安徽省合肥市五十中学2019-2020学年九年级上学期期中测试数学试卷(含答案)

合集下载

江西省九江市第三中学2024-2025学年九年级上学期期中考试数学试卷(含答案)

江西省九江市第三中学2024-2025学年九年级上学期期中考试数学试卷(含答案)

江西省2025届九年级期中综合评估数学▶上册◀说明:共有六个大题,23个小题,满分120分,考试时间120分钟.一、单项选择题(本大题共6小题,每小题3分,共18分)在每小题列出的四个备选项中只有一项是最符合题目要求的,请将其代码填入题后括号内错选、多选或未选均不得分.1.若关于的函数是二次函数,则的值为( )A.1B.2C.0D.32.以下是几种化学物质的结构式,其中文字上方的结构式图案属于中心对称图形的是( )A.甲醛B.甲烷 C.水 D.乙酸3.已知关于的一元二次方程有一个根为,则另一根为( )A.7B.3C.D.4.如图,四边形是的内接四边形,连接,,若,则的度数是( )A. B. C. D.5.在平面直角坐标系中,将抛物线绕顶点旋转得到新抛物线,再将新抛物线沿轴翻折得到抛物线,则,,的值分别是( )A.2,,11B.2,,5C.,,11D.,8,56.某校计划举办劳动之星颁奖典礼,想在颁奖现场设计一个如图1所示的抛物线型拱门入口.要在拱门上顺次粘贴“劳”“动”“之”“保”(分别记作点,,,)四个大字,要求与地面平行,且,抛物线最高点的五角星(点)到的距离为,,,如图2所示,则点到的距离为( )图1 图221.124.1~x 31my x x =-+m x 2520x x m -+=2-7-3-ABCD O OA OC 86AOC ∠=︒ADC ∠94︒127︒136︒137︒285y ax x =-+P 180︒x22y x bx c =++a b c 8-8-2-8-2-A B C D BC BC AD ∥E BC 0.6m 2m BC =4m AD =C ADA. B. C. D.二、填空题(本大题共6小题,每小题3分,共18分)7.一元二次方程的解为______.8.在平面直角坐标系中,点关于原点对称的点的坐标是______.9.如图,是半圆的直径,,为的中点,连接,,则的度数为______.10.《九章算术》“勾股”章有一题:“今有二人同所立.甲行率七,乙行率三.乙东行,甲南行十步而斜东北与乙会,问甲、乙行各几何.”大意是说:已知甲、乙两人同时从同一地点出发,甲每单位时间走7步,乙每单位时间走3步.乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇.那么相遇时,甲、乙各走了多远?设甲走了步(步为古代长度单位,类似于现在的米),根据题意可列方程:____________.(结果化为一般式)11.在平面直角坐标系中,若抛物线向左平移2个单位长度后经过点,则的最大值为______.12.如图,在矩形中,连接,,,将线段绕点顺时针旋转,得到线段,连接,,当时,的周长为______三、解答题(本大题共5小题,每小题6分,共30分)13.(1)解方程:.(2)如图,将绕点逆时针旋转得到,若,且于点,求的度数.14.某件夏天T 恤的售价为100元,因换季促销,在经过连续两次降价后,现售价为81元,求平均每次降价的百分率.15.自古以来,景德镇就是中国陶瓷文化的象征,生产的瓷器闻名四方,远销世界各地.如图,这是景德镇2m 1.8m 2.4m 1.5m290x -=()2,4-BC OAB AC =D AC OD BD BDO ∠x ()()220y a x c a =-+≠()1,6-ac ABCD AC 1AB =60BAC ∠=︒AB B ()0180a α︒<≤︒BP CP DP 12PCB BAC ∠=∠DPC △()()()2131x x x x +=++ABC △A 28︒AB C ''△40C ∠'=︒AB BC '⊥E BAC ∠生产的某种瓷碗正面的形状示意图,是的一部分,是的中点,连接,与弦交于点,连接,.已知,碗深,求的长.16.如图,是的直径,点,点在上,,,请仅用无刻度的直尺按下列要求作图(保留作图痕迹).(1)如图1,在上作一点,使得是以为底边的等腰三角形.(2)如图2,在上方作一点,使得为等边三角形.图1图217.在平面直角坐标系中,已知抛物线与轴没有交点.(1)求的取值范围.(2)请直接写出抛物线顶点所在的象限.四、解答题(本大题共3小题,每小题8分,共24分)18.如图,在平面直角坐标系中,抛物线经过点.(1)求的值,并求出此抛物线的顶点坐标.(2)当时,请利用图象,直接写出的取值范围.(3)当时,请利用图象,直接写出的取值范围.19.如图,在中,,将绕点顺时针旋转,得到,连接,.(1)求证:点,,在同一条直线上.(2)若,,求的面积.AB O D AB OD AB C OA OB 18cm AB =6cm CD =OA AB O C D O 60COA ∠=︒OD AB ⊥OD E OCE △OC AB F ABF △214y x x c =-++x c 222y x xc c c =-+-24y x mx =-++()3,4A -m 20x -≤≤y 0y ≤x ABC △135BCA ︒∠=ACB △A 90︒ADE △CD CE B C D 2BC=AC =CDE △20.某主播销售一种商品,已知这种商品的成本价为20元/个,规定销售价格不低于成本价,且不高于成本价的2倍,通过前几天的销售发现,该商品每天的销售量(单位:个)与销售价格(单位:元/个)之间满足一次函数关系,部分对应数据如下表:/(元/个) (23252811)/个…540500440…(1)求出关于的函数关系式,并直接写出的取值范围.(2)求销售该商品每天的最大利润.五、解答题(本大题共2小题,每小题9分,共18分)21.追本溯源题(1)来自课本中的习题,请你完成解答,提炼方法并解答题(2).(1)如图1,,比较与的长度,并证明你的结论.方法应用(2)如图2,,是的两条弦,点,分别在,上,连接,,且,是的中点.①求证:.②若圆心到的距离为3,的半径是6,求的长.图1 图222.如图,在平面直角坐标系中,抛物线与轴相交于点和点(点在点的左侧),与轴相交于点,点与点关于轴对称,为该抛物线上一点,连接,,,.(1)求该抛物线的解析式.(2)若的面积与的面积相等,请直接写出点的横坐标.y x x y y x x AD BC = AB CDMB MD O A C MBMD AB CD AB CD =M AC BM DM =O DM O DM 25y x bx =-++x A ()5,0B A B y C D A y E AC CD DE BE BDE △ACD △E(3)当点在第一象限时,连接,设的面积为,求的最大值.六、解答题(本大题共12分)23.综合与实践如图,是等边内一点,,连接,将线段绕点顺时针旋转得到,连接.初步感知(1)如图1,的延长线与交于点,求的度数.特例应用(2)如图2,作点关于的对称点,若点在的角平分线上.①当点与点重合时,的长为______;②当点与点不重合时,判断四边形的形状,并证明.拓展延伸(3)如图2,在(2)的条件下,取的中点,记为,当点从点运动到点时,请直接写出点运动的路径长.图1图2E CE ECD △S S P ABC △2AB =CP CP C 60︒CE AE BP AE Q AQB ∠E ACF P ABC △BD P F BP P F BPEF FPG P B D G江西省2025届九年级期中综合评估数学参考答案1.B2.C3.A4.D5.A 提示:由旋转和翻折可知,,抛物线的顶点的坐标为.点关于轴的对称点的坐标为,最后得到的抛物线的解析式为,.故选A.6.B 提示:建立如图所示的平面直角坐标系.由题意易知点的坐标为,点的坐标为,则点的坐标为,故设抛物线的解析式为,将点的坐标代入上式,得,抛物线的解析式为.点的横坐标为2,点的纵坐标为,点到的距离为.故选B.7.8.9.10.11.912.3或或 提示:,,,,,.如图1,当时,此时.易证得为等边三角形,的周长为;2a =8b =-∴2285y x x =-+P ()2,3- ()2,3P -x ()2,3∴()222232811y x x x =-+=-+11c ∴=C ()1,0B ()1,0-E ()0,0.6()()11y a x x =+-E 0.6a =-∴()()0.611y x x =-+- D ∴D ()()0.62121 1.8-⨯+⨯-=-∴C AD 1.8m 3x =±()2,4-22.5︒24020049x x -=2+3+1AB = 90ABC ∠=︒60BAC ∠=︒1CD ∴=22AC AB ==BC ∴==60α=︒1302PCB BAC ∠=︒=∠DPC △DPC ∴△33CD =如图2,当时,此时,,.易证得,,的周长为;如图3,当时,此时,,,.的周长为.综上所述,的周长为3或或.图1 图2 图313.(1)(解法不唯一)解:,,,.(2)解:将绕点逆时针旋转得到.,.又,,.14.解:设平均每次降价的百分率为.由题意得,解得,(舍去).答:平均每次降价的百分率为.15.解:是的中点,,.设,则.在中,由勾股定理得,120α=︒1302PCB BAC ∠=︒=∠30PBC PCB ∴∠=∠=︒1PC BP ∴==DCP BPC ≌△△DP BC ∴==DPC ∴△2CD PC DP ++=+180a =︒1302PCB BAC ∠=︒=∠2PC AC ∴==22AP AB ==DP ∴===DPC ∴△123CD PC DP ++=+=+DPC △2+3+()()()2131x x x x +=++ ()()1230x x x ∴+--=11x ∴=-23x = ABC △A 28︒AB C ''△28BAE ∴∠=︒40C C ∠'=∠=︒AB BC '⊥ 9050EAC C ∴∠=︒-∠=︒285078BAC BAE EAC ∴∠=∠+∠=︒+︒=︒x ()2100181x -=10.110%x ==2 1.9x =10%DAB OD AB ∴⊥19cm 2AC BC AB ∴===cm OA r =()6cm OC r =-Rt OAC △222OC AC OA +=即,解得,的长为.16.解:(1)如图1,即所求.(2)如图2,即所求.图1 图217.解:(1)抛物线与轴没有交点,,即,解得.(2)第二象限.提示:,该抛物线的顶点坐标为.,,点在第二象限.18.解:(1)把代入,得,解得.,抛物线的顶点坐标为.(2)当时,的取值范围是.(3)当时,的取值范围是或.19.解:(1)证明:是由绕点顺时针旋转得到的,,,,.()22269r r -+=394r =OA ∴39cm 4OCE △ABF △ x 240b ac ∴∆=-<10c +<1c <-()2222y x xc c c x c c =-+-=-- ∴(),c c -1c <- 1c ∴->∴(),c c -()3,4A -24y x mx =-++9344m --+=3m =-223253424y x x x ⎛⎫=--+=-++ ⎪⎝⎭∴325,24⎛⎫- ⎪⎝⎭20x -≤≤y 2544y ≤≤0y ≤x 4x ≤-1x ≥ADE△ACB △A 90︒ACB ADE ∴≌△△90CAD ∠=︒AC AD ∴=()1180452ACD ADC CAD ∴∠=∠=︒-∠=︒又,,点,,在同一条直线上.(2)由(1)可知,,.,.,.20.解:(1)设关于的函数关系式为.将,代入上式.得解得.(2)设销售该商品每天的利润为元.由题意得.,,当时,取得最大值,且最大值为4500.答:销售该商品每天的最大利润为4500元.21.解:(1).证明:,,,即.(2)①证明:是的中点,.,,,,.②如图,过点作,是垂足,连接.135BCA ∠=︒ 13545180BCA ACD ∴∠+∠=︒+︒=︒∴B C D 90CAD ∠=︒AC AD=6CD ∴===135ADE BCA ︒∠=∠= 90CDE ADE ADC ︒∴∠=∠-∠=2DE BC == 1162622CDE S CD DE ∴=⋅=⨯⨯=△y x y kx b =+()23,540()25,50023540,25500,k b k b +=⎧⎨+=⎩20,1000,k b =-⎧⎨=⎩()2010002040y x x ∴=-+≤≤W ()()()22202010002014002000020354500W x x x x x =--+=-+-=--+200-< 203540<<∴35x =W AB CD=AD BC = AD BC∴= AD AC BC AC ∴+=+ AB CD=M AC AM CM∴=AB CD = AB CD∴= AB AM CMCD ∴+=+ BMDM ∴=BM DM ∴=O ON MD ⊥N OM在中,,,22.解:(1)∵抛物线与轴相交于点和点,,解得,该抛物线的解析式为.(2.(3),令,即,解得,,点的坐标为.点与点关于轴对称,点的坐标为.设点的坐标为.设直线的解析式为.由点,的坐标可知,解得直线的解析式为.如图,过点作轴,交于点.当时,,点的坐标为,, Rt OMN △3ON =6OM =MN ∴==2DM MN ∴==25y x bx =-++x A ()5,0B 25550b ∴-++=4b =∴245y x x =-++245y x x =-++ ∴0y =2450x x -++=11x =-25x =∴A ()1,0- D A y ∴D ()1,0-E ()2,45m m m -++CE y kx t =+()0,5C ()2,45E m m m -++25,45,t mk t m m =⎧⎨+=-++⎩4,5,k m t =-+⎧⎨=⎩∴CE ()45y m x =-++D DF y ∥CE F 1x =()459y m m =-++=-+∴F ()1,9m -+9DF m ∴=-则,当时,的值最大,且最大值为,故的最大值为.23.解:(1),,即.又,,(SAS ),.,.(2②四边形为平行四边形.证明:如图1,连接.图1在等边中,平分,.又,关于对称,,,,.在等边中,,,.在等边中,,,,,,,.平分,,,,为等边三角形,()2111981922228E S DF x m m m ⎛⎫=⋅⋅=-=--+ ⎪⎝⎭∴92m =S 818S 81860ACB PCE ∠=∠=︒ ACB ACP PCE ACP ∴∠-∠=∠-∠BCP ACE ∠=∠BC AC = CP CE =BCP ACE ∴≌△△CBP CAE ∴∠=∠CBP ACB CAE AQB ∠+∠=∠+∠ 60AQB ACB ︒∴∠=∠=BPEF CF ABC △BD ABC ∠BD AC ∴⊥E F AC AF AE ∴=CF CE =AC EF ∴⊥EF BP ∴∥ PCE △60PCE ∠=︒PC CE PE ==CF PC ∴= ABC △AC BC =60ACB ∠=︒ACB PCE ∴∠=∠PCB ACE ∴∠=∠()SAS BCP ACE ∴≌△△CAE CBP ∴∠=∠BP AE =BD ABC ∠30CBP ︒∴∠=30CAE FAC CBP ∴∠=∠=∠=︒60FAE ∴∠=︒AFE ∴△,.,,四边形为平行四边形.(3.提示:将图1中与的交点记为.由(2)易知.,,,即,易求得,,.如图2,当点从点运动到点时.图2,点的运动路径为图2中的长,为的中点,连接,.,同理可得,是等边三角形.是的中点,,易求得.AE EF ∴=BP EF ∴=BP EF ∥BP EF =∴BPEF AF BP M BP AF =30FAB ABP ∠=∠=︒ AM BM∴=BP BM AF AM ∴-=-PM FM =∴30MPF ∠=︒MPF ABP ∴∠=∠PF AB ∴∥P B D PF AB ∥∴G GH H AB DH HF 112DF AB == 1DH HF ==DFH ∴△G DF 1DH DF ==∴GH =。

安徽省合肥市第三十八中学2022-2023学年九年级上学期期中考试数学试卷(含答案与解析)

安徽省合肥市第三十八中学2022-2023学年九年级上学期期中考试数学试卷(含答案与解析)
故选:C
【点睛】本题考查的是二次函数的图象的平移,熟知“上加下减,左加右减”的原则是解答此题的关键.
3.下列长度的各组线段中,能构成比例的是( )
A.2,5,6,8;B.3,6,9,18;C.1,2,3,4;D.3,6,7,9.
【答案】B
【解析】
【分析】分别计算各组数中最大与最小数的积和另外两数的积,然后根据比例线段的定义进行判断.
某运动员进行了两次训练.
(1)第一次训练时,该运动员的水平距离x与竖直高度y的几组数据如下:
水平距离x/m
0
2
5
8
11
14
竖直高度y/m
20.00
21.40
22.75
23.20
22.75
21.40
根据上述数据,直接写出满足的函数关系 ;
(2)第二训练时该运动员竖直高度y与水平距离x近似满足函数关系 ,记该运动员第一次训练的着陆点的水平距离为 ,第二次训练的着陆点的水平距离为 ,试比较 与 的大小,并说明理由.
2022~2023学年度第一学期期中考试卷(38中)
九年级数学
注意事项:
1.本试卷共6页,总分150分,考试时间120分钟。
2.答题前,考生务必将姓名、准考证号填写在试卷和答题卡相应位置上。
3.考生务必将答案写在答题卡上。写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
一、选择题(本大题共10小题,每小题4分,满分40分)
16.在平面直角坐标系中,点 , , 分别在三个不同的象限,若反比例函数图象经过其中两点,求反比例函数解析式.
17.设a,b,c是 的三条边长,且 ,判断 为何种三角形,并说明理由
18.如图所示,已知 为 的边 上的一点, 为 的延长线上的一点,且 .求证: .

安徽省合肥市包河区2020-2021学年九年级第一学期期末教学质量检测数学试卷(word版含答案)

安徽省合肥市包河区2020-2021学年九年级第一学期期末教学质量检测数学试卷(word版含答案)

包河区2020-2021学年第一学期期末教学质量检测九年级数学 试题卷一、选择题(本大题共10小题,每小题4分,满分40分)1.下列图案中,是中心对称图形的是(▲)2. 对抛物线34y 2-+-=x x 而言,下列结论正确的是(▲)A. 开口向上B.与y 轴的交点坐标是(0,3)B. 与两坐标轴有两个交点 D.顶点坐标是(2,4)3. 点)(、、332211,5)y ,3(),1(y P P y P -均在二次函数c x x ++-=2y 2的图像上,则321y y y 、、的大小关系是(▲)A. y1=y2>y3B. y1>y2>y3C. y3>y2>y1D. y3>y1=y24. 如图,在△ABC 中,AB=3, BC=5.2, ∠B=60°,将△ABC 绕点A 逆时针旋转 △ADE ,若点B 的对应点D 恰好落在BC 边上时,则CD 的长为(▲)A.0.8B.2C.2.2D.2.85. 如图,在直角坐标系中,△OAB 的顶点为O(0,0),A (-6,4), B(-3,0).以点O为位似中心,在第四象限内作与△0AB 的位似比为21的位似图形△0CD,则点C 坐标为(▲)A. (2,-1)B.(3,-2)B. )23,23(- D.)1,23(-6. 如图,已知A 为反比例函数y=xk (x<0)的图象上一点,过点A 作AB ⊥y 轴,垂足为B,若△OAB 的面积为3,则k 的值为(▲)A.3B.-3C.6D.-67. 若ad=bc.则下列不成立的是(▲) A. d c b a = B.b a d b =-c -a C.d b b a d c +=+ D.111b 1a ++=++d c8. 如图,AB 是圆O 的直径,点C 、D 在圆O 上,且0C ∥DB.连接AD 、CD ,若∠C=28°,则∠A 的大小为(▲)A.30°B.28°C.24°D.34°9如图,抛物线了c bx ax ++=2y 经过(-1,0)和(0,-1)两点。

安徽省合肥市五十中学2023-2024学年七年级上学期期中数学试题(含答案解析)

安徽省合肥市五十中学2023-2024学年七年级上学期期中数学试题(含答案解析)

安徽省合肥市五十中学2023-2024学年七年级上学期期中数
学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
二、填空题
16.甲、乙两地相距200km,汽车从甲地到乙地,速度为每小时
x=时,汽车从甲地到乙地需要小时;
(1)若100
(2)如果汽车每小时多行驶20km,可以提前小时到达乙地?(用含子表示)
(1)计算当正方体个数为4时,拼成长方体的表面积,填入下表;正方体个数1234长方体表面积
2
6a 210a 2
14a —
(2)用代数式表示n (1)求AB .
(2)点M 为数轴上一点,当MA MB =时,求点(3)直接写出点M 对应的数为多少时,MA 23.在合肥市五十中学一年一度艺术节中,的字样.
(1)用含a ,b 的式子表示圆环的周长;
(2)用含a ,b 的式子表示
中阴影部分的面积;
(3)当3a =,5b =时,求50字样的总面积(结果精确到个位)

参考答案:
(3)解:由图可得,S S S =+阴影圆环总2334b a b π⎛=+-+- ⎝。

安徽省合肥市五十中西校2022-2023学年七年级上学期期中数学试题(含答案解析)

安徽省合肥市五十中西校2022-2023学年七年级上学期期中数学试题(含答案解析)
2
两天之后剩
1 2
×
1 2
=(
1 2
)2= 1 4
尺,
第三天后,这个“一尺之棰”还剩
1 2
1 ×
4
=(
1 2
)3= 1 8
尺.
故选:C.
【点睛】本题主要考查了有理数的乘方,弄懂题意并掌握乘方的运算法则是解答的关键.
10.D
【分析】设 1 号正方形的边长为 x,2 号正方形的边长为 y,则 3 号正方形的边长为 x+y,4
∴ 2 和 2 不相等,不符合题意;
D.∵ 23 8, 32 9 ,
∴ 23 和 32 不相等,不符合题意;
故选:B. 【点睛】本题考查了绝对值和有理数的乘方,正确化简各数是解题的关键.
5.A 【分析】根据非负数的性质列出算式,求出 x、y 的值,代入计算即可. 【详解】解:由题意得,x+2=0,y﹣2=0, 解得,x=﹣2,y=2,
面带有“ "号,则 x3 5x2 4x 9 .
)括起来,要求括号前
13.小明的爸爸买了一种股票,每股 8 元,下表记录了在一周内该股票的涨跌情况:
星期 一 二 三 四 五
股票涨跌/元 0.2 0.35 ﹣0.45 ﹣0.4 0.5
(注:用正数记股票价格比前一日上升数,用负数记股票价格比前一日下降数)
一属性,意义相反.
2.A 【分析】根据相反数的定义“只有符号不同的两个数叫做互为相反数”进行解答即可得.
【详解】A. 5 5 ,5 和 5 绝对值相同,符合不同,互为相反数,符合题意;
B.2 和 1 ,两数符号相同,不互为相反数,不符合题意; 2
C.
3

1 3
,两数符号相同,不互为相反数,不符合题意;

2020-2021学年九年级第一学期期中考试数学试卷(含答案)

2020-2021学年九年级第一学期期中考试数学试卷(含答案)

2020-2021学年九年级第一学期期中考试数学试卷(含答案)一、选择题(每小题4分,共10小题,满分40分)1、抛物线y = 2(x+1)2-3的顶点坐标是( )A. (-1,-1)B. (1,3)C. (-1,3)D. (1,-3)2、在平面直角坐标系中,抛物线y=(x+5)(x-3)经变换后得到抛物线y=(x+3(x-5),则这个变化可以是( )A. 向左平移2个单位B. 向右平移2个单位C. 向左平移8个单位D. 向右平移2个单位3、已知点A(1,-3)关于y 轴的对称点A ′在反比例函数y=k x 的图象上,则实数k 的值为( ) A. 3 B. 31 C. -3 D. - 314、已知学校航母组设计制作的火箭的升空高度h(m)与飞行时间t(s)满足函数关系式h=-t 2+24t+1,则下列说法中正确的是( )A. 点火后9s 点火后13s 的升空高度相同B. 点火后24s 火箭落于地面C. 点火后10S 的升空高度为139mD. 火箭升空的最大高度为145m5、已知y=x 2+(t-2)x-2,当x>1时y 随x 的增大而增大,则t 的取值范围是( )A. t > 0B. t = 0C. t < 0D. t ≥ 06、如图,已知D 、E 分别为AB 、AC 上的两点,且DE ∥BC ,AE=3CE ,AB=8,则AD 的长为( )A. 3B. 4C. 5D. 6第6题 第7题 第8题 第9题7、如图,一张矩形纸片ABCD 的长AB=a ,宽BC=b ,将纸片对折,折痕为EF ,所得矩形AFED 与矩形ABCD 相似,则a :b=( )A. 2:1B. 2:1C. 3:3D. 3:28、如图,二次函数y=ax 2+bx+c(a ≠0)的图象的对称轴是直线x=1,则以下四个结论中:① abc>0,② 2a+b=0, ③ 4a+b 2< 4ac ,④ 3a+c< 0.正确的个数是( )A. 1B. 2C. 3D. 49、孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则这个小孔的水面宽度为( )A. 52米B. 43米C. 7米D. 213米10、若一次函数y=ax+b 与反比例函数y=c x的图象在第二象限内有两个交点,且其中一个交点的横坐标为-1,则二次函数y=ax 2+bx+c 的图像可能是( )A B C D二、填空题(每小题5分,满分20分)11、若35a b b -=,则a b = . 12、已知二次函数y=ax 2+bx+c 的部分图象如图所示,则关于x 的方程y=ax 2+bx+c 的两个根的和为 .第12题 第13题13、如图,点C 在反比例函数y=k x(x>0)的图像上,过点C 的直线与x 轴、y 轴分别交于点A 、B ,且AB=BC , 已知△AOB 的面积为1,则k 的值为 .14、已知抛物线y=ax 2+bx-1a与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛线上. (1)此抛物线的对称轴是直线 ;(2)已知点P (12,-1a),Q (2,2),若抛物线与线段PQ 恰有一个公共点,则a 的取值范围是 . 三、(每小题8分,满分16分)15、已知二次函数y=x 2+bx+c 的图象经过点(4,3),(2,-1),求此二次函数的表达式,并求出当0≤x ≤3时, y 的最值.16、已知234a b c ==,且a+3b-2c=15,求4a-3b+c 的值 四、(每小题8分,满分16分)17、如图,二次函数y=(x+2)2+m 的图像与y 轴交于点C ,点B 在抛物线上,且点B 与点C 关于该二次函数图象的对称轴对称,已知一次函数y=kx+b 的图象经过该二次函数图象上点A(-1,0)及点B.(1)求二次函数的解析式;(2)根据图像,写出满足kx+b ≥(x+2)2+m 的x 的取值范围.18、如图是反比例函数y=k x的图象,当-4≤x ≤-1时,-4≤y ≤-1. (1)求该反比例函数的解析式;(2)若M 、N 分别在反比例函数图象的两个分支上,请直接写出线段MN 长度的最小值五、(每小题10分,满分20分)19、如图,点R 是正方形ABCD 的边AB 边上的黄金分割点,且AR> RB ,S 1表示AR 为边长的正方形面积,S 2表示以BC 为长,BR 为宽的矩形面积,S 3表示正方形ABCD 除去S 1和S 2剩余的面积,求S 3:S 2的值20、如图,在△ABC 中,AB=12cm ,AE=6cm ,EC=4cm ,且EC AE BD AD =.(1)求AD 的长; (2)求证:ACEC AD BD =.六、本题12分21、如图,函数y 1=k 1x+b 的图象与函数22k y x=的图象交于点A(2,1)、B ,与y 轴交于点C (0,3). (1)求函数y 1的表达式和点B 的坐标; (2)观察图像,比较当x>0时y 1与y 2的大小.七、本题12分22、如图,开口向下的抛物线与x 轴交于点A (-1,0)、B (2,0),与y 轴交于点C(0,4),点P 是第一象限内抛物线上的一点.(1)求该抛物线所对应的函数解析式;(2)设四边形CABP 的面积为S 求S 的最大值.八、本题14分x(1≤x≤80)天的售价与销量的相关信息如下表:时间x(天)1≤x≤40 41≤x≤80售价(元/件)x+40 90每天销量(件) 200-2x已知该商品的进价为每件30元,设销售该商品每天的利润为y元。

安徽省合肥市2023-2024学年五年级上学期数学期中测试试卷(含答案)

安徽省合肥市2023-2024学年五年级上学期数学期中测试试卷(含答案)

安徽省合肥市2023-2024学年五年级上学期数学期中测试试卷姓名:__________ 班级:__________考号:__________1.口袋里放着大小、材质都相同的3个白球和3个黑球,每次摸出一个,记录下来,然后放回袋里。

第1次摸出的是白球,第2次摸球的结果是()。

A.一定还是白球B.一定是黑球C.摸出白球的可能性大D.有可能摸出白球,也有可能摸出黑球2.1.88÷0.8=()。

A.0.64B.2.35C.3.6D.19.383.下面的除法算式中商最大的算式是()。

A.2.1÷0.14B.2.1÷1.4C.2.1÷14D.2.1÷1404.下列小数中,最大的是()。

A.5.8B.5.87˙1˙C.5.87D.5.87775.李明站在“太极拳”表演方队的最后一行的最后一列,用数对表示为(23,30)。

这个方队一共有()人。

A.360B.690C.750D.4806.和5.1×9.9的得数最接近的算式是()。

A.5×9B.5×10C.6×9D.6×10二、细心读题,认真填写。

(每空1分,共29分。

)7.袋子里放了一些球,下表是小刚摸球的情况记录(摸了40次,每次摸后又放回袋子里)。

袋子里球最多,球最少。

8.袋子里有1个蓝球、3个红球和6个白球,它们除颜色外完全相同,从中任意摸出一个球,有种可能,摸出球的可能性最大,摸出球的可能性最小。

要使摸出红球和白球的可能性相等,可以取出个白球。

9.两个数相除的商是3.4,如果被除数扩大到原来的5倍,除数不变,商是。

10.先找出规律,再按规律填数。

(1)0.125、0.25、0.5、、、4。

(2)9.6、2.4、0.6、0.15,、0.009375。

11.一支钢笔的单价是7.8元,王老师买了8支这样的钢笔,应付元,50元最多可以买这样的钢笔支。

12.小丽坐在第6列第3个位子上,她的位置用数对表示为,小华紧挨着小丽坐在小丽的正后面,小华的位置用数对表示为。

安徽省合肥市瑶海区部分学校2022-2023学年八年级上学期期中数学试卷(含答案,沪科版)

安徽省合肥市瑶海区部分学校2022-2023学年八年级上学期期中数学试卷(含答案,沪科版)

2022-2023学年安徽省合肥瑶海区部分学校八年级(上)期中数学试卷一、选择题(本大题共10小题,共40.0分.在每小题列出的选项中,选出符合题目的一项)1. 已知点在第四象限,且到轴的距离是,到轴的距离是,则点的坐标为()A.B.C.D.2. 下列表示的图象,不是的函数的是()A. B. C. D.3. 将直线向上平移个单位后得到的直线表达式是()A B.C.D.4. 函数中,自变量的取值范围是()A.B.且C.D.5. 一个三角形三个内角的度数之比为1:2:3,则这个三角形一定是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰直角三角形6. 如图,为估计校园内池塘边两点之间的距离,小华在池塘的一侧选取一点,测得,则两点之间的距离可能是()A. B. C. D.7. 在中作边上的高,下列画法正确的是()A. B.C. D.8. 若直线与直线交点在第四象限,则b的取值范围是( )A. B. C. D.9. 一次函数y1=ax+b与一次函数y2=bx-a在同一平面直角坐标系中的图象大致是()A. B. C. D.10. 如图,是的中线,点分别为的中点.若的面积为则的面积是()A. B.C. D.二、填空题(本大题共4小题,共20.0分)11. 一次函数的图象经过一、二、四象限,则的取值范围为______.12. 有4条线段的长度分别是和,选择其中能组成三角形的三条线段作三角形,则可作______个不同的三角形.13. 如图,在中,,点在边上,将沿折叠,使点恰好落在边上的点处.若,则______14. 甲、乙两人准备在一段长为的笔直公路上进行跑步,甲、乙跑步的速度分别为和,起跑前乙在起点,甲在乙前面处,两人同时同向起跑.(1)两人出发后______乙追上甲;(2)从起跑至其中一人先到达终点的过程中,甲、乙两人之间的距离与时间的函数关系为______.三、解答题(本大题共9小题,共90.0分.解答应写出文字说明,证明过程或演算步骤)15. 在平面直角坐标系中位置如图所示.(1)将先向下平移个单位长度,再向右平移个单位长度,画出平移后的,并写出顶点,,的坐标;(2)计算面积.16. 如图,是的角平分线,点是边上一点,且.(1)与平行吗,什么?(2)若,,求的度数.17. 如图,在中.是边上的高,平分求的度数.18. 已知等腰三角形的周长为,若底边长为,一腰长为.(1)写出与的函数关系式;(2)求自变量的取值范围.19. 如图,在中边上的中线把的周长分成和两部分,求和的长.20. 如图,已知直线经过点,直线与该直线交于点.(1)求直线的表达式;(2)求两直线交点的坐标;(3)根据图象,直接写出关于的不等式的解集.21. 如图,在中,与的平分线交于点,根据下列条件,求的度数.(1)若,则______;(2)从上述计算中,我们能发现:______用含的式子表示,并说明理由.22. 学完第七章平面直角坐标系和第十九章一次函数后,老师布置了这样一道思考题:已知:如图,在长方形中,,点为的中点,和相交于点求的面积.小明同学应用所学知识,顺利地解决了此题,他的思路是这样的:建立适当的“平面直角坐标系”,写出图中一些点的坐标,根据“一次函数”的知识求出点的坐标,从而可求得的面积.请你按照小明的思路解决这道思考题.23. “字”的性质及应用:(1)如图相交于点,得到一个“字”,试说明的理由;(2)如图,以图中给的字母为顶点的“字”有多少个;(3)如图和的平分线相交于点,利用(1)中的结论试说明的理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档