、黄蓝蓝、蓝红红、蓝红黄、蓝红蓝、蓝黄红、蓝黄黄、蓝黄蓝、蓝蓝红、蓝蓝黄、蓝蓝蓝,共27个样本点,事件“3个矩形颜色都相同”所包含的样本点有:红红红、黄黄黄、蓝蓝蓝,共3个,所以3个矩形颜色都相同的概率是31279=.事件“3个矩形颜色都不同”所包含的样本点有:红黄蓝、红蓝黄、黄红蓝、黄蓝红、蓝黄红、蓝红黄,共6个,所以3个矩形颜色都不同的概率是62279=. 16.【答案】12 14【解析】设事件A 表示“甲选做第22题”,事件B 表示“乙选做第22题”,则甲,乙2名学生选做同一道题的事件为“AB AB +”,且事件A ,B 相互独立,所以()()()()()111111122222P AB AB P A P B P A P B +=+=⨯+-⨯-=()().所以甲、乙2名学生选做同一道题的概率为12;因为()()111224P A P B =⨯=,所以甲、乙2名学生都选做第22题的概率为14. 四、17.【答案】(1)设“有2人及以下培训”为事件A ,“有3人培训”为事件B ,“有4人培训”为事件C ,“有5人培训”为事件D ,“有6人及以上培训”为事件E ,所以“有4个人或5个人培训”的事件为事件C 或事件D ,A ,B ,C ,D ,E 为互斥事件,根据互斥事件的概率加法公式可知()()()0.30.10.4P C D P C P D =+=+=.(2)“至少有3个人培训”的对立事件为“有2人及以下培训”,所以由对立事件的概率可知()110.10.9P P A =-=-=.18.【答案】(1)螺母的直径在(6.93,6.95]内的频数为261541A n =+=,所以事件A 的频率为410.41100=. (2)螺母的直径在(6.91,6.95]内的频数为1717261575B n =+++=.所以事件B 的频率为750.75100=.(3)螺母的直径大于6.96的频数为224C n =+=,所以事件C 的频率为40.04100=.19.【答案】(1)甲、乙出手指都有5种可能,因此样本点的总数为5525⨯=,事件A 包括甲、乙出的手指的情况有(1,5),(5,1),(2,4),(4,2),(3,3)共5种情况,所以()51255P A ==. (2)B 与C 不是互斥事件.因为事件B 与C 可以同时发生,如甲赢一次,乙赢两次的事件.(3)这种游戏规则不公平.和为偶数的样本点的个数为13个,(1,1),(1,3),(1,5),(2,2),(2,4),(3,1),(3,3),(3,5),(4,2),(4,4),(5,1),(5,3),(5,5).所以甲赢的概率为1325,乙赢的概率为1325.所以这种游戏规则不公平. 20.【答案】(1)记事件A ={从A ,B 箱中各取1张卡片,2张卡片的数字之积等于2}.样本点的总个数为6530⨯=,事件A 包含样本点的个数为5.由古典概型的概率公式得()51306P A ==.则2x =的概率为16. (2)记事件B ={从A ,B 箱中各取1张卡片,其数字之和为2且积为0}.事件B 包含的样本点的个数为10.由古典概型的概率公式得()101303P B ==.则0x =且2y =的概率为13. 21.【答案】(1)计算10件产品的综合指标S ,如表:其中4S ≤的有A 1,A 2,A 4,A 5,A 7,A 9,共6件,故该样本的一等品率为0.610=,从而可估计该批产品的一等品率为0.6.(2)①在该样本的一等品中,随机抽取2件产品的所有可能结果为{A 1,A 2},{A 1,A 4},{A 1,A 5},{A 1,A 7},{A 1,A 9},{A 2,A 4},{A 2,A 5},{A 2,A 7},{A 2,A 9},{A 4,A 5},{A 4,A 7},{A 4,A 9},{A 5,A 7},{A 5,A 9},{A 7,A 9},共15种.②在该样本的一等品中,综合指标S 等于4的产品编号分别为A 1,A 2,A 5,A 7,则事件B 发生的所有可能结果为{A 1,A 2},{A 1,A 5},{A 1,A 7},{A 2,A 5},{A 2,A 7},{A 5,A 7},共6种.所以()62155P B ==. 22.【答案】(1)设高一女生人数为x ,由题中表1和表2可得样本中男、女生人数分别为40,30,则7004030x x -=,解得300x =.因此高一女生的人数为300.(2)由题中表1和表2可得样本中身高在[165,180)的男、女生人数分别为32,10,其和为42.样本容量为70.所以样本中该校学生身高在[165,180)的概率为423705=.估计该校学生身高在[165,180)的概率为35. (3)由题中表格可知:女生身高在[165,180)的概率为13.男生身高在[165,180)的概率为45,所以这2人中至少有1人的身高在[165,180)内的概率为414141131153535315⨯-+-⨯+⨯=()().。

2019-2020学年北师大版高中数学必修一课时跟踪检测:第一章 阶段性测试题一 Word版含解析

2019-2020学年北师大版高中数学必修一课时跟踪检测:第一章 阶段性测试题一 Word版含解析

姓名,年级:时间:阶段性测试题一第一章集合(时间:90分钟满分:120分)第Ⅰ卷(选择题,共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2018·浙江卷)已知全集U={1,2,3,4,5},A={1,3},则∁U A=() A.∅B.{1,3}C.{2,4,5}D.{1,2,3,4,5}解析:因为全集U={1,2,3,4,5},A={1,3},所以根据补集的定义得∁U A={2,4,5},故选C.答案:C2.(2018·全国卷Ⅱ)已知集合A={(x,y)|x2+y2≤3,x∈Z,y∈Z},则A中元素的个数为()A.9 B.8C.5 D.4解析:∵x2+y2≤3,∴x2≤3,∵x∈Z,∴x=-1,0,1,当x=-1时,y=-1,0,1;当x=0时,y=-1,0,1;当x=1时,y=-1,0,1.所以共有9个,故选A.答案:A3.已知集合A={x∈Z|-1<x<2},B={x∈Z|0<x<3},则A∪B=( )A.{0,1}B.{1,2}C.{0,1,2}D.{0,1,2,3}解析:∵A={0,1},B={1,2},∴A∪B={0,1,2}.答案:C4.设全集U={a,b,c,d,e},集合M={a,b,c},N={a,c,e},那么(∁U M)∩N=( )A.∅B.{e}C.{a,c} D.{b,e}解析:∵U={a,b,c,d,e},M={a,b,c},∴∁U M={d,e}.又N={a,c,e},∴(∁U M)∩N={e}.答案:B5.如图所示,阴影部分所表示的集合为( )A.A∩(B∩C)B.(∁S A)∩(B∩C)C.(∁S A)∪(B∩C)D.(∁S A)∪(B∪C)答案:B6.设全集U={1,2,3,4,5,6,7},集合A={1,3,5},集合B={3,5},则()A.U=A∪B B.U=(∁U A)∪BC.U=A∪(∁U B)D.U=(∁U A)∪(∁U B)解析:∵∁U B={1,2,4,6,7},∴A∪(∁U B)={1,2,3,4,5,6,7}=U。

高中数学(新人教A版)必修第一册同步习题:同角三角函数关系与诱导公式的综合运用(习题)【含答案及解析

高中数学(新人教A版)必修第一册同步习题:同角三角函数关系与诱导公式的综合运用(习题)【含答案及解析

专题强化练8 同角三角函数关系与诱导公式的综合运用一、选择题1.(2019广东中山一中高一下段考,)已知sin α·cos α=18,π4<α<π2,则cosα-sin α的值为( )A.√32B.-√32C.34D.-342.(2019福建福州长乐高中高一期末,)在△ABC 中,下列结论错误的是( ) A.sin(A+B)=sin C B.sinB+C 2=cos A2C.tan(A+B)=-tan C (C ≠π2)D.cos(A+B)=cos C3.(2019甘肃武威一中高一下段考,)化简2sin4√1-cos 24+√1-sin 23cos3的结果为( )A.-3B.-1C.1 D .34.(2019福建八县(市)一中高一上期末联考,)已知tan θ=3,则sin (3π2+θ)+2cos(π+θ)sin (π2-θ)-sin(π-θ)等于( )A.-32B.32C.0 D .235.(2019河北唐山高三二模,)已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有一点A(2sin α,3),则cos α=( ) A.12B.-12C.√32D.-√326.(2019河南安阳高三一模,)9sin 2α+1cos 2α的最小值为()A.18B.16C.8 D .6 二、填空题7.(2020吉林长春第二中学高一期末,)若角A 是三角形ABC 的内角,且tan A=-13,则sin A+cos A= . 8.(2019江西临川第一中学等九校高三联考,)已知α∈(0,π),且cosα=-1517,则sin (π2+α)·tan(π+α)=.三、解答题9.(2020河南安阳第一中学高一月考,)已知f(α)=sin 2(π-α)·cos(2π-α)·tan(-π+α)sin(-π+α)·tan(-α+3π).(1)化简f(α);(2)若f(α)=18,且π4<α<π2,求cos α-sin α的值; (3)若α=-31π3,求f(α)的值.易错10.(2020山东日照高一上期末,)已知角α的始边与x 轴的非负半轴重合,终边经过点P(m,-m-1),且cos α=m 5. (1)求实数m 的值;(2)若m>0,求sin(3π+α)cos (3π2-α)cos(α-π)sin (π2+α)的值.答案全解全析一、选择题1.B 由题意得(cos α-sin α)2=1-2sin αcos α=1-2×18=34. ∵π4<α<π2,∴cos α-sin α<0,∴cos α-sin α=-√32.2.D 在△ABC 中,有A+B+C=π,则sin(A+B)=sin(π-C)=sin C,A 结论正确; sinB+C 2=sin (π2-A 2)= cos A2,B 结论正确;tan(A+B)=tan(π-C)=-tan C (C ≠π2),C 结论正确;cos(A+B)=cos(π-C)=-cos C,D 结论错误.故选D. 3.A √2+√1-sin 23cos3=√2+√cos 23cos3,因为sin 4<0,cos 3<0,所以原式=2sin4-sin4+-cos3cos3=-2-1=-3.4.B ∵tan θ=3, ∴sin (3π2+θ)+2cos(π+θ)sin (π2-θ)-sin(π-θ)=-3cosθcosθ-sinθ=-31-tanθ=32.故选B.5.A 易知sin α≠0,由三角函数定义得tan α=32sinα,即sinαcosα=32sinα,得3cosα=2sin 2α=2(1-cos 2α),解得cos α=12或cos α=-2(舍去). 6.B 由题意得,9sin 2α+1cos 2α=(sin 2α+cos 2α)·(9sin 2α+1cos 2α)≥9+1+2√9cos 2αsin 2α·sin 2αcos 2α=16,当且仅当sin 2α=34,cos 2α=14时,等号成立. 二、填空题 7.答案 -√105解析 由题得{sin 2A +cos 2A =1,sinA cosA =-13,π2<A <π,∴sin A=√1010,cos A=-3√1010, ∴sin A+cos A=-√105.8.答案817解析 sin (π2+α)·tan(π+α)=cos α·tan α=sin α,因为α∈(0,π),且cos α=-1517,所以sin α=√1-cos 2α=√1-(-1517)2=817.三、解答题 9.解析 (1)f(α)=sin 2α·cosα·tanα(-sinα)(-tanα)=sin αcos α.(2)由f(α)=sin αcos α=18可知(cos α-sin α)2=cos 2α-2sin αcosα+sin 2α=1-2sin αcos α=1-2×18=34. 又∵π4<α<π2,∴cos α<sin α,即cos α-sin α<0, ∴cos α-sin α=-√32.(3)∵α=-31π3=-6×2π+5π3,∴f (-31π3)=cos (-31π3)·sin (-31π3)=cos (-6×2π+5π3)·sin (-6×2π+5π3)=cos 5π3·sin 5π3=cos (2π-π3)·sin (2π-π3)=cos π3·(-sin π3) =12×(-√32) =-√34. 易错警示 诱导公式在解题中的运用要注意两点:一是逐步诱导,如将sin(-π+α)化为-sin α分两步,先用公式sin[-(π-α)]=-sin(π-α),再用公式sin(π-α)=sin α,才能达到目的;二要层次清楚,先变角、再用公式.解题时要防止因逻辑混乱导致的错误.10.解析 (1)根据三角函数的定义可得cos α=√22=m5,解得m=0或m=3或m=-4.(2)由(1)知m=0或m=3或m=-4,因为m>0,所以m=3,所以cos α=35,sinα=-45,由诱导公式,可得sin(3π+α)cos (3π2-α)cos(α-π)sin (π2+α)=-sinα·(-sinα)-cosαcosα=-sin 2αcos 2α=-169.。

2021-2022学年湘教版(2019) 高一数学必修第一册 第5章 全章综合检测(解析版)

2021-2022学年湘教版(2019) 高一数学必修第一册 第5章 全章综合检测(解析版)

2021-2022学年湘教版(2019) 高一数学必修第一册 第5章全章综合检测一、单选题1.点()sin913,cos913A ︒︒位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限【答案】C【分析】首先求出913所在象限,然后判断sin913︒和cos913︒符号即可求解. 【详解】∵9132360193︒=⨯︒+︒, ∴913°角为第三象限角, ∴sin9130︒<,cos9130︒<, ∴点sin913,cos 3()91A ︒︒位于第三象限. 故选:C .2.已知1sin cos 8αα=,且5342ππα<<,则cos sin αα-的值为( )A .BC .34-D .34【答案】B【分析】将cos sin αα-平方可求出cos sin αα-=5342ππα<<可判断cos sin 0αα->,即可得出答案.【详解】()213cos sin 12sin cos 144αααα-=-=-=,cos sin αα-∴=, 5342ππα<<,cos sin αα∴>,则cos sin 0αα->,cos sin αα-∴=故选:B.【点睛】本题考查同角三角函数的关系以及三角函数值大小的判断,属于基础题. 3.设MP ,OM 和AT 分别是角1318π的正弦线、余弦线和正切线,则下列式子正确的是( )A . MP AT OM <<B . AT OM MP <<C .0AT MP <<D . 0AT OM <<【答案】B【分析】根据三角函数线的概念即可判断. 【详解】解:分别作角1318π的正弦线、余弦线和正切线,如图,∵13sin018MP π=>,13cos 018OM π=<,13tan 018AT π=<. ∴0MP OM AT >>>. 故选:B . 4.已知tan α,1tan α是关于x 的方程2230x kx k -+-=的两个实根,且732ππα<<,则cos sin αα+= A 3B 2 C .2- D .3【答案】C 【详解】∵tan α,1tan α是关于x 的方程2230x kx k -+-=的两个实根, ∴tan α+1tan α=k ,tanα•1tan α=k 2﹣3=1. ∵732ππα<<,∴k >0,∵k 2 =4,∴k=2,∴tanα=1,∴α=3π+4π, 则cosα=2sinα=2cosα+sinα=2-, 故选C .5.已知θ是第二象限角,(,2)P x 为其终边上一点且5cos θ=,则2sin cos sin cos θθθθ-+的值( ) A .5B .52C .32D .34【答案】A【分析】由三角函数的定义可得2cos +4θ=x 1x =-,tan 2θ=-,弦化切2sin cos 2tan 1sin cos tan 1θθθθθθ--=++,代入即可得出结果.【详解】由题意得25cos 5+4θ==x x x ,解得1x =±.又θ是第二象限角,1x ∴=-. tan 2θ∴=-.∴2sin cos 2tan 1415sin cos tan 121θθθθθθ----===++-+.故选:A .【点睛】本题考查了三角函数的定义,考查了运算求解能力,属于一般题目.6.若函数()f x 的图象上存在两个不同点A ,B 关于原点对称,则称A ,B 为函数()f x 的一对友好点,记作(),A B ,规定(),A B 和(),B A 是同一对友好点.已知()()cos ,0lg ,0x x f x x x ⎧≥⎪=⎨--<⎪⎩,则函数()f x 的友好点共有( )A .3对B .5对C .7对D .14对【答案】C【分析】结合题意,将函数()f x 的友好点的对数转化为cos y x =与lg y x =的图象的交点个数,然后利用图像求解即可.【详解】因为函数()lg y x =--的图象与函数lg y x =的图象关于原点对称, 所以函数()f x 的友好点的对数即方程cos lg x x =,0x >的解的个数, 即函数cos y x =与lg y x =的图象的交点个数, 作出函数0)cos (y x x =≥与lg y x =的图象,如图所示:可知共有7个交点,即函数()f x 的友好点共有7对. 故选:C .7.已知函数()()()sin 0,0f x A x A ωϕω=+>>的图象与直线()0y b b A =<<的三个相邻交点的横坐标分别是1,2,4,下列区间是函数()f x 的增区间的是( )A .[]0,3B .3,32⎡⎤⎢⎥⎣⎦C .[]3,6D .93,2⎡⎤⎢⎥⎣⎦【答案】D【分析】首先根据已知条件得到()2cos 3f x A x π=-,再求其单调增区间即可. 【详解】由题知函数的周期2413T πω==-=,解得23πω=. 由0b A <<知,当12322x +==时,函数取得最大值, ∴232322k ππϕπ⨯+=+,解得22k πϕπ=-,k ∈Z∴()22sin +2cos 323f x A x k A x ππππ⎛⎫=-=-⎪⎝⎭, 令222,3k x k k ππππ≤≤+∈Z ,解得3332k x k ≤≤+,k ∈Z , ∴当1k =时,()f x 的增区间是93,2⎡⎤⎢⎥⎣⎦.故选:D8.已知()sin(2)(0)6f x x πωφω=+->同时满足下列三个条件:①T π=;②()6y f x π=+是奇函数;③(0)()3f f π<.若()f x 在[0,)a 上没有最小值,则实数a 的取值范围是A .511(,]612ππ B .5(0,]12π C .11(0,]12πD .511(,]1212ππ 【答案】A【解析】因为函数的周期T π=,计算ω的值,根据函数6y f x π⎛⎫=+ ⎪⎝⎭是奇函数,求得,6k k Z πφπ=-+∈,又因为()03f f π⎛⎫< ⎪⎝⎭,可求2,6k k Z πφπ=-+∈,所以()sin 23πf x x ⎛⎫=- ⎪⎝⎭,再根据函数图像判断a 的取值范围.【详解】()f x 的周期T π=,22ππω∴= ,1ω∴=, ()sin 26f x x πφ⎛⎫∴=+- ⎪⎝⎭,6f x π⎛⎫+ ⎪⎝⎭是奇函数,()f x ∴关于,06π⎛⎫⎪⎝⎭对称,2,66k k Z ππφπ∴⨯+-=∈,解得:,6k k Z πφπ=-+∈,()03f f π⎛⎫< ⎪⎝⎭,33sin sin sin cos 6222ππφφφφ⎛⎫⎛⎫∴-<+⇒< ⎪ ⎪⎝⎭⎝⎭ ,即sin 3cos φφ<, ,6k k Z πφπ=-+∈,2,6k k Z πφπ∴=-+∈,()sin 23f x x π⎛⎫∴=- ⎪⎝⎭,当[)0,x a ∈时,2,2333x a πππ⎡⎫-∈--⎪⎢⎣⎭,由图象可知若满足条件,432332a πππ<-≤, 解得:511612a ππ<≤. 故选:A【点睛】本题考查根据函数性质判断参数的取值范围,意在考查函数性质的熟练掌握,以及数形结合分析问题和解决问题的能力,本题的关键是正确求函数的解析式.二、多选题9.若扇形的弧长变为原来的2倍,半径变为原来的2倍,则( ) A .扇形的面积不变B .扇形的圆心角不变C .扇形的面积变为原来的4倍D .扇形的圆心角变为原来的2倍【答案】BC【分析】利用扇形面积公式和弧长公式的变形即可求解.【详解】设原扇形的半径为r ,弧长为l ,圆心角为α,则原扇形的面积为112S lr =,扇形的弧长变为原来的2倍,半径变为原来的2倍后,其面积为212222S l r lr =⋅⋅=,故214S S =,故A 错误,C 正确; 由22l l r rα==,可知扇形的圆心角不变,故B 正确,D 错误. 故选:BC .10.函数()()sin 0,0,0πy A x A ωϕωϕ=+>><<在一个周期内的图象如图所示,则( ).A .该函数的解析式为2π2sin 33y x ⎛⎫=+ ⎪⎝⎭B .该函数图象的对称中心为ππ,03k ⎛⎫- ⎪⎝⎭,Z k ∈C .该函数的单调递增区间是5ππ3π,3π44k k ⎛⎫-+ ⎪⎝⎭,Z k ∈D .把函数π2sin 3y x ⎛⎫=+ ⎪⎝⎭的图象上所有点的横坐标伸长为原来的32倍,纵坐标不变,可得到该函数图象 【答案】ACD【分析】根据图象可得函数的解析式,然后根据三角函数的性质及图象变换规律逐项分析即得.【详解】由题图可知,2A =,周期2ππ4π3π4T ω⎛⎫==-= ⎪⎝⎭, 所以23ω=,则22sin 3y x ϕ⎛⎫=+ ⎪⎝⎭, 因为当π4x =时,2π2sin 234y ϕ⎛⎫=⨯+= ⎪⎝⎭,即πsin 16ϕ⎛⎫+= ⎪⎝⎭,所以ππ2π62k ϕ+=+,Z k ∈,即π2π3k ϕ=+,Z k ∈,又0πϕ<<,故π3ϕ=,从而2π2sin 33y x ⎛⎫=+ ⎪⎝⎭,故A 正确;令2ππ33x k +=,Z k ∈,得π3π22x k -=+,Z k ∈,故B 错误;令π2ππ2π2π2332k x k -+≤+≤+,Z k ∈,得πππ3π4534k k x ≤≤+-+,Z k ∈,故C 正确;函数π2sin 3y x ⎛⎫=+ ⎪⎝⎭的图象上所有点的横坐标伸长为原来的32倍,纵坐标不变,可得到2π2sin 33y x ⎛⎫=+ ⎪⎝⎭,故D 正确.故选:ACD.11.斐波那契螺线又叫黄金螺线,广泛应用于绘画、建筑等,这种螺线可以按下列方法画出:如图,在黄金矩形ABCD 512AB BC ⎛⎫-= ⎪ ⎪⎝⎭中作正方形ABFE ,以F 为圆心,AB 长为半径作弧BE ;然后在黄金矩形CDEF 中作正方形DEHG ,以H 为圆心,DE 长为半径作弧EG ;;如此继续下去,这些弧就连接成了斐波那契螺线.记弧BE ,EG ,GI 的长度分别为l ,m ,n ,则下列结论正确的是( )A .l m n =+B .2m l n =⋅C .2m l n =+D .111m l n=+ 【答案】AB【解析】设51AB =,则2BC =,再由14圆弧分别求得l ,m ,n ,然后再逐项判断.【详解】不妨设51AB =,则2BC =, 所以1(51)2(51)4l ππ-=⨯⨯=. 因为35ED =所以1(35)2(35)4m ππ-=⨯⨯=同理可得1(254)2(254)4n ππ-=⨯⨯=所以l m n =+,2m l n =⋅,2m l n ≠+,111m l n≠+,所以A ,B 正确,C ,D 错误. 故选:AB12.对于函数sin ,sin cos ()cos ,sin cos x x xf x x x x ≤⎧=⎨>⎩,下列四个结论正确的是( )A .()f x 是以π为周期的函数B .当且仅当()x k k ππ=+∈Z 时,()f x 取得最小值-1C .()f x 图象的对称轴为直线()4x k k ππ=+∈ZD .当且仅当22()2k x k k πππ<<+∈Z 时,20()2f x <≤【答案】CD【解析】求得()f x 的最小正周期为2π,画出()f x 在一个周期内的图象,通过图象可得对称轴、最小值和最大值,即可判断正确答案.【详解】解:函数sin ,sin cos ()cos ,sin cos x x xf x x x x ⎧=⎨>⎩的最小正周期为2π,画出()f x 在一个周期内的图象, 可得当52244k x k ππππ++,k Z ∈时, ()cos f x x =,当592244k x k ππππ+<+,k Z ∈时, ()sin f x x =,可得()f x 的对称轴方程为4x k ππ=+,k Z ∈,当2x k ππ=+或322x k ππ=+,k Z ∈时,()f x 取得最小值1-; 当且仅当22()2k x k k Z πππ<<+∈时,()0f x >,()f x 的最大值为2()42f π=,可得20()2f x <, 综上可得,正确的有CD . 故选:CD .【点睛】本题考查三角函数的图象和性质,主要是正弦函数和余弦函数的图象和性质的运用,考查对称性、最值和周期性的判断,考查数形结合思想方法,属于中档题.三、填空题13.已知tan 2θ=,则()()3sin cos 2sin sin 2πθπθπθπθ⎛⎫++- ⎪⎝⎭⎛⎫--- ⎪⎝⎭的值为______.【答案】2【分析】首先利用诱导公式化简原式2cos sin cos θθθ=-,再利用同角三角函数商数关系求解即可.【详解】原式()()3sin cos cos cos 2cos 2cos sin sin cos sin sin 2πθπθθθθπθθθθθπθ⎛⎫++- ⎪--⎝⎭===--⎛⎫--- ⎪⎝⎭ 22tan 1θ==-.故答案为:214.以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形.勒洛三角形是由德国机械工程专家、机构运动学家勒洛首先发现,所以以他的名字命名.一些地方的市政检修井盖、方孔转机等都有应用勒洛三角形.如图,已知某勒洛三角形的一段弧AB 的长度为π,则该勒洛三角形的面积为___________.993π- 【分析】计算出等边ABC 的边长,计算出由弧AB 与AB 所围成的弓形的面积,进而可求得勒洛三角形的面积.【详解】设等边三角形ABC 的边长为a ,则3a ππ=,解得3a =,所以,由弧AB 与AB 所围成的弓形的面积为2221193393sin 3232362a a ππππ⨯-⨯=⨯=, 所以该勒洛三角形的面积9339399332S ππ⎛-=⨯= ⎝⎭. 993π-.15.若()cos ,tan 1sin ,tan 1x x f x x x ⎧≥⎪=⎨<⎪⎩,则()f x 的值域为______.【答案】⎡⎢⎣⎦【分析】分tan 1x ≥,tan 1x <两种情况求函数的值域,再整体讨论求解即可.【详解】解:当tan 1x ≥时,可得,,2442x k k k k ππππππππ⎛⎤⎡⎫∈-+-+⋃++ ⎪⎥⎢⎝⎦⎣⎭,k ∈Z ,此时()cos f x x =,则()f x ⎡⎫⎛∈⋃⎪ ⎢⎪ ⎣⎭⎝⎦; 当tan 1x <时,可得,44x k k ππππ⎛⎫∈-++ ⎪⎝⎭,k ∈Z ,此时()sin f x x =,则()f x ⎛∈ ⎝⎭.所以函数()f x 的值域为⎡⎢⎣⎦.故答案为:⎡⎢⎣⎦四、双空题16.函数()2sin 26f x x m π⎛⎫=-- ⎪⎝⎭,若()0f x ≤在0,2x π⎡⎤∈⎢⎥⎣⎦上恒成立,则m 的取值范围是______;若()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上有两个不同的解,则m 的取值范围是_________.【答案】 2m ≥ 12m ≤<【分析】将()0f x ≤化为2sin 26m x π⎛⎫≥- ⎪⎝⎭,求出当0,2x π⎡⎤∈⎢⎥⎣⎦时,2sin 26x π⎛⎫- ⎪⎝⎭的最大值可得m 的取值范围,将()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上有两个不同的解,化为函数()y f x =,0,2x π⎡⎤∈⎢⎥⎣⎦与y m =的图象有两个交点,再根据函数()y f x =,0,2x π⎡⎤∈⎢⎥⎣⎦的图象可得答案.【详解】因为()0f x ≤可化为2sin 26m x π⎛⎫≥- ⎪⎝⎭,当0,2x π⎡⎤∈⎢⎥⎣⎦时,52,666x πππ⎡⎤-∈-⎢⎥⎣⎦,[]2sin 21,26x π⎛⎫-∈- ⎪⎝⎭,所以2sin 26x π⎛⎫- ⎪⎝⎭的最大值为2,所以2m ≥.因为()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上有两个不同的解,等价于函数()y f x =,0,2x π⎡⎤∈⎢⎥⎣⎦与y m =的图象有两个交点,函数()y f x =,0,2x π⎡⎤∈⎢⎥⎣⎦的图象如图:由图可知,12m ≤<. 故答案为:2m ≥;12m ≤<.【点睛】本题考查了不等式恒成立问题,考查了正弦型函数图象的应用,考查了由函数图象的交点个数求参数范围,属于基础题.五、解答题17.在①函数6f x π⎛⎫+ ⎪⎝⎭为偶函数;②33f π⎛⎫= ⎪⎝⎭③x R ∀∈,()6f x f π⎛⎫≤ ⎪⎝⎭这三个条件中任选一个,补充在下面的横线上,并解答.已知函数()()2sin 0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭的图象与直线2y =的两个相邻交点间的距离为2π,且______. (1)求函数()f x 的解析式;(2)求函数()f x 在[]0,π上的增区间.注:若选择多个条件分别解答,按第一个解答计分.【答案】(1)()2sin 3f x x π⎛⎫=+ ⎪⎝⎭(2)06,π⎡⎤⎢⎥⎣⎦【分析】(1)首先根据()f x 性质可知,()f x 的最小正周期2T π=,然后利用最小正周期求出ω,结合已知条件,若选用条件①,根据三角函数奇偶性和诱导公式即可求解;若选用条件②,根据三角函数值求角并结合ϕ的范围求解即可;若选用条件③,利用()f x 取得最大值时,233k ππϕπ+=+,k Z ∈,并结合ϕ的范围即可求解;(2)利用整体代入法和正弦函数的性质即可求解.【详解】(1)∵()f x 的图象与直线2y =的两个相邻交点间的距离为2π, ∴2T π=,即22ππω=,∴1ω=,∴()()2sin f x x ϕ=+, 选条件①:∵2sin 66f x x ππϕ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭为偶函数,∴62k ππϕπ+=+,即3k πϕπ=+,k Z ∈,∵02πϕ<<,从而3πϕ=,∴()2sin 3f x x π⎛⎫=+ ⎪⎝⎭;选条件②:∵2sin 33f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭∴sin 32πϕ⎛⎫+= ⎪⎝⎭,∴233k ππϕπ+=+,k Z ∈或2233k ππϕπ+=+,k Z ∈, ∴2k ϕ=π,k Z ∈或33k πϕπ=+,k Z ∈,∵02πϕ<<,∴3πϕ=,∴()2sin 3f x x π⎛⎫=+ ⎪⎝⎭;选条件③:∵x R ∀∈,()6f x f π⎛⎫≤ ⎪⎝⎭,∴6f π⎛⎫⎪⎝⎭为()f x 的最大值, ∴262k ππϕπ+=+,k Z ∈,即23k πϕπ=+,k Z ∈,∵02πϕ<<,∴3πϕ=,∴()2sin 3f x x π⎛⎫=+ ⎪⎝⎭.(2)由(1)中知,()2sin 3f x x π⎛⎫=+ ⎪⎝⎭令22232k x k πππππ-+≤+≤+,k Z ∈,得52266k x k ππππ-+≤≤+,k Z ∈令0k =,得566x ππ-≤≤, 从而函数()f x 在[]0,π上的增区间为06,π⎡⎤⎢⎥⎣⎦.18.如图为函数sin()y A x ωϕ=+(0A >,0>ω,ϕπ<)的图象的一段.(1)求其解析式;(2)若将()sin y A ωx φ=+的图象向左平移6π个单位长度后得到函数()f x 的图象,求函数()f x 图象的对称轴方程.【答案】(1)2323y x π⎛⎫=-⎪⎝⎭(2)5122k x ππ=+,k Z ∈【分析】(1)根据图像以及已知条件求出A 和最小正周期T ,然后利用正弦型函数的最小正周期公式求出ω,然后通过代点求出ϕ即可;(2)首先通过平移变换求出()f x ,然后结合正弦函数的性质,利用整体代入法求对称轴即可. 【详解】(1)由图象和已知条件知,3A =52632T πππ=-=, 则T π=,故22Tπω==. 由图像可知,当3x π=时,3sin(2)=03y πϕ⨯+,故223k πϕπ⨯+=,k Z ∈,即223k πϕπ=-,k Z ∈, 又ϕπ<,所以23πϕ=-. 故所求解析式为2323y x π⎛⎫=-⎪⎝⎭. (2)结合(1)中条件可知,()23sin 23sin 2633f x x x πππ⎡⎤⎛⎫⎛⎫=+-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,令232x k πππ-=+,k Z ∈,则5122k x ππ=+,k Z ∈, 故函数()f x 图象的对称轴方程为:5122k x ππ=+,k Z ∈. 19.已知函数()()sin f x A x ωϕ=+(0A >,0>ω,2πϕ<),在同一个周期内,当4x π=时,y 取最大值1,当712x π=时,y 取最小值-1. (1)求函数()f x 的解析式.(2)函数sin y x =的图象经过怎样的变换可得到()y f x =的图象? (3)求方程()()01f x a a =<<在[]0,2π内的所有实数根之和.【答案】(1)()sin 34f x x π⎛⎫=- ⎪⎝⎭(2)答案见解析 (3)112π【分析】(1)结合已知条件可求出A ,最小正周期T ,然后利用最小正周期公式求ω,通过代值求出ϕ即可;(2)利用平移变换和伸缩变换求解即可;(3)利用正弦型函数的对称性求解即可.【详解】(1)设()()sin f x A x ωϕ=+的最小正周期为T ,由题意可知,1A =,1721243T πππ=-=,即223T ππω==,∴3ω=,即()()sin 3f x x φ=+,∵3sin 14πϕ⎛⎫+= ⎪⎝⎭, ∴3242k ππϕπ+=+,k Z ∈, 又2πϕ<,∴4πϕ=-,∴()sin 34f x x π⎛⎫=- ⎪⎝⎭.(2)利用平移变换和伸缩变换可知,sin y x =的图象向右平移4π个单位长度,得到sin 4y x π⎛⎫=- ⎪⎝⎭的图象,再将sin 4y x π⎛⎫=- ⎪⎝⎭的图象上所有点的横坐标缩短为原来的13,纵坐标不变,得到sin 34y x π⎛⎫=- ⎪⎝⎭的图象.(3)∵()sin 34f x x π⎛⎫=- ⎪⎝⎭的最小正周期为23π,∴()sin 34f x x π⎛⎫=- ⎪⎝⎭在[]0,2π内恰有3个周期,∴()sin 3014x a a π⎛⎫-=<< ⎪⎝⎭在[]0,2π内有6个实数根,从小到大设为1x ,2x ,3x ,4x ,5x ,6x ,则12242x x ππ+=⨯=,342112436x x πππ⎛⎫+=+⨯= ⎪⎝⎭,5621922436x x πππ⎛⎫+=+⨯⨯= ⎪⎝⎭, 故所有实数根之和为1119112662ππππ++=.20.函数()sin()f x A x ωϕ=+(其中0,0,||2A πωϕ>><)的部分图象如图所示,把函数()f x 的图像向右平移4π个单位长度,再向下平移1个单位,得到函数()g x 的图像.(1)当17,424x ππ⎡⎤∈⎢⎥⎣⎦时,求()g x 的值域(2)令()=()3F x f x -,若对任意x 都有2()(2)()20F x m F x m -+++≤恒成立,求m 的最大值【答案】(1)21,0⎡⎤⎢⎥⎣⎦(2)265-【分析】(1)根据图象的最低点求得A 的值,根据四分之一周期求得ω的值,根据点7,112π⎛⎫- ⎪⎝⎭求得ϕ的值,由此求得函数()f x 的解析式,进而根据图象平移变换求得()g x 的解析式,并由此求得17,424x ππ⎡⎤∈⎢⎥⎣⎦时()g x 的值域.(2)先求得()f x 的值域,由此求得()F x 的值域.令()[4,2]t F x =∈--对题目所给不等式换元,根据二次函数的性质列不等式组,解不等式组求得m 的取值范围,由此求得m 的最大值. 【详解】(1)根据图象可知171,4123A T ππ==- 2,2,()sin(2)T f x x Tππωϕ∴=∴===+ 代入7,112π⎛⎫-⎪⎝⎭得,7sin 1,2,63k k Z ππϕϕπ⎛⎫+=-=+∈ ⎪⎝⎭, ||,0,23k ππϕϕ<∴==()sin 23f x x π⎛⎫∴=+ ⎪⎝⎭把函数()f x 的图像向右平移4π个单位长度,再向下平移1个单位,得到函数()g x ()sin 21sin 21436g x x x πππ⎛⎫⎛⎫⎛⎫∴=-+-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,设26t x π=-,则5,34t ππ⎡⎤∈⎢⎥⎣⎦, 此时sint 2⎡⎤∈-⎢⎥⎣⎦,所以值域为1,0⎡⎤⎢⎥⎣⎦. (2)由(1)可知()sin 2[1,1]3f x x π⎛⎫=+∈- ⎪⎝⎭()()3[4,2]F x f x =-∈--对任意x 都有2()(2)()20F x m F x m -+++≤恒成立 令()[4,2]t F x =∈--,2()(2)2h t t m t m =-+++,是关于t 的二次函数,开口向上则max ()0h t ≤恒成立而()h t 的最大值,在4t =-或2t =-时取到最大值则(2)0(4)0h h -≤⎧⎨-≤⎩,4(2)(2)2016(2)(4)20m m m m -+-++≤⎧⎨-+-++≤⎩,解得103265m m ⎧≤-⎪⎪⎨⎪≤-⎪⎩所以265m ≤-,则m 的最大值为265-.【点睛】本小题主要考查由三角函数图像求三角函数的解析式,考查三角函数图像变换,考查不等式恒成立问题,考查化归与转化的数学思想方法,属于中档题.21.如图所示,某小区为美化环境,准备在小区内的草坪的一侧修建一条直路OC ,另一侧修建一条休闲大道.休闲大道的前一段OD是函数)0y k =>的图象的一部分,后一段DBC 是函数()sin()x f x A ωϕ=+(0A >,0>ω,2πϕ<,[]4,8x ∈)的图象,图象的最高点为B ⎛ ⎝⎭,且DF OC ⊥,垂足为点F .(1)求函数()sin()x f x A ωϕ=+([]4,8x ∈)的解析式;(2)若在草坪内修建如图所示的矩形儿童乐园PMFE ,点P 在曲线OD 上,其横坐标为43,点E 在OC 上,求儿童乐园的面积. 【答案】(1)83()63f x x ππ⎛⎫=- ⎪⎝⎭,[4,8]x ∈ 323【分析】(1)结合已知条件可求A 以及最小正周期T ,利用最小正周期公式求ω,然后通过代点求出ϕ即可;(2)结合(1)中结论求出D 点坐标,进而求出曲线OD 的方程,结合已知条件求出P 点坐标即可求解.【详解】(1)由题意可知,83A =不妨设()sin()x f x A ωϕ=+最小正周期为T ,由图像知,18534T =-=,即12T =,则()224856T ωπππ===⨯-, ∵点83B ⎛ ⎝⎭在83()6f x x ϕπ⎛⎫+ ⎪⎝⎭的图象上, ∴5262k ϕπ=π+π+,k Z ∈,即23k πϕπ=-,k Z ∈.∵2πϕ<,∴3πϕ=-,故83()63f x x ππ⎛⎫=- ⎪⎝⎭,[4,8]x ∈. (2)在83()63f x x ππ⎛⎫- ⎪⎝⎭中,令4x =,则4y =,故D 点坐标为()4,4, 将()44D ,代入y k x =2k =,从而曲线OD 的方程为:()204y x x =≤≤,当43x =时,则433y =,故P 点坐标为443,33⎛⎫ ⎪ ⎪⎝⎭, ∴矩形PMFE 的面积为4433234339S ⎛⎫=-⨯= ⎪⎝⎭,即儿童乐园的面积为3239. 22.函数()()sin ωϕ=+f x x (0>ω,0ϕπ<<)的部分图象如图所示.(1)求ϕ的值及()f x 的增区间;(2)若()f x 图象的横坐标不变,纵坐标扩大为原来的2倍,然后再将所得图象向右平移3π个单位长度,最后向上平移1个单位长度,得到函数()g x 的图象,若在[]0,b ()0b >上函数()g x 的图象与x 轴恰有10个交点,求实数b 的取值范围. 【答案】(1)23πϕ=;7,,1212k k k ππππ⎡⎤--∈⎢⎥⎣⎦Z (2)5967,1212ππ⎡⎫⎪⎢⎣⎭【分析】(1)由三角函数图象得T π=,进而得2ω=,再待定系数求解得23ϕπ=,最后整体换元求解即可;(2)由三角函数平移变换得2sin 21g x x ,进而得函数()g x 的零点712x k ππ=+或()1112x k k ππ=+∈Z ,再结合三角函数性质分析即可得答案. 【详解】(1)解:由图易知22362T πππ=-=,则T π=,22T πω==,由题意结合图象知2,6k k πϕπ⨯+=∈Z ,又0ϕπ<<,故23ϕπ=, 则()2sin 23f x x π⎛⎫=+ ⎪⎝⎭.令2222,232k x k k πππππ-≤+≤+∈Z ,解得7,1212k x k k ππππ-≤≤-∈Z , 所以()f x 的增区间是7,,1212k k k ππππ⎡⎤--∈⎢⎥⎣⎦Z . (2)解:(2)由题意知()22sin 212sin 2133g x x x ππ=-++=⎡⎤⎛⎫ ⎪⎢⎥⎝⎣⎦+⎭. 令()0g x =,即1sin 22x =-,即7226x k ππ=+或11226x k ππ=+,得712x k ππ=+或()1112x k k ππ=+∈Z . 所以在[]0,π上函数()g x 的图象与x 轴恰有两个交点,若在[]0,b 上函数()g x 的图象与x 轴恰有10个交点,则b 不小于第10个交点的横坐标,小于第11个交点的横坐标, 即b 的取值范围为115941212b πππ≥+=且76751212b πππ<+=,解得59671212b ππ≤<. 故实数b 的取值范围为5967,1212ππ⎡⎫⎪⎢⎣⎭.。

【2019版新教材】高中数学A版必修第一册第一章全章节教案教学设计+课后练习及答案(名师推荐精编版)

【2019版新教材】高中数学A版必修第一册第一章全章节教案教学设计+课后练习及答案(名师推荐精编版)

【新教材】人教统编版高中数学A版必修第一册第一章教案教学设计+课后练习及答案1.1 《集合的概念》教案教材分析集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础.许多重要的数学分支,都是建立在集合理论的基础上.此外,集合理论的应用也变得更加广泛.教学目标【知识与能力目标】1.通过实例,了解集合的含义,体会元素与集合的属于关系;2.知道常用数集及其专用记号;3.了解集合中元素的确定性、互异性、无序性;4.会用集合语言表示有关数学对象;5.培养学生抽象概括的能力.【过程与方法目标】1.让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.2.让学生归纳整理本节所学知识.【情感态度价值观目标】使学生感受学习集合的必要性和重要性,增加学生对数学学习的兴趣.教学重难点【教学重点】集合的含义与表示方法.【教学难点】对待不同问题,表示法的恰当选择.课前准备学生通过预习,自主学习、思考、交流、讨论和概括,从而更好地完成本节课的教学目标.教学过程(一)创设情景,揭示课题请分析以下几个实例:1.正整数1,2,3,;2.中国古典四大名著;3.2018足球世界杯参赛队伍;4.《水浒》中梁山108 好汉;5.到线段两端距离相等的点.在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体.(二)研探新知1.集合的有关概念(1)一般地,我们把研究对象统称为元素(element),把一些元素组成的总体叫做集合(set)(简称为集).思考:上述5 个实例能否构成集合?如果是集合,那么它的元素分别是什么?练习1:下列指定的对象,是否能构成一个集合?①很小的数②不超过30 的非负实数③直角坐标平面的横坐标与纵坐标相等的点④ 的近似值⑤高一年级优秀的学生⑥所有无理数⑦大于2 的整数⑧正三角形全体(2)关于集合的元素的特征(a)确定性:设A一个给定的集合,对于一个具体对象a,则a或者是集合A 的元素,或者不是集合 A 的元素,两种情况必有一种且只有一种成立.(b)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.一元素.(c)无序性:集合中的元素是没有顺序关系的,即只要构成两个集合的元素一样,我们称这两个集合是相等的,跟顺序无关.(3)思考1:列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题.答案:(a)把3-11内的每一个偶数作为元数,这些偶数全体就构成一个集合.(b)不能组成集合,因为组成它的元素是不确定的.( 4)元素与集合的关系;(a)如果a是集合A的元素,就说a属于(belongto) A,记作a € A(b)如果a不是集合A的元素,就说a不属于(not belong to) A,记作a A例如:A表示方程x2=1的解. 2 A, 1CA( 5)集合的表示方法我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合.(a)列举法:把集合中的元素一一列举出来,并用花括号”。

新版高一数学必修第一册第三章全部配套练习题(含答案和解析)

新版高一数学必修第一册第三章全部配套练习题(含答案和解析)

新版高一数学必修第一册第三章全部配套练习题(含答案和解析)3.1.1 函数的概念基 础 练巩固新知 夯实基础1.下列说法正确的是( )A .函数值域中每一个数在定义域中一定只有一个数与之对应B .函数的定义域和值域可以是空集C .函数的定义域和值域一定是数集D .函数的定义域和值域确定后,函数的对应关系也就确定了2.若函数y =f (x )的定义域M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )3.函数f (x )=x -1x -2的定义域为( ) A .[1,2)∪(2,+∞) B .(1,+∞) C .[1,2)D .[1,+∞)4.已知函数f (x )的定义域为[-1,2),则函数f (x -1)的定义域为( )A .[-1,2)B .[0,2)C .[0,3)D .[-2,1)5.函数y =5x +4x -1的值域是( )A .(-∞,5)B .(5,+∞)C .(-∞,5)∪(5,+∞)D .(-∞,1)∪(1,+∞) 6.函数y =x +1的值域为( )A .[-1,+∞)B .[0,+∞)C .(-∞,0]D .(-∞,-1]7.已知函数f (x )=x +1x,则f (2)+f (-2)的值是( )A .-1B .0C .1D .2 8.下列函数完全相同的是( )A .f (x )=|x |,g (x )=(x )2B .f (x )=|x |,g (x )=x 2C .f (x )=|x |,g (x )=x 2x D .f (x )=x 2-9x -3,g (x )=x +39.求下列函数的定义域:(1)f (x )=1x +1; (2)y =x 2-1+1-x 2; (3)y =2x +3; (4)y =x +1x 2-1.10.求下列函数的值域:(1)y =2x +1,x ∪{1,2,3,4,5}; (2)y =x 2-4x +6,x ∪[1,5); (3)y =3-5x x -2; (4)y =x -x +1.能 力 练综合应用 核心素养11.已知等腰∪ABC 的周长为10,则底边长y 关于腰长x 的函数关系为y =10-2x ,此函数的定义域为( )A .RB .{x |x >0}C .{x |0<x <5}D.⎩⎨⎧x ⎪⎪⎭⎬⎫52<x <5 12.函数f (x )=1x 2+1(x ∪R )的值域是( )A .(0,1)B .(0,1]C .[0,1)D .[0,1]13.函数y =f (x )的图象与直线x =a 的交点个数有( )A .必有一个B .一个或两个C .至多一个D .可能两个以上 14.函数y =3-2x -x 2+14-x 2的定义域为____________________(用区间表示).15.函数y =1x -2的定义域是A ,函数y =x 2+2x -3的值域是B ,则A ∩B =________________(用区间表示).16.若函数f (2x -1)的定义域为[0,1),则函数f (1-3x )的定义域为________. 17.若函数y =ax 2+2ax +3的值域为[0,+∞),则a 的取值范围是________. 18.已知函数f (x )=x 21+x 2.(1)求f (2)+f ⎝⎛⎭⎫12,f (3)+f ⎝⎛⎭⎫13的值. (2)求证:f (x )+f ⎝⎛⎭⎫1x 是定值.(3)求f (2)+f ⎝⎛⎭⎫12+f (3)+f ⎝⎛⎭⎫13+…+f (2019)+f ⎝⎛⎭⎫12019的值.19.已知函数y =mx 2-6mx +m +8的定义域是R ,求实数m 的取值范围.20.已知函数f (x )=3-x +1x +2的定义域为集合A ,B ={x |x <a }. (1)求集合A ;(2)若A ∪B ,求a 的取值范围;(3)若全集U ={x |x ≤4},a =-1,求∪U A 及A ∩(∪U B ).【参考答案】1. C 解析 根据从集合A 到集合B 函数的定义可知,强调A 中元素的任意性和B 中对应元素的唯一性,所以A 中的多个元素可以对应B 中的同一个元素,从而选项A 错误;同样由函数定义可知,A 、B 集合都是非空数集,故选项B 错误;选项C 正确;对于选项D ,可以举例说明,如定义域、值域均为A ={0,1}的函数,对应关系可以是x →x ,x ∪A ,可以是x →x ,x ∪A ,还可以是x →x 2,x ∪A .2. B 解析 A 中定义域是{x |-2≤x ≤0},不是M ={x |-2≤x ≤2},C 中图象不表示函数关系,D 中值域不是N ={y |0≤y ≤2}.3. A 解析 由题意知,要使函数有意义,需满足⎩⎪⎨⎪⎧x -1≥0,x -2≠0即x ≥1且x ≠2.4. C 解析 ∪f (x )的定义域为[-1,2),∪-1≤x -1<2,得0≤x <3,∪f (x -1)的定义域为[0,3).5. C 解析 ∪y =5x +4x -1=5(x -1)+9x -1=5+9x -1,且9x -1≠0,∪y ≠5,即函数的值域为(-∞,5)∪(5,+∞).6. B 解析 由于x +1≥0,所以函数y =x +1的值域为[0,+∞).7. B 解析 f (2)+f (-2)=2+12-2-12=0.8. B 解析 A 、C 、D 的定义域均不同.9. 解 (1)要使函数有意义,即分式有意义,则x +1≠0,x ≠-1.故函数的定义域为{x |x ≠-1}.(2)要使函数有意义,则⎩⎪⎨⎪⎧ x 2-1≥0,1-x 2≥0,即⎩⎪⎨⎪⎧x 2≥1,x 2≤1.所以x 2=1,从而函数的定义域为{x |x =±1}={1,-1}. (3)函数y =2x +3的定义域为{x |x ∪R }.(4)因为当x 2-1≠0,即x ≠±1时,x +1x 2-1有意义,所以原函数的定义域是{x |x ≠±1,x ∪R }.10. 解 (1)∪x ∪{1,2,3,4,5},∪(2x +1)∪{3,5,7,9,11},即所求函数的值域为{3,5,7,9,11}.(2)y =x 2-4x +6=(x -2)2+2. ∪x ∪[1,5),∪其图象如图所示, 当x =2时,y =2;当x =5时,y =11. ∪所求函数的值域为[2,11).(3)函数的定义域为{x |x ≠1},y =3-5x x -2=-5(x -2)+7x -2=-5-7x -2,所以函数的值域为{y |y ≠-5}.(4)要使函数式有意义,需x +1≥0,即x ≥-1,故函数的定义域为{x |x ≥-1}.设t =x +1,则x =t 2-1(t ≥0),于是y =t 2-1-t =⎝⎛⎭⎫t -122-54,又t ≥0,故y ≥-54,所以函数的值域为{y |y ≥-54}. 11. D 解析 ∪ABC 的底边长显然大于0,即y =10-2x >0,∪x <5,又两边之和大于第三边,∪2x >10-2x ,x >52,∪此函数的定义域为⎩⎨⎧x ⎪⎪⎭⎬⎫52<x <5.12. B 解析 由于x ∪R ,所以x 2+1≥1,0<1x 2+1≤1,即0<y ≤1.13. C 解析 当a 在f (x )定义域内时,有一个交点,否则无交点.14. [-1,2)∪(2,3] 解析 使根式3-2x -x 2有意义的实数x 的集合是{x |3-2x -x 2≥0}即{x |(3-x )(x +1)≥0}={x |-1≤x ≤3},使分式14-x 2有意义的实数x 的集合是{x |x ≠±2},所以函数y =3-2x -x 2+14-x 2的定义域是{x |-1≤x ≤3}∩{x |x ≠±2}={x |-1≤x ≤3,且x ≠2}.15. [0,2)∪(2,+∞) 解析 要使函数式y =1x -2有意义,只需x ≠2,即A ={x |x ≠2};函数y =x 2+2x -3=(x +1)2-4≥0,即B ={y |y ≥0},则A ∩B ={x |0≤x <2或x >2}.16. ⎝⎛⎦⎤0,23 解 因为f (2x -1)的定义域为[0,1),即0≤x <1,所以-1≤2x -1<1.所以f (x )的定义域为[-1,1).所以-1≤1-3x <1,解得0<x ≤23.所以f (1-3x )的定义域为⎝⎛⎦⎤0,23. 17. [3,+∞) 解析 函数y =ax 2+2ax +3的值域为[0,+∞),则函数f (x )=ax 2+2ax +3的值域要包括0,即最小值要小于等于0.则{ a >0,Δ=4a 2-12a ≥0,解得a ≥3.所以a 的取值范围是[3,+∞).18. 解 (1)因为f (x )=x 21+x 2,所以f (2)+f ⎝⎛⎭⎫12=221+22+⎝⎛⎭⎫1221+⎝⎛⎭⎫122=1,f (3)+f ⎝⎛⎭⎫13=321+32+⎝⎛⎭⎫1321+⎝⎛⎭⎫132=1. (2)证明:f (x )+f ⎝⎛⎭⎫1x =x 21+x 2+⎝⎛⎭⎫1x 21+⎝⎛⎭⎫1x 2=x 21+x 2+1x 2+1=x 2+1x 2+1=1. (3)由(2)知f (x )+f ⎝⎛⎭⎫1x =1,所以f (2)+f ⎝⎛⎭⎫12=1,f (3)+f ⎝⎛⎭⎫13=1,f (4)+f ⎝⎛⎭⎫14=1,…,f (2019)+f ⎝⎛⎭⎫12019=1. 所以f (2)+f ⎝⎛⎭⎫12+f (3)+f ⎝⎛⎭⎫13+…+f (2019)+f ⎝⎛⎭⎫12019=2018. 19. 解 ∪当m =0时,y =8,其定义域是R .∪当m ≠0时,由定义域为R 可知,mx 2-6mx +m +8≥0对一切实数x 均成立,于是有⎩⎪⎨⎪⎧m >0,Δ=(-6m )2-4m (m +8)≤0,解得0<m ≤1.由∪∪可知,m ∪[0,1]. 20. 解 (1)使3-x 有意义的实数x 的集合是{x |x ≤3},使1x +2有意义的实数x 的集合是{x |x >-2}. 所以,这个函数的定义域是{x |x ≤3}∩{x |x >-2}={x |-2<x ≤3}.即A ={x |-2<x ≤3}. (2)因为A ={x |-2<x ≤3},B ={x |x <a }且A ∪B ,所以a >3.(3)因为U ={x |x ≤4},A ={x |-2<x ≤3},所以∪U A =(-∞,-2]∪(3,4]. 因为a =-1,所以B ={x |x <-1},所以∪U B =[-1,4],所以A ∩∪U B =[-1,3].3.1.2 函数的表示法基 础 练巩固新知 夯实基础1.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速行驶.与以上事件吻合得最好的图象是( )2.已知f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )=( )A .3x +2B .3x -2C .2x +3D .2x -33.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ∪[-1,0],x 2+1,x ∪0,1],则函数f (x )的图象是( )4.已知函数y =f (x )的对应关系如下表,函数y =g (x )的图象是如图的曲线ABC ,其中A (1,3),B (2,1),C (3,2),则f [g (2)]的值为( )A .3B .2C .1D .0 5.函数f (x )=⎩⎪⎨⎪⎧2x 2,0≤x ≤1,2,1<x <2,3,x ≥2的值域是( )A.RB.[0,+∞)C.[0,3]D.{x |0≤x ≤2或x =3} 6.设f (x )=⎩⎪⎨⎪⎧x +1,x >0,1,x =0,-1,x <0,则f (f (0))等于( )A.1B.0C.2D.-17.已知f (2x +1)=3x -2且f (a )=4,则a 的值为________.8.已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x )的解析式.9.已知二次函数f (x )满足f (0)=0,且对任意x ∪R 总有f (x +1)=f (x )+x +1,求f (x ).10 (1)已知f (x +1x )=x 2+1x2,求f (x )的解析式.(2)已知f (x )满足2f (x )+f (1x )=3x ,求f (x )的解析式.(3)已知f (x )+2f (-x )=x 2+2x ,求f (x )的解析式.能 力 练综合应用 核心素养11.如果f ⎝⎛⎭⎫1x =x1-x ,则当x ≠0,1时,f (x )等于( )A.1xB.1x -1C.11-xD.1x-1 12.已知x ≠0时,函数f (x )满足f (x -1x )=x 2+1x 2,则f (x )的表达式为( )A .f (x )=x +1x (x ≠0) B .f (x )=x 2+2(x ≠0)C .f (x )=x 2(x ≠0)D .f (x )=(x -1x)2(x ≠0)13.已知函数y =⎩⎪⎨⎪⎧x 2+1,x ≤0,-2x ,x >0,则使函数值为5的x 的值是( )A.-2或2B.2或-52C.-2D.2或-2或-5214.若f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )=( )A .3x +2B .3x -2C .2x +3D .2x -3 15.已知f (x -1)=x 2,则f (x )的解析式为( )A .f (x )=x 2+2x +1B .f (x )=x 2-2x +1C .f (x )=x 2+2x -1D .f (x )=x 2-2x -116.已知f (n )=⎩⎪⎨⎪⎧n -3,n ≥10,f f n +5,n <10,则f (8)=________.17.已知函数y =f (x )满足f (x )=2f (1x )+x ,则f (x )的解析式为____________.18. 已知函数f (x )=1+|x |-x2(-2<x ≤2).(1)用分段函数的形式表示该函数; (2)画出该函数的图象; (3)写出该函数的值域.19.设f (x )是R 上的函数,且满足f (0)=1,并且对任意实数x ,y ,有f (x -y )=f (x )-y (2x -y +1),求f (x )的解析式.【参考答案】1. C 解析 先分析小明的运动规律,再结合图象作出判断.距学校的距离应逐渐减小,由于小明先是匀速运动,故前段是直线段,途中停留时距离不变,后段加速,直线段比前段下降的快,故应选C.2. B 解析 设f (x )=kx +b (k ≠0),∪2f (2)-3f (1)=5,2f (0)-f (-1)=1,∪⎩⎪⎨⎪⎧ k -b =5k +b =1,∪⎩⎪⎨⎪⎧k =3b =-2,∪f (x )=3x -2. 3. A 解析 当x =-1时,y =0,排除D ;当x =0时,y =1,排除C ;当x =1时,y =2,排除B. 4. B 解析 由函数g (x )的图象知,g (2)=1,则f [g (2)]=f (1)=2.5. D 解析 当0≤x ≤1时,f (x )∪[0,2],当1<x <2时,f (x )=2,当x ≥2时,f (x )=3, ∪值域是{x |0≤x ≤2或x =3}.6. C7. 5 解析 ∪f (2x +1)=3x -2=32(2x +1)-72,∪f (x )=32x -72,∪f (a )=4,即32a -72=4,∪a =5.8. 解 设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b ,即ax +5a +b =2x +17不论x 为何值都成立,∪⎩⎪⎨⎪⎧ a =2,b +5a =17,解得⎩⎪⎨⎪⎧a =2,b =7,∪f (x )=2x +7. 9. 解 设f (x )=ax 2+bx +c (a ≠0),∪f (0)=c =0,∪f (x +1)=a (x +1)2+b (x +1)+c =ax 2+(2a +b )x +a +b , f (x )+x +1=ax 2+bx +x +1=ax 2+(b +1)x +1.∪⎩⎪⎨⎪⎧2a +b =b +1,a +b =1. ∪⎩⎨⎧a =12,b =12.∪f (x )=12x 2+12x .10. 解 (1)∪f (x +1x )=x 2+1x 2=(x +1x )2-2,且x +1x ≥2或x +1x ≤-2,∪f (x )=x 2-2(x ≥2或x ≤-2).(2)∪2f (x )+f (1x )=3x ,∪把∪中的x 换成1x ,得2f (1x )+f (x )=3x .∪, ∪×2-∪得3f (x )=6x -3x ,∪f (x )=2x -1x (x ≠0).(3)以-x 代x 得:f (-x )+2f (x )=x 2-2x .与f (x )+2f (-x )=x 2+2x 联立得:f (x )=13x 2-2x .11. B 解析 令1x =t ,则x =1t ,代入f ⎝⎛⎭⎫1x =x 1-x ,则有f (t )=1t1-1t =1t -1,故选B. 12. B 解析 ∪f (x -1x )=x 2+1x 2=(x -1x)2+2,∪f (x )=x 2+2(x ≠0).13. C14. B 解析 设f (x )=ax +b ,由题设有⎩⎪⎨⎪⎧ 2(2a +b )-3(a +b )=5,2(0·a +b )-(-a +b )=1.解得⎩⎪⎨⎪⎧a =3,b =-2.所以选B.15. A 解析 令x -1=t ,则x =t +1,∪f (t )=f (x -1)=(t +1)2=t 2+2t +1,∪f (x )=x 2+2x +1.16. 7 解析 因为8<10,所以代入f (n )=f (f (n +5)),即f (8)=f (f (13));因为13>10,所以代入f (n )=n -3,得f (13)=10,故得f (8)=f (10)=10-3=7.17. f (x )=-x 2+23x (x ≠0) 解析 ∪f (x )=2f (1x )+x ,∪∪将x 换成1x ,得f (1x )=2f (x )+1x .∪由∪∪消去f (1x ),得f (x )=-23x -x3,即f (x )=-x 2+23x(x ≠0).18.解 (1)∪当0≤x ≤2时,f (x )=1+x -x 2=1;∪当-2<x <0时,f (x )=1+-x -x2=1-x .所以f (x )=⎩⎪⎨⎪⎧1,0≤x ≤2,1-x ,-2<x <0.(2)函数f (x )的图象如图所示.(3)由函数f (x )的图象知,f (x )在(-2,2]上的值域为[1,3).19 .解 因为对任意实数x ,y ,有f (x -y )=f (x )-y (2x -y +1),所以令y =x ,有f (0)=f (x )-x (2x -x +1),即f (0)=f (x )-x (x +1). 又f (0)=1,∪f (x )=x (x +1)+1=x 2+x +1.3.2.1 第1课时 函数的单调性基 础 练巩固新知 夯实基础1.函数f (x )的定义域为(a ,b ),且对其内任意实数x 1,x 2均有(x 1-x 2)(f (x 1)-f (x 2))<0,则f (x )在(a ,b )上( ) A .增函数B .减函数C .不增不减函数D .既增又减函数2.若函数f (x )在区间(a ,b )上是增函数,在区间(b ,c )上也是增函数,则函数f (x )在区间(a ,b )∪(b ,c )上( )A .必是增函数B .必是减函数C .是增函数或减函数D .无法确定单调性3.如果函数f (x )在[a ,b ]上是增函数,那么对于任意的x 1,x 2∪[a ,b ](x 1≠x 2),下列结论中不正确的是( ) A.f x 1-f x 2x 1-x 2>0B .(x 1-x 2)[f (x 1)-f (x 2)]>0C .若x 1<x 2,则f (a )<f (x 1)<f (x 2)<f (b ) D.x 1-x 2f x 1-f x 2>0 4.对于函数y =f (x ),在给定区间上有两个数x 1,x 2,且x 1<x 2,使f (x 1)<f (x 2)成立,则y =f (x )( )A .一定是增函数B .一定是减函数C .可能是常数函数D .单调性不能确定5.下列函数中,在(-∞,0]内为增函数的是( ) A .y =x 2-2 B .y =3xC .y =1+2xD .y =-(x +2)26.已知函数f (x )=x 2+bx +c 的图象的对称轴为直线x =1,则( )A .f (-1)<f (1)<f (2)B .f (1)<f (2)<f (-1)C .f (2)<f (-1)<f (1)D .f (1)<f (-1)<f (2)7.若函数f (x )=2x 2-mx +3,当x ∪[-2,+∞)时是增函数,当x ∪(-∞,-2)时是减函数,则f (1)=________.8.已知函数f (x )=⎩⎪⎨⎪⎧(a -3)x +5,x ≤1,2a x ,x >1是R 上的减函数,则实数a 的取值范围是 。

2019-2020学年高一数学苏教版必修1同步练习:2.3 映射的概念 Word版含答案

2019-2020学年高一数学苏教版必修1同步练习:2.3 映射的概念 Word版含答案

姓名,年级:时间:2.3 映射的概念1、下列对应是从集合M 到集合N 的映射的是( )①;:,,M N R f x y x M y N ==→=∈∈1x。

②2;:,,M N R f x y x x M y N ==→=∈∈ ③|:,,|;M N R f x y x M y N +==→=∈∈1x x。

④3;:,,M N R f x y x x M y N ==→=∈∈.A.①② B 。

②③ C.①④ D 。

②④2、已知:f A B →是集合A 到B 的映射,又A B ==R ,对应法则2:23,f x y x x k B →=+-∈且k 在A 中没有原象,则k 的取值范围是( )A 。

(),4-∞-B 。

(1,3)-C 。

[),?-+∞4D 。

(,1)(3,)-∞-⋃+∞3、已知集合A 中元素(),x y 在映射f 下对应B 中元素(),x y x y +-,则B 中元素()4,2-在A 中对应的元素为( ) A. ()1,3 B 。

(1,6) C 。

()2,4 D 。

()2,64、设集合{|02},{|12}A x x B y y =≤≤=≤≤,下列图中能表示从集合A 到集合B 的映射的是( )A 。

B.C. D 。

5、下列对应不是映射的是( )A. B 。

C 。

D 。

6、图中各图表示的对应能构成映射的个数有( )A.3个 B 。

4个 C 。

5个 D 。

6个 7、在下列各对集合M 和Y 中,使对应法则21:1f x x →-可以作为集合M 到Y 的映射的是( ) A 。

{}111,3,5,0,,824M Y ⎧⎫=---=⎨⎬⎩⎭B.{}1113,5,7,0,,,82448M Y ⎧⎫==⎨⎬⎩⎭C 。

{}111,2,3,0,,38M Y ⎧⎫==⎨⎬⎩⎭D 。

{}110,2,4,6,1,,315M Y ⎧⎫==-⎨⎬⎩⎭8、下列对应关系不是映射的是( )A 。

B. C. D.9、集合{04},{02}A x x B y y =≤≤=≤≤,下列不表示从A 到B 的函数的是( ) A.1:2f x y x →=B.1:3f x y x →= C.2:3f x y x →=D.:f x y x →=10、已知映射:,f A B →其中,A B R ==对应法则221:().3xxf x y +→=若对实数,m B ∈在集合A 中存在元素与之对应,则m 的取值范围是( ) A 。

2019-2020学年高中北师版数学a版高一必修1(45分钟课时作业与单元测试卷):第一章_章末检测_word版含解析

2019-2020学年高中北师版数学a版高一必修1(45分钟课时作业与单元测试卷):第一章_章末检测_word版含解析

第一章章末检测班级__________ 姓名__________ 考号__________ 分数__________本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.下列表示①{0}=∅,②{3}∈{3,4,5},③∅{0},④0∈{0}中,正确的个数为( )A .1B .2C .3D .4答案:B解析:③④正确.2.设全集U =R ,M ={x |x ≥1},N ={x |0≤x <5},则(∁U M )∪(∁U N )为( )A .{x |x ≥0)B .{x |x <1或x ≥5}C .{x |x ≤1或x ≥5}D .{x |x <0或x ≥5}答案:B解析:借助数轴直观选择.3.已知集合A ={0,1,2,3,4,5},B ={1,3,6,9},C ={3,7,8},则(A ∩B )∪C 等于( )A .{0,1,2,6}B .{3,7,8}C .{1,3,7,8}D .{1,3,6,7,8}答案:C解析:直接进行交并运算.4.若集合M ={a ,b ,c }中的元素是△ABC 的三边长,则△ABC 一定不是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形答案:D解析:由集合中元素的互异性可知.5.设集合A ={0,1},集合B ={1,2,3},定义A *B ={z |z =xy +1,x ∈A ,y ∈B },则A *B 集合中真子集的个数是( )A .14B .15C .16D .17答案:B解析:A *B ={1,2,3,4},故集合中有4个元素,则真子集有24-1=15个.6.设集合A ={(x ,y )|x -y =1},B ={(x ,y )|2x +y =8},则A ∩B =( )A .{(3,2)}B .{3,2}C .{(2,3)}D .{2,3}答案:A解析:解⎩⎪⎨⎪⎧ x -y =12x +y =8得⎩⎪⎨⎪⎧x =3y =2. 7.已知集合A ={x ∈R |x <5-2},B ={1,2,3,4},则(∁R A )∩B 等于( )A .{1,2,3,4}B .{2,3,4}C .{3,4}D .{4}答案:D解析:借助数轴直观判断.8.设集合P ={1,2,3,4,5,6},Q ={x ∈R |2≤x ≤6},那么下列结论正确的是( )A .P ∩Q =PB .P ∩Q ÙQC .P ∪Q =QD .P ∩Q ØP答案:D解析:对照答案逐一验证.9.全集U =R ,集合M ={x |x 2-4≤0}则∁U M =( )A .{x |-2<x <2}∴a=4.(2)若P∪Q=Q,即P⊆Q.用数轴表示如下:∴a≤2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020年高一数学必修一课堂综合训练题含答案
一、填空题:本大题共5小题,每小题4分,共20分.把答案填在题中横线上. 1. 函数
2log (21)y x =
+的定义域是______________. 2. 二次函数2y ax bx c =++的部分对应值如下表:
则不等式2
0ax bx c ++>的解集是_________________.
3. 已知函数3log y x =的图象上有两点11(,)A x y ,22(,)B x y ,且线段AB 的中点在x 轴上,则12x x ⋅=____________.
4. 若函数|2|y x c =+是区间(1]-∞,
上的单调函数,则实数c 的取值范围是____________. 5. 为预防流感,学校对教室进行消毒.已知药物释放过程中,
室内每立方米空气中的含药量y (毫克)与时间t (小时)成
正比;药物释放完毕后,y 与t 的函数关系式为a
t y -⎪


⎝⎛=161
(a 为常数).如图所示,根据图中提供的信息,回答下列问题:
(1)从药物释放开始,每立方米空气中的含药量y (毫克)与时间t (小时)之间的函数关系式为 .
(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过 小时后,学生才能回到教室.
二、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤. 6. (本小题满分10分)
已知函数()22x x f x -=+. (1)证明()f x 是偶函数;
(2)判断()f x 在(0)+∞,
上的单调性并加以证明.
7. (本小题满分10分)
设a ∈R ,函数2()4f x x ax =++. (1)解不等式()()10f x f x x +-<;
(2)求()f x 在区间[1
2],上的最小值()g a .
8.(本小题满分10分)
对于区间[]()a b a b <,
,若函数()y f x =同时满足:① ()f x 在[]a b ,上是单调函数;② 函数()y f x =,[]x a b ∈,
的值域是[]a b ,,则称区间[]a b ,为函数()f x 的“保值”区间. (1)求函数2
y x =的所有“保值”区间; (2)函数2(0)y x m
m =+≠是否存在“保值”区间?若存在,求出m 的取值范围;
若不存在,说明理由.
参考答案及评分标准
满分50分
一、填空题:本大题共5小题,每小题4分,共20分.(一题两空的题目每空2分) 1. 1|12x x ⎧⎫
-
<<⎨⎬⎩⎭
; 2. {|3x x >,
或2}x <-; 3. 1; 4. (2]-∞-,; 5.(1) 0.11000.110.1.16t t t y t -≤≤⎧⎪
=⎨⎛⎫> ⎪
⎪⎝⎭
⎩,,
, (2) 6.0.
二、解答题:本大题共3小题,共30分.
6.(1)证明:()f x 的定义域为R , ………………1分 且对于任意x ∈R , ()2
2()x
x f x f x --=+=,
所以()f x 是偶函数. ………………4分
(2)()f x 是(0)+∞,
上的增函数. ………………5分 证明如下:设12x x ,是(0)+∞,
上的两个任意实数,且12x x <,则120x x x ∆=-<, 1212
1
2
12
121111()()22222222x x x x x x x x y f x f x ⎛
⎫⎛⎫∆=-=+-+=-+- ⎪ ⎪⎝
⎭⎝⎭
211
2
121212
22122(22)122x x x x x x x x x x
++-⎛⎫
=-+=-- ⎪⎝⎭
. 因为120x x <<, 所以 1222x
x
<,1
2
21x x +>,
所以12220x x
-<,12
1102x x +-
>, 从而0y ∆<,
所以()f x 是(0)+∞,
上的增函数. ………………10分
7.解:(1)()()10f x f x x +-<,即2
2810x x +<, ………………2分
化简整理得2
540x x -+<,解得14x <<. ………………4分
(2)函数2()4f x x ax =++图象的对称轴方程是2
a x =-. ① 当12
a
-
≤,即2a ≥-时,()f x 在区间[12],上单调递增, 所以min ()(1)5f x f a ==+; ………………6分 ② 当122a <-
<,即42a -<<-时,()f x 在区间12a ⎡⎤-⎢⎥⎣⎦,上单调递减,在22a ⎡⎤-⎢⎥⎣⎦
,上单调递增所以,2min ()424a a f x f ⎛⎫
=-=- ⎪⎝⎭
; ………………8分
③ 当22
a
-
≥,即4a ≤-时,()f x 在区间[12],上单调递减, 所以min ()(2)28f x f a ==+.
综上,2
52()442428 4.
a a a g a a a a +≥-⎧⎪
⎪=--<<-⎨⎪+≤-⎪⎩, ,, ,, ………………10分
8.解:(1)因为函数2y x =的值域是[0)+∞,,且2
y x =在[]a b ,的值域是[]a b ,, 所以[][0)a b ⊆+∞,,
, 所以0a ≥, 从而函数2
y x =在区间[]a b ,上单调递增, 故有2
2.
a a
b b ⎧=⎪⎨=⎪⎩, 解得0101a a b b ==⎧⎨==⎩,或,,或.
又a b <, 所以01a b =⎧⎨=⎩
,.
所以函数2
y x =的“保值”区间为[01],
. ………………3分
(2)若函数2(0)y x m
m =+≠存在“保值”区间,则有:
① 若0a b <≤,此时函数2y x m =+在区间[]a b ,上单调递减,
所以 2
2.
a m
b b m a ⎧+=⎪⎨+=⎪⎩, 消去m 得22
a b b a -=-, 整理得()(1)0a b a b -++=.
因为a b <, 所以10a b ++=, 即 1a b =--. 又01b b b ≤⎧⎨
--<⎩,,
所以 1
02b -<≤.
因为 2
2
2
13124m b a b b b ⎛
⎫=-+=---=-+- ⎪⎝
⎭ 102b ⎛⎫-<≤ ⎪⎝⎭,
所以 3
14
m -≤<-
. ………………6分 ② 若0b a >≥,此时函数2y x m =+在区间[]a b ,
上单调递增, 所以 2
2.
a m a
b m b ⎧+=⎪⎨+=⎪⎩, 消去m 得22
a b a b -=-, 整理得()(1)0a b a b -+-=.
因为a b <, 所以 10a b +-=, 即 1b a =-. 又01a a a ≥⎧⎨
<-⎩,,
所以 1
02a ≤<.
因为 2
2
1124m a a a ⎛
⎫=-+=--+ ⎪⎝
⎭ 102a ⎛⎫≤< ⎪⎝⎭,
所以 1
04
m ≤<
. 因为 0m ≠, 所以 1
04
m <<. ………………9分
综合 ①、② 得,函数2
(0)y x m
m =+≠存在“保值”区间,此时m 的取值范围是
311044⎡⎫⎛⎫--⎪ ⎪⎢⎣
⎭⎝⎭,,. ………………10分。

相关文档
最新文档