《生物化学原理》知识点总结
生物化学重点知识

生物化学重点知识生物化学是生物学与化学的交叉领域,研究生物体内的化学反应和生物分子之间的相互作用。
在生物化学的学习过程中,有一些重点知识是必须要掌握的,下面将对一些重点知识进行详细介绍。
一、生物大分子生物大分子是构成生物体的主要分子,包括蛋白质、核酸、多糖和脂质。
其中,蛋白质是生物体内最为重要的大分子之一,具有结构和功能的双重性。
蛋白质的结构由氨基酸组成,氨基酸通过肽键连接而成。
蛋白质的功能多种多样,包括参与代谢反应、传递信号、构建细胞结构等。
另外,核酸是生物体内贮存和传递遗传信息的分子,包括DNA和RNA两类。
DNA是遗传信息的载体,其双螺旋结构能够稳定保存大量的遗传信息。
而RNA主要参与蛋白质的合成过程,包括转录和翻译。
多糖是生物体内的能量储备和结构支持物质,如淀粉、糖原和纤维素等。
多糖的结构复杂多样,具有不同的功能和生物活性。
脂质是生物体内最不溶于水的大分子,包括脂肪酸、甘油和磷脂等。
脂质在细胞膜的构建和代谢调节中起着重要作用。
二、酶和酶促反应酶是生物体内催化化学反应的蛋白质,具有高度的特异性和效率。
酶可以加速生物体内代谢反应的进行,并且在反应结束后不被消耗。
酶的催化活性受到温度、pH值等环境因素的影响。
酶促反应是在酶的催化下进行的生物体内化学反应。
酶促反应遵循米氏动力学,包括亲和力、酶底物复合物和酶活性等步骤。
酶促反应在维持生物体内稳态和平衡中起着不可替代的作用。
三、代谢途径代谢是生物体内所有化学反应的总称,包括合成代谢和分解代谢两个方面。
在代谢中,有一些重要的途径是需要重点掌握的。
糖代谢途径是生物体内最主要的能量来源,包括糖原异生途径和糖酵解途径。
细胞通过这些途径产生ATP能量,供给细胞代谢和功能活动。
脂肪酸代谢途径是细胞内脂质代谢的关键过程,包括脂质合成和脂质分解。
脂肪酸代谢可以提供额外的能量供应,同时也参与胆固醇合成等生物学过程。
氨基酸代谢途径是蛋白质合成和代谢的基础,主要包括氨基酸转氨、氨基酸降解和尿素循环等步骤。
生物化学知识点总结

生物化学知识点总结1. 生物大分子的结构与功能- 蛋白质:氨基酸序列、一级结构、二级结构(α-螺旋、β-折叠)、三级结构、四级结构。
- 核酸:DNA和RNA的化学结构、碱基配对原则、双螺旋结构。
- 糖类:单糖、二糖、多糖的结构和功能。
- 脂质:甘油三酯、磷脂、固醇的结构和生物学功能。
2. 酶学- 酶的定义、催化机制、酶活性的影响因素(pH、温度、底物浓度)。
- 酶动力学:米氏方程、最大速率(Vmax)、米氏常数(Km)。
- 酶抑制:竞争性抑制、非竞争性抑制、不可逆抑制。
3. 代谢途径- 糖酵解:步骤、ATP产量、调节点。
- 柠檬酸循环(TCA循环):反应步骤、能量产生。
- 电子传递链和氧化磷酸化:电子载体、质子梯度、ATP合成。
- 光合作用:光依赖反应、光合电子传递链、ATP和NADPH的生成。
- 氨基酸代谢:脱氨基作用、尿素循环。
- 脂质代谢:脂肪酸的氧化、合成、甘油代谢。
4. 信号传导- 受体类型:G蛋白偶联受体、酪氨酸激酶受体、离子通道受体。
- 第二信使:cAMP、IP3、DAG、Ca2+。
- 信号传导途径:MAPK途径、PI3K/Akt途径、Wnt/β-catenin途径。
5. 基因表达与调控- DNA复制:半保留复制、DNA聚合酶。
- 转录:RNA聚合酶、启动子、增强子、沉默子。
- 翻译:核糖体结构、tRNA作用、密码子、起始和终止密码子。
- 基因调控:表观遗传学、非编码RNA、microRNA。
6. 分子生物学技术- PCR技术:原理、引物设计、扩增过程。
- 克隆技术:载体选择、限制性内切酶、连接酶。
- 基因编辑:CRISPR-Cas9系统、基因敲除、基因敲入。
- 蛋白质组学:质谱分析、蛋白质标记、蛋白质互作。
7. 生物化学研究方法- 分子杂交技术:Southern印迹、Northern印迹、Western印迹。
- 色谱法:离子交换色谱、凝胶渗透色谱、亲和色谱。
- 光谱学方法:紫外光谱、红外光谱、核磁共振(NMR)。
生物化学知识点重点整理

生物化学知识点重点整理生物化学是研究生物体内的化学反应过程的一个分支学科。
它主要研究生物大分子的合成和降解过程、生命活动的调节和调控、以及生物能量代谢等。
下面是生物化学中一些重要的知识点。
1.生物大分子:生物大分子主要包括蛋白质、核酸、多糖和脂类。
蛋白质是生物体内最重要的大分子,它的功能多种多样,包括构成细胞器和细胞骨架的结构蛋白质,酶和激素等。
核酸是DNA和RNA存储和传递遗传信息的分子。
多糖是一类碳水化合物,主要用于能量储存和结构支撑。
脂类是一类有机化合物,包括脂肪、油和脂肪酸等,主要用于能量储存和细胞膜的组成。
2.酶和酶动力学:酶是生物体内的一类蛋白质,具有催化化学反应的功能。
酶速度常常受到底物浓度、温度和pH值等因素的影响。
酶动力学研究酶速度与底物浓度的关系,揭示了酶催化机理和底物结合方式。
3.代谢物和代谢途径:代谢是生物体内发生的化学反应的总和。
代谢途径包括物质的合成和降解,以及能量的产生和消耗。
代谢物主要包括ATP、ADP、NADH、NAD+等,它们在细胞内起到能量储存和传递的重要作用。
4.蛋白质合成和降解:蛋白质合成是细胞内最重要的生化过程之一,包括转录和翻译两个阶段。
转录是将DNA上遗传信息转写成mRNA的过程,翻译是将mRNA上的遗传信息转化为蛋白质的过程。
蛋白质降解是将细胞内的蛋白质分解为小分子的过程,通过细胞骨架上的蛋白酶进行。
5.核酸合成和修复:核酸合成是将碱基、糖和磷酸酯键组合成核酸链的过程,包括DNA和RNA的合成。
核酸修复是维护细胞遗传信息稳定性的重要机制,通过修复酶修复DNA中的损伤。
6.糖代谢和糖酵解:糖代谢是指葡萄糖在细胞内的合成、降解和利用过程。
糖酵解是将葡萄糖降解为乳酸或乙醇产生能量的过程,这是细胞内产生ATP的主要途径之一7.脂类代谢和脂类合成:脂类代谢是指脂类在细胞内的合成、降解和利用过程。
脂类合成主要发生在肝脏和脂肪组织中,通过合成酶和脂蛋白来合成三酰甘油。
生物化学知识点

生物化学知识点生物化学是关于生物体内各种化学反应和物质组成的研究领域。
本文将探讨生物化学的几个重要知识点,包括生物大分子、酶的功能和调控、代谢途径及其调节以及核酸的结构和功能。
一、生物大分子生物大分子是生物体内重要的有机分子,包括蛋白质、核酸、多糖和脂类。
这些分子是组成细胞和生命活动的基本单位。
1. 蛋白质蛋白质是生物体内功能最为多样和复杂的生物大分子之一。
它们由氨基酸组成,通过肽键连接成长链。
蛋白质扮演着酶、结构蛋白、激素和抗体等重要角色。
2. 核酸核酸是生物体内负责储存和传递遗传信息的分子。
DNA和RNA是两种常见的核酸。
DNA以双螺旋结构存储遗传信息,RNA则参与蛋白质的合成过程。
3. 多糖多糖是由单糖分子通过糖苷键连接而成的聚合物。
多糖包括淀粉、糖原和纤维素等,它们在生物体内具有能量储存和结构支持的功能。
4. 脂类脂类是由甘油和脂肪酸组成的生物大分子。
它们在细胞膜的构建、能量储存和信号传导中起到重要作用。
二、酶的功能和调控酶是生物体内调节化学反应速率的生物催化剂。
酶可以加速反应速率、选择性催化和在温和条件下进行反应。
1. 酶的催化机制酶通过降低反应的活化能,使反应更容易发生。
酶与底物结合形成酶底物复合物,进而发生化学反应。
最终生成产物和释放酶。
2. 酶的调控酶的活性可以通过多种机制进行调控。
常见的调控方式包括底物浓度、温度、酸碱度以及激活剂和抑制剂的作用。
三、代谢途径及其调节代谢是生物体内物质和能量的转化过程。
生物体通过代谢途径来满足对营养物质的需求,并产生能量和代谢产物。
1. 糖代谢糖代谢是生物体内获得能量的重要途径。
它包括糖原的分解和糖酵解产生乳酸或乙醇,以及细胞呼吸中糖的氧化生成ATP。
2. 脂肪代谢脂肪代谢是能量储存的主要方式。
脂肪通过脂肪酸的β氧化产生ATP,而合成脂肪酸需要NADPH和ATP的供应。
3. 蛋白质代谢蛋白质代谢包括蛋白质的降解和合成。
降解过程中,蛋白质被降解为氨基酸,供给细胞合成新的蛋白质。
生物化学重点知识点

生物化学重点知识点生物化学是研究生物大分子的结构、组成、功能和相互作用的科学。
下面是一些生物化学的重点知识点:1.生物大分子:生物大分子包括蛋白质、核酸、多糖和脂质。
它们是生物体内最重要的分子,发挥着各种生命活动的功能。
2.氨基酸:氨基酸是蛋白质的基本组成部分。
有20种氨基酸,它们通过肽键连接形成多肽链。
氨基酸的顺序和空间结构决定了蛋白质的功能。
3.蛋白质结构:蛋白质的结构可分为四个层次:一级结构是氨基酸的顺序;二级结构是氢键的形成,如α-螺旋和β-折叠;三级结构是各个二级结构的空间排列;四级结构是多个蛋白质链的组装。
4.酶:酶是生物催化剂,能够加速化学反应的速率。
酶通过与底物形成亲和性复合物,降低活化能,使反应在生物条件下发生。
5.代谢途径:生物体的代谢途径包括糖酵解、有氧呼吸、脂肪酸合成、脂肪酸氧化和蛋白质合成等。
这些途径产生能量和所需的中间代谢产物。
6.核酸:核酸是遗传信息的携带者,包括DNA和RNA。
DNA是双链结构,RNA是单链结构。
DNA通过转录生成mRNA,再通过翻译生成蛋白质。
7.遗传密码:遗传密码是DNA碱基序列与蛋白质氨基酸序列之间的对应关系。
这种对应关系由密码子决定,每个密码子对应一种氨基酸。
8.代谢调控:生物体能够根据环境的变化来调控代谢途径。
这种调控发生在基因、酶活性和底物浓度等方面,以维持体内的稳态。
9.脂质:脂质是生物体内的重要功能分子,包括脂肪、磷脂和类固醇。
脂质在细胞膜结构和信号传导中起重要作用。
10.蛋白质折叠和疾病:蛋白质的错误折叠会导致一系列疾病,包括神经退行性疾病和癌症。
了解蛋白质折叠的机制有助于理解疾病的发生并开发新的治疗方法。
以上是生物化学的一些重点知识点。
了解这些知识可以帮助我们更好地理解生命的本质和生物体内各种生物化学过程的发生。
生物化学大一知识点总结归纳

生物化学大一知识点总结归纳生物化学是一门研究生物体内物质的合成、降解、转运以及生物体能量的利用和产生的学科。
在大一阶段的学习中,我们接触到了一些基础的生物化学知识点,下面对这些知识点进行总结归纳。
1. 氨基酸和蛋白质氨基酸是构成蛋白质的基本单位,有20种常见氨基酸。
氨基酸之间通过肽键连接形成多肽,而多肽经过进一步的折叠和结合形成蛋白质。
蛋白质在生物体中具有多种功能,如酶的催化作用、结构支持、传递信号等。
2. 糖类糖类包括单糖、双糖和多糖,是生物体内重要的能量来源。
常见的单糖有葡萄糖、果糖等,双糖包括蔗糖、乳糖等,多糖如淀粉、糖原在生物体中作为能量储存物质。
3. 脂类脂类是生物体内重要的能量来源和结构组分。
常见的脂类有甘油三酯、磷脂等。
脂肪酸和甘油通过酯键结合形成甘油三酯,同时脂肪酸也是膜磷脂中的重要组成部分。
4. 核酸核酸包括DNA和RNA,是生物体遗传信息的携带者。
DNA分子由脱氧核糖和磷酸基团组成,RNA分子由核糖和磷酸基团组成。
DNA通过两股螺旋结构携带基因信息,RNA则参与基因的转录和翻译过程。
5. 酶和催化酶是生物体内催化反应的蛋白质,能够加速化学反应的速率。
酶具有高度的专一性和效率,可以在温和的条件下催化生物体内复杂的化学反应。
6. 代谢途径代谢途径指生物体内物质的合成、降解和转运的路径。
常见的代谢途径包括糖酵解、脂肪酸氧化、氧化磷酸化等。
这些代谢途径为细胞提供能量和合成物质。
7. 酸碱平衡生物体内的酸碱平衡是维持生命正常进行的重要条件之一。
细胞内外的酸碱平衡通过缓冲系统、呼吸系统和排泄系统等多种方式调节。
8. 酶动力学酶动力学研究酶催化反应的速率和影响因素。
酶的催化速率受到底物浓度、酶浓度、温度、pH值等因素的影响。
9. 免疫学免疫学是研究生物体对抗疾病和保护机体免受外界侵袭的学科。
生物体通过免疫系统识别并攻击外来致病因子,包括病毒、细菌等。
10. 遗传学遗传学研究生物体遗传信息的传递和变异。
生化原理知识点总结归纳

生化原理知识点总结归纳生化原理是生物化学的一个分支,它研究了生物体内发生的各种生物化学过程,包括细胞代谢、蛋白质合成、酶的作用、代谢产物的生成等。
生化原理对于理解生物学的基本规律,揭示生命活动的机制,为医学、农业、食品科学等领域提供了理论基础。
本文将详细总结生化原理的相关知识点,并进行归纳总结。
1. 细胞代谢细胞代谢是生物体内广泛进行的一系列生化反应,包括合成代谢和分解代谢两个方面。
合成代谢是指细胞内有机物的合成,包括蛋白质合成、脂肪合成、核酸合成等过程;分解代谢是指细胞内有机物的分解,包括糖原分解、脂肪分解、蛋白质分解等过程。
细胞代谢对于维持生物体内稳态具有重要作用,它能够为细胞提供能量和原料,维持细胞内环境的稳定。
2. 蛋白质合成蛋白质是生物体内最重要的有机物之一,它们是构成细胞器官、代谢酶、抗体等物质的基础。
蛋白质的合成是一个复杂的生化过程,包括转录和翻译两个阶段。
转录是指在细胞核内DNA模板的基础上合成mRNA的过程,翻译是指在细胞质中用mRNA作为模板合成蛋白质的过程。
蛋白质的合成是细胞内最重要的生化过程之一,它能够提供细胞所需的各种功能蛋白质,维持细胞正常的生理功能。
3. 酶的作用酶是生物体内具有催化作用的生化分子,它能够降低生化反应的活化能,提高反应速率。
酶的作用对于生物体内各种生化过程至关重要,它能够促进代谢反应的进行,维持细胞内的稳态。
酶的活性受到多种因素的调控,包括温度、pH值、底物浓度、酶抑制剂等。
酶的活性调控在细胞代谢中具有重要意义,它能够使代谢反应与细胞需求相适应。
4. 代谢产物的生成细胞代谢产物的生成是细胞代谢的重要结果之一,包括ATP、有机酸、氨基酸、醇类等。
这些代谢产物对于细胞的正常功能具有重要作用,它们能够提供细胞所需的能量和原料。
代谢产物的生成受到细胞内各种酶的调控,它能够维持细胞内代谢反应的正常进行,维持细胞内环境的稳定。
5. 酶促反应速率的影响因素酶促反应速率是指酶催化反应进行的速率,它受到多种因素的影响。
《生物化学》知识点总结

生物化学复习题第一章绪论1. 名词解释生物化学:生物化学指利用化学的原理和方法,从份子水平研究生物体的化学组成,及其在体内的代谢转变规律,从而阐明生命现象本质的一门科学。
其研究内容包括①生物体的化学组成,生物份子的结构、性质及功能②生物份子的分解与合成,反应过程中的能量变化③生物信息份子的合成及其调控,即遗传信息的贮存、传递和表达。
生物化学主要从份子水平上探索和解释生长、发育、遗传、记忆与思维等复杂生命现象的本质2. 问答题(1)生物化学的发展史分为哪几个阶段?生物化学的发展主要包括三个阶段:①静态生物化学阶段 (20 世纪之前):是生物化学发展的萌芽阶段,其主要工作是分析和研究生物体的组成成份以及生物体的排泄物和分泌物②动态生物化学阶段(20 世纪初至20 世纪中叶):是生物化学蓬勃发展的阶段,这一时期人们基本弄清了生物体内各种主要化学物质的代谢途径③功能生物化学阶段(20 世纪中叶以后):这一阶段的主要研究工作是探讨各种生物大份子的结构与其功能之间的关系。
(2)组成生物体的元素有多少种?第一类元素和第二类元素各包含哪些元素?组成生物体的元素共28 种第一类元素包括C、H、O、N 四中元素,是组成生命体的最基本元素。
第二类元素包括S 、P 、Cl、Ca、Na、Mg,加之C、H、O、N 是组成生命体的基本元素。
第二章蛋白质1. 名词解释(1)蛋白质:蛋白质是由许多氨基酸通过肽键相连形成的高份子含氮化合物(2)氨基酸等电点:当氨基酸溶液在某一定pH 时,是某特定氨基酸份子上所带的正负电荷相等,称为两性离子,在电场中既不向阳极也不向阴极挪移,此时溶液的pH 即为该氨基酸的等电点(3) 蛋白质等电点:当蛋白质溶液处于某一pH 时,蛋白质解离形成正负离子的趋势相等,即称为兼性离子,净电荷为0,此时溶液的pH 称为蛋白质的等电点(4) N 端与 C 端:N 端(也称N 末端)指多肽链中含有游离α-氨基的一端, C 端(也称C 末端)指多肽链中含有α-羧基的一端(5)肽与肽键:肽键是由一个氨基酸的α -羧基与另一个氨基酸的α-氨基脱水缩合而形成的化学键,许多氨基酸以肽键形成的氨基酸链称为肽(6)氨基酸残基:肽链中的氨基酸不具有完整的氨基酸结构,每一个氨基酸的残存部份称为氨基酸残基(7)肽单元(肽单位):多肽链中从一个α -碳原子到相邻α-碳原子之间的结构,具有以下三个基本特征①肽单位是一个刚性的平面结构②肽平面中的羰基与氧大多处于相反位置③α-碳和-NH 间的化学键与α-碳和羰基碳间的化学键是单键,可自由旋转(8)结构域:多肽链的二级或者超二级结构基础上进一步绕蜿蜒叠而形成的相对独立的三维实体称为结构域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DNA复制模式及其原理(半保留复制、半不 连续复制)
原核生物和真核生物DNA复制的主要异同点 逆转录 DNA修复的基本类型及其修复机制
School of Life Sciences, Tsinghua University
脂肪酸-氧化的四个阶段,产能情况 酮体组成、来源和利用途径、生物学意义 Байду номын сангаас脂肪酸合成过程,原料,与-氧化的主要
区别
School of Life Sciences, Tsinghua University
脱氨基作用主要类型,重要的转氨酶 尿素循环:合成部位,过程,生理意义 生糖氨基酸和生酮氨基酸 氨基酸的生物合成的六条途径,关键中间产物
预祝大家: 考试顺利! 新年快乐!
School of Life Sciences, Tsinghua University
时间:2015.01.07(周四)下午2:30~4:30 地点:三教1300(54人) 三教2301(78人)
答疑
时间:2015.12.29(二) 上午9:50~11:30 地点:人环楼(化学系何添楼西北黄色小楼)
416(刘玉乐老师办公室)
School of Life Sciences, Tsinghua University
柠檬酸循环8步反应,关键步骤、关键酶:
◦ 调控部位、脱氢、脱羧、产能反应
乙酰CoA中碳原子经柠檬酸循环后的去向 乙醛酸循环:基本过程、关键酶、生物学意义 柠檬酸循环是两用代谢途径
School of Life Sciences, Tsinghua University
糖原降解产能情况,合成过程与降解过程 的区别
糖异生需能情况,与糖酵解不同的三个关 键步骤,关键酶
戊糖磷酸途径,关键酶,生理意义
School of Life Sciences, Tsinghua University
电子传递链的组成及电子传递过程 阻断剂及解偶联剂的作用位点 氧化磷酸化:化学渗透假说 胞液中NADH进入线粒体的不同穿梭途径
特殊官能团 氨基酸的酸碱性质 氨基酸的特征化学反应(α-氨基、α-羧基、
侧链) 常用的分离和纯化蛋白质的方法及其基本原
理(层析、电泳)
School of Life Sciences, Tsinghua University
蛋白质的二、三、四级结构基本概念 主要二级结构类型及其结构特点、作用力 蛋白质变性与复性 肌红蛋白和血红蛋白氧合曲线异同点及产
辅酶和辅基的概念 重要维生素的辅酶形式、在酶催化反应中的作用 重要维生素的生理作用及其相应的缺乏症
School of Life Sciences, Tsinghua University
糖的概念、分类 单糖的氧化还原特点及其主要反应 糖苷键的主要类型 输血配型的原理
School of Life Sciences, Tsinghua University
及其产生ATP情况
School of Life Sciences, Tsinghua University
循环与非循环电子传递的异同 光合磷酸化 卡尔文循环,关键酶 光呼吸,与光合作用的关系 C4途径与C3途径的区别与联系 CAM途径与C4途径的异同点
School of Life Sciences, Tsinghua University
基本概念:激素、第二信使、G蛋白、酪氨酸激酶 激素结合受体类型及其作用机理
◦ 细胞表面受体 ◦ 细胞内受体
激素的作用机制 ◦ 膜受体通过腺苷酸环化酶作用途径 ◦ 钙及肌醇三磷酸作用途径 ◦ 受体的酪氨酸激酶途径 ◦ 固醇类激素受体调节基因转录途径
School of Life Sciences, Tsinghua University
糖酵解过程10步反应,关键步骤、关键酶:
◦ 产能步骤、耗能步骤、不可逆反应、底物水 平磷酸化,等。
糖酵解过程的能量变化 糖酵解产物丙酮酸在无氧条件下的代谢去向 巴斯德效应 果糖、半乳糖、甘露糖进入糖酵解的关键步
骤,代谢异常导致的疾病
School of Life Sciences, Tsinghua University
转录的概念 原核生物转录起始(操纵子、启动子、TATA
box )、延伸、中止 原核生物转录调控:乳糖操纵子(lac操纵
子)、色氨酸操纵子(trp操纵子) 真核生物初始转录RNA的加工(mRNA、tRNA、
rRNA)
School of Life Sciences, Tsinghua University
中心法则,遗传密码的主要特征 tRNA的三维结构特点及其在蛋白质合成
中的作用 原核生物翻译起始位点的结构特点及翻
译起始复合物组成
School of Life Sciences, Tsinghua University
热力学重要公式 主要代谢调控方式 代谢中常见的反应类型
School of Life Sciences, Tsinghua University
School of Life Sciences, Tsinghua University
嘌呤环和嘧啶环中各原子来源 IMP和GMP合成补救途径的关键酶,遗传缺陷后果 嘧啶核苷酸的从头合成与嘌呤合成过程的区别 引起痛风的原因,常用治疗药物及其作用机理
School of Life Sciences, Tsinghua University
生机理
School of Life Sciences, Tsinghua University
酶的化学本质、主要类型、催化机制
米氏方程(公式、各符号的意义,Km )
酶的抑制作用类型及相应参数的变化 酶活性的调节
School of Life Sciences, Tsinghua University
生物膜的结构特点(流动镶嵌模型) 膜脂和膜蛋白的主要类型及其结构特点 物质跨膜转运的主要类型及各自的特点
School of Life Sciences, Tsinghua University
核酸、核苷酸的基本结构特征、理化性质 夏格夫法则 DNA双螺旋结构模型的要点 核酸酶的分类及其特点:粘性末端、平末端 重组DNA技术、关键步骤、应用 聚合酶链式反应(PCR)
School of Life Sciences, Tsinghua University
基本概念 常见的反应官能团、化学键 原核细胞和真核细胞结构特点及区别 真核细胞内的主要细胞器及其主要生物学功能
School of Life Sciences, Tsinghua University
20种标准氨基酸的名称、缩写形式 氨基酸的分类以及每一类氨基酸的结构特点、