重力数据处理解释方法

合集下载

重力数据处理与初步解释的基本流程

重力数据处理与初步解释的基本流程

重力数据处理与初步解释的基本流程## Gravity data processing and preliminary interpretation workflow.Gravity data is a valuable tool for studying theEarth's interior. It can be used to determine the density variations within the Earth, which can provide information about the structure and composition of the Earth's crust, mantle, and core.The processing of gravity data is a complex processthat involves several steps. The first step is to remove the effects of the Earth's normal gravity field. This is done by using a reference field, which is a mathematical model of the Earth's gravity field that has been calculated from a global gravity survey. The second step is to remove the effects of the topography. This is done by using a digital elevation model (DEM), which is a digital representation of the Earth's surface. The third step is to correct for the effects of the atmosphere. This is done byusing a model of the atmosphere's density and temperature.Once the data has been processed, it can be interpreted to determine the density variations within the Earth. This is done by using a variety of techniques, including forward and inverse modelling. Forward modelling involves creating a model of the Earth's interior and then calculating the gravity field that would be produced by that model. Inverse modelling involves using the measured gravity field to determine the density variations within the Earth.The interpretation of gravity data can be used to gain a variety of information about the Earth's interior. For example, gravity data can be used to determine the thickness of the Earth's crust, the density variations within the mantle, and the structure of the Earth's core. Gravity data can also be used to identify geological features such as faults, folds, and basins.## 重力数据处理与初步解释的基本流程。

石油勘探中的重力测量技术与解释

石油勘探中的重力测量技术与解释

石油勘探中的重力测量技术与解释石油勘探是一项复杂而精密的过程,其中重力测量技术被广泛应用。

通过对地球重力场的测量和解释,石油勘探人员可以了解地下油气资源的分布情况、油藏的形状和特征等重要信息。

本文将就石油勘探中的重力测量技术与解释进行详细探讨。

一、重力测量技术概述重力测量技术是利用地球重力场的变化来推断地下物质的分布情况和构造特征的一种方法。

通过测量某个地点的重力加速度值,并与参照点进行比较,可以揭示地下物质分布的差异并推断可能的油气储集区域。

常用的重力测量设备包括重力仪器、测量系统和数据处理软件。

二、重力测量在石油勘探中的应用1. 地质构造解释重力测量可以帮助石油勘探人员对地下构造进行解释和预测。

根据地下岩石密度的变化,可以绘制出重力异常图像,用于判断构造的深度和类型。

在勘探过程中,重力异常图像可以辅助识别断层、褶皱和构造块状变形等地质构造,为油气勘探提供重要参考。

2. 沉积盆地勘探在沉积盆地勘探中,重力测量技术可以确定盆地的边界、补给渠道和沉积源区等重要信息。

重力测量可以揭示盆地内部的密度差异,根据不同岩石的密度变化规律,推断沉积物的类型和厚度,评估石油勘探的潜力。

此外,在盆地勘探过程中,重力测量还可以用于判断断陷带、隆起带和盆地侧限等构造特征。

3. 油气储集区预测重力测量技术在油气储集区预测中起着重要作用。

通过重力测量获得的地下密度差异数据,可以推断潜在的油气储集区位置。

油气的储藏通常具有较高的密度,通过观测重力加速度的变化,可以辨别出潜在的油气富集区域。

这对于勘探人员确定钻探目标和优化资源开发具有重要意义。

三、重力测量数据处理与解释重力测量数据处理是重力测量技术中不可或缺的环节。

数据处理的目标是从原始数据中提取出地下油气储集区的信息。

常用的数据处理方法包括重力异常分析、滤波、当前分解和重力反演等。

通过这些处理方法,可以得到重力异常的分布图像,并配合其他地质和地球物理数据进行综合解释,从而辅助决策和勘探工作。

卫星重力测量技术的原理和数据解读方法

卫星重力测量技术的原理和数据解读方法

卫星重力测量技术的原理和数据解读方法随着现代科学技术的不断发展,卫星重力测量技术逐渐成为地球科学领域的重要研究方法之一。

本文将重点讨论卫星重力测量技术的原理和数据解读方法。

一、卫星重力测量技术的原理卫星重力测量技术是利用卫星携带的高精度重力仪器测量地球表面重力场的变化,从而推断地球内部的密度分布和地壳运动等信息。

1.1 重力测量原理重力,是指地球或其他天体表面对物体吸引的力。

在地球表面上,重力的大小和方向不是一致的,而是会因地球内部的密度分布不均匀而变化。

通过卫星重力测量技术,我们可以获取地表某一点的重力值,并通过对比多个点上的重力值差异,推算出地球内部的密度变化。

1.2 卫星重力测量仪器为了实现卫星重力测量,科学家们研发了一系列高精度的重力测量仪器。

目前常用的卫星重力测量仪器主要有超导量子干涉仪(SQUID),绝对重力仪以及光学干涉测量仪(GIM)。

这些仪器可以测量地球表面的重力值,并将数据传输至地面控制中心进行分析和解读。

二、卫星重力测量数据解读方法卫星重力测量数据是复杂且海量的信息集合,需要进行合理的解读才能获得有价值的地质和地球物理学指标。

下面将介绍几种常见的卫星重力测量数据解读方法。

2.1 重力异常解读重力异常是指相对于参考表面(通常是椭球面)的重力场的偏差。

通过对大量重力异常的分析,可以揭示地球内部的密度梯度。

高重力异常通常对应着密度较大的区域,反之亦然。

这些异常主要与地壳构造、岩石性质和地球动力学等因素相关。

2.2 重力梯度解读在卫星重力测量中,不仅可以获取重力值,同时还可以计算重力的梯度,即重力在空间中的变化率。

重力梯度可以提供更加详细的地下密度变化信息,有助于研究构造和地壳运动等问题。

通过对重力梯度的解读,科学家们可以推测地壳运动引起的地震活动、地热流动以及岩浆活动等。

2.3 反演方法卫星重力测量数据的解读过程中,还常常需要借助反演方法。

反演方法是通过调整模型参数,使得模型产生的重力数据与实测数据拟合得最好。

测绘技术中的地球物理数据处理与解释技术介绍

测绘技术中的地球物理数据处理与解释技术介绍

测绘技术中的地球物理数据处理与解释技术介绍地球物理数据处理与解释是测绘技术中的重要环节,它能够为地球科学研究和资源勘探提供关键的数据支持。

下面将介绍地球物理数据处理与解释技术的原理和应用。

一、地球物理数据处理技术地球物理数据处理技术是指通过将地球物理数据进行预处理、处理和后处理等一系列步骤,提取和处理出有效的地球物理信息。

其中,最常见的地球物理数据包括地震数据、电磁数据、重力数据和磁力数据等。

1. 地震数据处理地震是指地球内部发生的震动现象,通过地震数据的处理,我们可以了解到地下岩石的构成、厚度和形状等信息。

地震数据处理的主要步骤包括地震数据质量控制、地震数据成像和地震数据解释等。

地震数据经过处理后,可以生成地震剖面图和速度模型,为地下构造和资源勘探提供了重要的参考。

2. 电磁数据处理电磁数据是指通过测量地球表面的电磁场变化来研究地下结构和资源的一种方法。

电磁数据处理的主要步骤包括数据质量控制、数据解释和数据建模等。

电磁数据处理可以提供地下岩石的电导率分布图,从而为地下水资源勘探和矿产资源勘探等提供了重要的数据支持。

3. 重力数据处理重力数据是通过测量地球引力场的变化来研究地表和地下质量分布的一种方法。

重力数据处理的主要步骤包括数据质量控制、数据解释和数据建模等。

重力数据处理可以提供地下质量分布图,从而为地下岩石的密度分布和构造特征提供了信息。

4. 磁力数据处理磁力数据是通过测量地球磁场的变化来研究地下磁性物质的一种方法。

磁力数据处理的主要步骤包括数据质量控制、数据解释和数据建模等。

磁力数据处理可以提供地下磁性物质的分布图,从而为矿产资源勘探和地下构造研究等提供了重要的数据参考。

二、地球物理数据解释技术地球物理数据解释技术是指通过对处理后的地球物理数据进行解释和分析,得出地下结构和地下资源的有关信息。

地球物理数据解释技术主要包括数据解释方法和解释工具两个方面。

1. 数据解释方法数据解释方法是指通过对处理后的地球物理数据进行反演、成像和模拟等方法,得出地下结构和资源的一系列信息。

《重力学与地磁学》磁异常数据处理与解释部分

《重力学与地磁学》磁异常数据处理与解释部分

x
x
g g(x, y y) - g(x, y)
y
y
实例:塔里木盆地东部及邻区布格重力与重力水平梯度
塔东重力5水4 平梯度
2.3.3 重、磁场的解析延拓
1. 重、磁异常解析延拓概念:
观测面 o
向上延拓:
g(x, y,0) 数学变换 g(x, y,h)
z
向下延拓:
g(x, y,0) 数学变换 g(x, y, h)
重、磁异常是叠加异常,来源于地下不同的 物质源,解释中希望将不同场源的异常分开
2. 重、磁异常数据处理的目的
将各种场源引起的异常分开,用于定量反 演计算与定性解释
3. 数据处理的思路
根据重磁异常特点
异常体埋深、规模大,异常宽缓,异常 值幅度大,在频率域中表现为低频成分多
一般异常体规模、埋深小,异常宽度窄, 幅值变化大,在频率域中表现为高频成分多
起 长江坳陷

海礁隆起
西湖凹陷
10 g.u.
28 26 24 22 20 18 16 14 12 10 8 6 4 2 0 -2 -4 -6 -8 -10
闽 浙

美人峰1井
虎皮礁隆起
起 长江坳陷

海礁隆起
西湖凹陷
10 g.u.
18 17 16 15 14 13 12 11 10 9 8 7 6 5 4
自兴地东开始,近 EW向延伸;
从辛格尔向东延伸, 延伸方向近EW向;
辛格尔北NWW向 延伸异常与中间EW向 异常在东端相交
2. 两个不同特征的磁场界限,往往是断裂存在的表现
不同构造单元的地质情况不同, 磁场也显示出明显不同的特征。 不同构造单元的边界存在断层

物探学习参考资料 重力资料数据处理

物探学习参考资料  重力资料数据处理

重力资料数据处理
1、如何利用布格重力异常选取区域重力异常和求取剩余重力异常?使用Surfer的何种功能可以完成这两种数据处理?
答:对布格重力异常数据采用多种不同大小的窗口进行数据处理并对比,当为某一边长时区域重力场的形态基本趋于平稳,局部异常的成分已基本剔除,可选用该边长时的区域重力场做为区域场。

用布格重力场减区域重力场即可求取到剩余重力场。

打开Surfer软件,菜单中:“网格-滤波器”功能,打开的窗口中选“移动平均方法”通过设置相关参数后即可求取窗口滑动平均的区域场。

打开Surfer软件,菜单中:“网格-数学”功能,打开的窗口中通过设置相关公式后即可求取剩余重力场。

2、对布格重力异常数据进行水平方向导数数据处理的意义?一般对哪些方向进行求导?使用Surfer的何种功能可以完成水平方向导数的数据处理?
答:水平方向导数异常主要用于突出走向垂直于求导方向的断裂及其大致位置、岩脉的位置、宽大地质体的边界线以及确定地质体的走向等。

一般对布格重力异常分别进行0°、45°、90°和135°四个方向的水平方向导数计算。

打开Surfer软件,菜单中:“网格-微积分”功能,打开的窗口中选“方向导数中的一阶导数”通过设置方向参数后即可求取水平方向导数异常。

重力勘探中的数据处理与解释

重力勘探中的数据处理与解释

重力勘探中的数据处理与解释一、引言地球物理勘探技术是石油勘探开发领域中不可或缺的一部分。

其中,重力勘探技术是最为基础的一项技术,其对于石油勘探具有非常重要的意义。

因此,重力勘探中的数据处理与解释技术显得尤为重要。

二、重力勘探的基本原理重力勘探是通过测量地球上任意一点的重力值、重力异常等参数,推断出地下物质的密度分布及其空间结构及形态特征。

在重力勘探中,最基础的是测量地球重力场的各种参数,例如重力值和重力异常等,进而利用理论方法将测量值转化为密度结构。

重力勘探仪器广泛使用的是重力仪,它利用重力加速度的变化来测量地球的重力值。

三、数据处理1. 数据采集与处理重力勘探的数据采集常用重力仪完成。

在完成数据采集后,首先需要对数据进行处理。

(1)数据质量控制在数据采集过程中,为了保证数据的准确和可靠,需要严格把握每个采样点的质量。

数据采集后,需要进行质量控制,主要包括数据滤波、异常值处理、坏点检测和采样点校正等。

在数据的初步处理之后,为了方便数据的后续分析,需要对处理后的数据进行分类存储。

(2)数据校正重力勘探数据在采集过程中可能由于许多因素引起测量误差,包括仪器的灵敏度、环境因素和采样点高度等。

因此,进行数据处理时需要进行数据校正。

(3)数据分析重力勘探数据处理的最终目的是通过分析数据推断出地下物质的密度结构特征。

对于处理过的数据,需要进行统计分析、测试分析、图像处理等方法对数据进行分析。

2. 数据解释(1)地下构造解释地下构造解释是指将重力勘探数据与其他信息相结合,根据地球物理理论模型推断地下构造情况。

常用的方法包括正演模拟、反演模拟等。

(2)岩性解释岩性解释是指通过对重力勘探数据的解释,归纳出样地所含有的岩性类型和岩性组合,通过这种方法可以预测出石油、煤炭、地下水等目标物质的分布情况。

(3)含油气解释含油气解释是指通过分析重力勘探数据,判断目标地区是否有含油气的可能性和分布范围。

通过重力勘探数据分析,可以对含油气区域的地质构造及沉积等特征提供定量化的模型,从而为油气开发提供技术支持。

单摆测重力加速度数据处理

单摆测重力加速度数据处理

单摆测重力加速度数据处理一.用公式法处理实验数据。

根据单摆周期公式,可得,代入实验中测的摆长和周期数值,就可以求出重力加速度。

在实验中,要正确的实验操作测出单摆摆长和周期,求出的重力加速度值才与真实值相等,否则将出现偏差。

如把单摆摆线长当成了摆长,则求出的重力加速度比真实值偏小;如果把单摆的摆线长和小球直径之和当成摆长,则求出的重力加速度比真实值偏大。

二.用图像法处理实验数据。

在用单摆测重力加速度实验中,由单摆周期公式计算,可得,根据“化曲为直”的思想,利用单摆实验中测得的多组数据,采用描点作图法作出图线,如图1所示。

图线的斜率,从而得到重力加速度为。

在用单摆测重力加速度实验中,如果把单摆的摆线长当成了摆长,那么单摆的实际摆长为,由单摆周期公式,可得,用单摆实验中测得的多组数据作出图线,如图2所示。

图2图线不过坐标原点,其横截距绝对值等于摆球半径,图线的斜率仍为,从而得到重力加速度仍为。

在用单摆测重力加速度实验中,如果把单摆的摆线长和小球直径之和当成了摆长,那么单摆的实际摆长为,由单摆周期公式,可得,用单摆实验中测得的多组数据作出图线,如图3所示。

图3图线不过坐标原点,其横截距等于摆球半径。

图线的斜率仍为,从而得到重力加速度仍为。

可见,在用单摆测重力加速度实验中,不管单摆摆长测量偏大还是偏小,根据图像法处理数据,得到的重力加速度值都等于真实值。

综上所述,在用单摆测重力加速度实验中,采用图像法处理实验数据求重力加速度比采用公式法处理实验数据求重力加速度更好些。

因此,物理实验中学会图像法处理实验数据非常重要,这种方法是高考物理实验中必须掌握的方法。

训练园地:1.一组同学在做“用单摆测定重力加速度”的实验中,用正确的操作方法,测定了6组摆长l和周期T的对应值。

为了求出当地的重力加速度g,4位同学提出了4种不同的数据处理方法:A.从测定的6组数据中任意选取1组,用公式求出g作为测量值B.分别求出6个l值的平均值和6个T值的平均值,用公式求出g作为测量值C.分别用6组l、T的对应值,用公式求出6个对应的g值,再求出这6个g的平均值作为测量值D.在坐标纸上作出图像,从图像中计算出图线的斜率k,根据求出g作为测量值.以上4种方法中,错误的是___,其余正确方法中偶然误差最小的是____.答案:BD2.某同学做“用单摆测定重力加速度”的实验时,只测量了悬点与小球上端结点之间的距离L,并通过改变L而测出对应的摆动周期T,再以为纵轴、为横轴作出函数关系图像,那么就可以通过此图像得出小球的半径和当地的重力加速度g.(1)如果实验中所得到的关系图线如图所示,那么真正的图线应该是a、b、c中的____.(2)由图像可知,小球的半径r=____cm;当地的重力加速度g=______.(取)答案(1)a(2)1.29.863.某同学利用单摆测定当地重力加速度,发现单摆静止时摆球重心在球心的正下方,他仍将从悬点到球心的距离当作摆长l,通过改变摆线的长度,测得5组l和对应的周期T,画出图线,然后在图线上选取A、B两个点,坐标如图所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2. 简单规则形体的异常特征及应用 ●Wzz异常及特征应用
2. 简单规则形体的异常特征及应用 ●Wzz异常及特征应用
2. 简单规则形体的异常特征及应用
2)水平圆柱体的重力异常及特征应用
2. 简单规则形体的异常特征及应用
2)水平圆柱体的重力异常及特征应用
2. 简单规则形体的异常特征及应用
2)水平圆柱体的重力异常及特征应用
3. 重力资料高次导数的计算与应用 2)高次导数的计算
3. 重力资料高次导数的计算与应用
2)高次导数的计算
3. 重力资料高次导数的计算与应用 2)高次导数的计算
3. 重力资料高次导数的计算与应用 2)高次导数的计算
3. 重力资料高次导数的计算与应用 2)高次导数的计算
3. 重力资料高次导数的计算与应用 2)高次导数的计算
第三节 正常重力和重力异常
四、重力异常的例子
Rotational Fault
2. 简单规则形体的异常特征及应用 1)球形体的重力异常及特征应用
2. 简单规则形体的异常特征及应用 1)球形体的重力异常及特征应用
2. 简单规则形体的异常特征及应用 1)球形体的重力异常及特征应用
2. 简单规则形体的异常特征及应用 1)球形体的重力异常及特征应用
2. 简单规则形体的异常特征及应用 1)球形体的重力异常及特征应用
异常体分开,压制区域性异常
3. 重力资料高次导数的计算与应用
3. 重力资料高次导数的计算与应用
3. 重力资料高次导数的计算与应用
3. 重力资料高次导数的计算与应用
3. 重力资料高次导数的计算与应用 2)高次导数的计算
3. 重力资料高次导数的计算与应用 2)高次导数的计算
3. 重力资料高次导数的计算与应用 2)高次导数的计算
3. 重力资料高次导数的计算与应用 2)高次导数的计算
3. 重力资料高次导数的计算与应用 2)高次导数的计算
3. 重力资料高次导数的计算与应用 2)高次导数的计算
3)高次导数应用
3)高次导数应用
3)高次导数应用
4. 重力数据的解析延拓
1)概述 a)简单例子说明 b)重力计算的边值问题 2)重力延拓公式的导出 a)上延拓公式 b)下延拓公式 3)重力延拓的应用
2. 简单规则形体的异常特征及应用 1)球形体的重力异常及特征应用
第四讲 重力勘探解释基础
岩矿石的密度分布 解释基本公式 简单规则形体的异常特征及应用 重力资料高次导数解释方法 重力异常解析延拓
2. 简单规则形体的异常特征及应用 ●Wxz异常及特征应用
2. 简单规则形体的异常特征及应用 ●Wzz异常及特征应用
1)问题的提出
2)重力归一化梯度公式的导出
3)重力归一化梯度的应用 (1)理论模型研究
3)重力归一化梯度的应用 (2) 实际应用
6. 重力数据的平滑与趋势分析 1)问题的提出 2)重力数据的平滑处理 a)线性平滑 b)非线性平滑 3)重力归一化梯度的应用
1)问题的提出
2)重力数据的平滑处理 a)线性平滑
3. 重力资料高次导数的计算与应用 2)高次导数的计计算
3. 重力资料高次导数的计算与应用 2)高次导数的计算
3. 重力资料高次导数的计算与应用 2)高次导数的计算
3. 重力资料高次导数的计算与应用 2)高次导数的计算
3. 重力资料高次导数的计算与应用 2)高次导数的计算
b)非线性平滑
c) n次多项式平滑
重力异常平面数据的平滑
7. 重力数据的反演解释与应用 1)单一密度界面的反演 2)反演的多解性 a)多解性原因与表现 b)多解性的限制方法 3)地层密度反演 4)解释结果的相关应用
1)单一密度界面的反演
第一篇 重力勘探 第一章 重力勘探的理论基础
2)水平圆柱体的重力异常及特征应用
2. 简单规则形体的异常特征及应用
2)水平圆柱体的重力异常及特征应用
3. 重力资料高次导数的计算与应用
1)概述 a) 重力异常的导数计算有助于分离叠加
的区域和局部重力异常, b)有助于突出浅部或小的地质体,分离
深部重力异常 c) 将几个靠近或埋深相差不大的几个
2. 简单规则形体的异常特征及应用
2)水平圆柱体的重力异常及特征应用
2. 简单规则形体的异常特征及应用
2)水平圆柱体的重力异常及特征应用
2. 简单规则形体的异常特征及应用
2)水平圆柱体的重力异常及特征应用
2. 简单规则形体的异常特征及应用
2)水平圆柱体的重力异常及特征应用
2. 简单规则形体的异常特征及应用
重力数据处理解释方法
一. 解释基本公式
1. 正演计算基本关系
一. 解释基本公式
1. 正演计算基本关系
一. 解释基本公式
1. 正演计算基本关系
2. 简单规则形体的异常特征及应用 1)球形体的重力异常及特征应用
2. 简单规则形体的异常特征及应用 1)球形体的重力异常及特征应用
2. 简单规则形体的异常特征及应用 1)球形体的重力异常及特征应用
1)概述 a)简单例子说明
先看一个简单例子,有两个大小和埋深不同的球 体,若大球距地面深度为小球的10倍,两者在地 面形成的异常分别为:
b)重力计算的边值问题
2)重力延拓公式的导出
重力延拓示意图
5. 重力数据的归一化梯度计算 1)问题的提出 2)重力归一化梯度公式的导出 3)重力归一化梯度的应用
相关文档
最新文档