第2章(1)模拟量输入通道讲解
第2章 模拟量输入通道 ppt课件

314Ω 256
16K
16K
A2
V IN +
外接地
2020/12/27
(b ) 可 变 增 益 放 大 器
19
图 2 -6 前 置 放 大 器
图中RG是外接电阻,专用来调整放大器增益的。因此, 放大器的增益G与这个外
接电阻RG有着密切的关系。增益公式为
G VOUT RS(2R1) (2-2) VIN VIN R2 RG
农定理指出:为了使采样信号y*(t)能完全复 现原信号y(t),采样频率f 至少要为原信号最 高有效频率fmax的2倍,即f 2fmax。
采样定理给出了y*(t)唯一地复现y(t)所必需
的最低采样频率。实际应用中,常取f (5
~ 10)fmax。
2020/12/27
26
2.4.2采样保持器
采样保持器是在两次采样的间隔时间内,一直
此类集成电路芯片有AD612/614等。
2020/12/27
22
2.4 采样保持器
当某一通道进行A/D转换时,由于A/D 转 换需要一定的时间,如果输入信号变化 较快,就会引起较大的转换误差。为了 保证A/D转换的精度,需要应用采样保持 器。
2020/12/27
23
2.4.1 数据采样定理
把连续变化的量变成离散量后再进行处理的微机控制系
2020/12/27
14
Sm
S0 S1 S2
译 码
A
电 平
B
S3 S4
驱
转
C
动
换
IN H
S5
S6
S7
Sm
S8
A
S9 S 10 S 11
译
电
AI通道

为满足A/D转换精度要求,希望在 t 时间内,信号变化
最大幅度应小于A/D转换器的量化误差 E 。对于12位A/D转
换器,转换时间为100μs,基准电压为10.24V,其量化误差为 :
1 1 10.24 E LSB 12 1.25m V 2 2 2
四、前置放大器
前置放大器的任务是将模拟输入小信号放大到转换的量
程范围之内。当多路输入的信号源电平相差较悬殊时,用同
一增益的放大器去放大高电平和低电平的信号,就有可能使 低电平信号测量精度降低,而高电平则有可能超出模/数转
换器的输入范围。可设计可变增益放大器,
由于现在的变送器大都送出标准模拟信号,所以前置 放大器不常用!
路开关,如 CD4051。
(3)按输入信号的连接方式分单端输入和双端差动输入。
河南机电高等专科学校
Henan Mechanical and Electrical Engineering College
第2章 输入输出过程通道
2.常用芯片: CD4051 单端 双向 8路 CD4052 双端 单向 4路 AD7506 单端 单向 16路
第2章 输入输出过程通道
2.量化
定义:就是将采样时刻的信号用一组数来逼近离散模拟信 号的幅值,将其转换成数字信号。通常为整量化。整量化:将 采样时刻的幅值按最小量化单位取整。
3.编码
定义:将整量化后的数值变换为二进制数码形式,即用 数字量表示。 对双极性信息通常有三种表示方法: (1)符号-数值码 (2)偏移二进制码 (3)补码
河南机电高等专科学校
Henan Mechanical and Electrical Engineering College
第2章 输入输出过程通道
模拟量输入输出通道dq

▲量化将使信号产生误差并影响系统的特性。但当 量化单位足够小时,在系统初步分析与设计时可 不予考虑。
36
★ 计算机控制系统的简化结构图
采样
计算机
ZOH
被控对象
检测
37
2.1.2 多路开关
在微型计算机测量及控制系统中,往往需对 多路或多种参数进行采集和控制。一台微型计 算机可供多回路使用,但是,微型计算机在某 一时刻只能接收一个通道的信号,因此必须通 过多路模拟开关进行切换,使各路参数分时进 入微型计算机。
1 计算机控制系统信号变换结构图
E
A
B 采样
C 量化
编码
D 计算机
F 解码 G
保持
H
检测
I 被控对象
2 系统中信号形式的分类
连续信号(或模拟信号) 时间及幅值上均连续
的信号,如图中的 A、I 处的信号
数字信号
时间上离散、幅值上采用二进制编
码的信号,如图中的D、F 处的信号 33
▲采样信号 时间上离散而幅值上连续的信号,如
(0000)
(1000)
-1
-1/8
+1/8
1001
1111
0111
-2
1110
0110
-3
-3/8
+3/8
1011
1101
0101
-4
-4/8
+4/8
1100
1100
0100
-5
-5/8
+5/8
1101
1011
0011
-6
模拟量输入、输出通道

医疗设备
在医疗设备中,模拟量输入/输出通道用于监测患者 的生理参数和实现设备的控制,如监护仪、呼吸机 等。
模拟量输入/输出通道的重要性
80%
提高设备的控制精度
模拟量输入/输出通道能够实时、 准确地反映输入信号的变化,从 而提高设备的控制精度和稳定性 。
模拟量输入通道的参数与性能指标
01
02
03
04
分辨率
分辨率是指模拟量输入通道能 够识别的最小电压或电流值, 通常以位数或比特数表示。高 分辨率的模拟量输入通道能够 提供更精确的测量结果。
线性度
线性度是指模拟量输入通道的 输入与输出之间的线性关系。 理想的线性度应该是100%,但 实际中的线性度可能会受到多 种因素的影响而有所偏差。
根据接口类型,正确连接信号线,避免信号干扰或数据传输不稳定。
接地处理
为了减少电磁干扰和保护设备,应确保良好的接地措施。
接口保护
在接口电路中加入适当的保护元件,如瞬态抑制二极管、滤波电容等, 以防止过压、过流等异常情况对接口造成损坏。
05
模拟量输入/输出通道的调试与校准
调试步骤与注意事项
检查硬件连接
采样速率
精度
采样速率是指模拟量输入通道 每秒钟能够采样的次数,通常 以赫兹(Hz)或千赫兹(kHz) 表示。高采样速率的模拟量输 入通道能够提供更准确的实时 响应。
精度是指模拟量输入通道的实 际输出值与理论输出值之间的 最大偏差。精度越高,表示模 拟量输入通道的误差越小,测 量结果越准确。
03
模拟量输出通道
精度
测控总线与仪器通信技术课后答案第二章

测控总线与仪器通信技术课后答案第二章1、模拟输入通道有哪几种类型?各有何特点?答案:多路模拟输入通道分为集中采集式(简称集中式)和分散采集式(简称分布式)两大类型。
集中式的特点是多路信号共同使用一个S/H和A/D电路,模拟多路切换器MUX对多路信号分时切换、轮流选通到S/H和A/D进行数据采集。
分布式的特点是每一路信号都有一个S/H和A/D,因而也不再需要模拟多路切换器MUX。
每一个S/H和A/D只对本路模拟信号进行数字转换即数据采集,采集的数据按一定顺序或随机地输入计算机。
2、什么情况下需要设置低噪声前置放大器?为什么?答案:没有信号输入时,输出端仍输出一定幅度的波动电压,这就是电路的输出噪声。
把电路输出端测得的噪声有效值除以该电路的增益K,得到该电路的等效输入噪声。
如果电路输入端的信号幅度小到比该电路的等效输入噪声还要低,这个信号就会被噪声所“淹没”,就必须在该电路前面加一级放大器——“前置放大器”。
只要前置放大器的等效输入噪声比其后级电路的等效输入噪声低,加入前置放大器后,整个电路的等效输入噪声就会降低,因而,输入信号就不会再被电路噪声所淹没。
3、图2-1-14(a)所示采集电路结构只适合于什么情况?为什么?答案:采集电路仅由A/D转换器和前面的模拟多路切换器MUX构成,只适合于测量恒定的各点基本相同的信号。
恒定信号不随时间变化,无须设置S/H,各点基本相同的信号无需设置PGA。
4、多路测试系统什么情况下会出现串音干扰?怎样减少和消除?答案:多路测试系统由于模拟开关的断开电阻Roff不是无穷大和多路模拟开关中存在寄生电容的缘故,当某一道开关接通时,其它被关断的各路信号也出现在负载上,对本来是唯一被接通的信号形成干扰,这种干扰称为道间串音干扰,简称串音。
为减小串音干扰,应采取如下措施:①减小Ri,为此模拟多路切换器MUX前级应采用电压跟随器;②MUX选用Ron极小、Roff极大的开关管;③选用寄生电容小的MUX。
第二章过程通道设计方法解读

17
信息与电气工程学院
山东科技大学
计算机控制系统
1. 小功率开关输出电路
+VCC R1 R2 +V O
0
OC门 光耦
0
VI
1 1
2019/1/30
18
信息与电气工程学院
山东科技大学
计算机控制系统
2. 中功率晶体管驱动电路
续流二极管
D 数字量输入 1 74LS06 R限流 b K Vcc +24V
CPU
并 行 接 口
数字脉冲信号 输入调理
5V
10KΩ×4 系统 设置 开关
数 字 量 输 入 的 三 种 形 态
译码电路 定时器/ 计数器
S0 S1 S2 S3
I/O接口逻辑
数字量输入通道结构框图
2019/1/30 7
信息与电气工程学院
山东科技大学
计算机控制系统
三态门缓冲器74LS244
三态门缓冲器74LS244可 用来隔离输入和输出线路, 在两者之间起缓冲、加强 作用。 可用如下指令来完成取数 MOV DX,PROT IN AL,DX
2019/1/30
2
信息与电气工程学院
山东科技大学
计算机控制系统
2.1 数字量过程通道的设计方法
2.2 模拟量输入通道设计方法
2.3 模拟量输出通道设计方法
2.4 小 结
2019/1/30
3
信息与电气工程学院
山东科技大学
计算机控制系统
2.1 数字量过程通道的设计方法
数字量(开关量):用“0”和“1” 两个量进行描述,
如电动机的启动和停止,继电器的吸合与释放,指示灯
的亮和灭等。 数字量过程通道分为数字量输入通道(DI)和数字量 输出通道(DO)。
《模拟量输入通道》课件

模拟信号
1 什么是模拟信号?
模拟信号是连续变化的信号,可以取无限个值。
2 模拟信号的特点和应用场景
模拟信号具有连续性和实时性,常用于声音、光学、气象等领域的信号传输。
数字信号
1 什么是数字信号?
2 数字信号的特点和应用场景
数字信号是离散变化的信号,只能取有 限个值。
数字信号可以进行精确的数值计算和存 储,常用于计算机、通信等领域。
电流型输入通道
适用于测量电流信号,常用于电化学、电 能检测等领域。
光学输入通道
适用于测量光强信号,常用于光纤通信、 光电检测等领域。
模拟量输入通道的应用举例
1 工业自动化
模拟量输入通道在工 业自动化系统中广泛 应用,用于监测和控 制生产过程中的各种 物理量。
2 传感器信号采集
模拟量输入通道可以 采集传感器的模拟信 号,用于分析和处理 传感器数据。
模拟量输入通道的工作原理
1
模拟量输入通道的基本原理源自模拟量输入通道通过模拟信号转
模拟量输入通道的信号转换
2
换器将连续的模拟信号转换为离 散的数字信号。
信号转换过程包括采样、量化和
编码,将模拟信号转换为数字信
号的离散数值。
3
模拟量输入通道的信号处理
数字信号经过滤波、放大和校准 等处理后,用于数据分析、控制 和监测。
模拟量输入通道的分类
按应用领域划分
根据应用领域的不同,模拟量输入通道可分 为工业自动化、仪器仪表等多个分类。
按信号类型划分
模拟量输入通道可以分为电压型、电流型、 电阻型和光学型等多种类型。
常见的模拟量输入通道
电压型输入通道
适用于测量电压信号,广泛应用于电子测 量、电力系统等领域。
第二章模拟量输入输出通道的接口技术

tk r tk 是周期性的重复,即tk r tk 常量,r 1
随机采样:
根据需要选择采样时刻
采样前后波形的变化图
通常,连续函数的频带宽度是有限的,为一孤立的连
续频谱,设其包括的最高频率为fmax ,采样频率为fs。
香农定理:若fs≥2fmax,则可以由采样信号完全恢复出原始 信号。 在实际应用中, fs至少取4fmax 。
IN:(9、23)、(8、22)、(7、21)、(6、20)、 (5、19)、(4、18)、(3、16)、(2、15) OUT:(1、17) 反多路转换开关(一到多的转换): IN: (1、17) OUT:(9、23)、(8、22)、(7、21)、(6、20)、 (5、19)、(4、18)、(3、16)、(2、15)
VREF I out1 I 3 I 2 I1 I 0 2 2 2 2 4 2R
3 2
1
0
由于S3~S0的状态是受b3~b0控制的,并不一定 全是“1”。若它们中有些位为“0”,S3~S0中相应 开关会因和“0”端相连而无电流流过,所以Iout1还 与b3~b0的状态有关。 则 I out1 b3 I3 b2 I 2 b1 I1 b0 I 0
返回
2.1.2 多路转换开关
多 路 转 换 开 关 反 多 路 转 换 开 关
A/D
微机
D/A
完成多到一的转换
完成一到多的转换
2.1.2 多路转换开关
多路开关的分类:
从用途上分 双向:既能实现多到一的转换,也能实现一到多的 转换 单向:只能实现多到一的转换 从输入信号的连接方式上分 单端输入 双端输入(或差动输入)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在计算机控制系统中,为了实现对生产过程的
控制,要将生产现场的各种被测参数转换成数字
计算机能够接受的形式,计算机经过计算、处理 后的结果还需要变换成合适的控制信号输出至被 控对象。以控制执行机构的动作。因此,在计算 机和被控对象之间,必须设置进行信息传递和转
换的连接通道,即过程通道。
3、集成采样保持器
集成采样保持器将采样电路、保持器制作在 一个芯片上,保持电容外接,由用户选用。电容 的大小与采样频率及要求的采样精度有关。 集成采样保持器分三类:
1、用于通用目的的芯片, 如AD583K,AD582,LF398; 2、高速芯片,如THS-0025,THC-0300等; 3、高分辨率芯片,如SHA1144等。
现以4位A/D转换器把模拟量7转换为二进制数0111为例,说 明逐位逼近式A/D转换器的工作原理。
电压 第一次 预测 模拟 电压 第四次 第三次 预测 第二次 预测 预测
(1000) (0100) (0110) (0111)
D3
0
D2
D1
D0
时间
逐次逼近式ADC 逐次逼近式A/D原理概述
N 位的逐次逼近式 A/D 转换器 , 由 N 位寄存器、 N位D/A转换器、比较器、逻辑控制电路、输出 缓冲器等五部分组成。 工作原理:启动信号作用后,时钟信号先 通过逻辑控制电路使N位寄存器的最高位DN-1为 1 ,以下各位为 0 ,这个二进制代码经 D/A 转换 器转换成电压U0(此时为全量程电压的一半) 送到比较器与输入模拟电压UX比较。若UX>U0, 则保留这一位;若UX<U0,则DN-1 位置0。
注:1、在实际系统中,《T ,即近似地认为采样信号
y*(t)是y(t)在采样开关闭合时的瞬时值;
y*(t)能完全复现原信号y(t),采样频率f 至少要为原信号最高 有效 频率fmax的2倍,即f 2fmax。 采样定理给出了y*(t)唯一地复现y(t)所必需的最低采样频 率。实际应用中,常取f (5~10)fmax。
(1)无源I/V变换
I/V变换的基本思想:电流 变换电路中各部分的作用:
?
电压
R1:限流电阻 VD:输出限幅,将电压限制在5V+0.3V以内 R2:电压采样电阻,其压降即为输出电压,精密 电阻,精度为0.1%。 C和R1:组成阻容低通滤波电路
取值: 输入0-10 mA,输出为0-5V,R1=100Ω, R2=500Ω 输入4-20 mA,输出为1-5V, R1=100Ω,R2=250Ω
在选择电容时,容量大小要适宜,以保证 其时间常数适中,并选用泄漏小的电容。
综上所述:保持电容器电容量的大小它不是一个定 值,它可以在一定范围内取值。其电容量的大小确 定可以根据实践经验通过实验来确定。 一般选 100pF-1000pF之间。电容选聚四氟乙烯电容或 聚苯乙烯电容,绝缘阻抗高,漏电流小。
路4051并联起来,组成1个单端的16路开关。
例题3-1 试用两个CD4051扩展成一个1×16路的模拟开关。 例题分析:通道选择信号-数据总线D2-D0; 当D3=0时,选中上面的多路开关 禁止端--D3用来控制两个多路开关的。当D3=1时,选中下面的多路开关
图 多路模拟开关的扩展电路
2.4.2 采样、量化及采样保持器
R3 R1 R2 R2
R1 R3
热电阻
2.4.2 信号调理和I/V变换
R3 R1 R2 R2 R3 R1 R2 R2
R3 R1
R3 R1
热电阻
热电阻
2、I/V变换
变送器输出的信号为 0 ~ 10mA 或 4 ~ 20mA 的统
一信号,需要经过 I/V变换变成电压信号后才 能处理。对于电动单元组合仪表,DDZ-Ⅱ型的 输出信号标准为0~10mA,而DDZ—Ⅲ型和DDZ—S 系列的输出信号标准为 4 ~20mA,因此,针对 以上情况我们来讨论I/V变换的实现方法。 1.无源I/V变换 2.有源I/V变换
反馈型采样保持器电路原理图
2、分析保持电容CH 的大小
由于采样保持电路可以做成集成芯片,而电容器是外接元 件,所以选择电容器的大小很重要。 电容CH对采样/保持的精度有很大的影响,如果电容值过 大,则其时间常数大,当模拟信号频率高时,由于电容充 放电时间长,将会影响电容对输入信号的跟踪特性,而且 在跟踪的瞬间,电容两端的电压会与输入信号电压有一定 的误差。而当处于保持状态时,如果电容的漏电流太大, 负载的内阻太小,都会引起保持信号电平的变化。
模拟量输入通道的任务是把从系统中检测到的模拟 信号,变成二进制数字信号,经接口送往计算机。 传感器:它是一种检测装置,能感受到被测量的信 息,并能将检测感受到的信息,按一定规律变换成为 电信号或其他所需形式的输出。是将生产过程工艺参 数转换为电参数的装置,大多数传感器的输出是直流 电压(或电流)信号。
2.2 模拟量输入通道
模拟量输入通道的任务: 转换:模拟量到数字量的转换 组成核心:A/D转换器
2.2.1 模拟量输入通道的结构
模拟量输入通道一般由I/V变换,多路转换器、采样保持 器、A/D转换器、接口及控制逻辑等组成。 过程参数由传感元件和变送器测量并转换为电流(或电压) 形式后,再送至多路开关;在微机的控制下,由多路开关将各 个过程参数依次地切换到后级,进行采样和A/D转换,实现过 程参数的巡回检测。
2、香农定理(采样定理)指出:为了使采样信号
采样保持器
零阶采样保持器--是在两次采样的间隔时间内,一直保持采样值不变直到下一 个采样时刻。
VIN A1 S
+
-
VIN A2 VOUT t VOUT t
采样 (a ) 原理电路 保持
CH
构成--输入输出缓冲放大器A1、A2和采样开关S、保持电容CH。
图 2-8 采样保持器
现以常用8路模拟开关CD4051为例: 构成-电平转换、译码驱动及开关电路三部分组成。 工作过程 -当禁止端INH=1时,断开,即S0~S7端与Sm端不可能接通; 当INH=0时,前后级通道接通,即Sm=SABC
CD4051原理图 及通道选择表
扩展电路
当采样通道多至16路时,可直接选用16路模拟开关的芯片,也可以将2个8
(1)信号的采样
采样过程:按一定的时间间隔T,把时间上连续和幅值 上也连续的模拟信号,转变成在时刻O、T、2T、…KT的一 连串脉冲输出信号的过程。
y( t ) y( t ) y *( t ) y* (t)
采样器
0 t 0 T T 2T 3T t
采样器或采样开关--执行采样动作的装置 图2-7 信号的采样过程 采样周期:采样开关K每一个通断的时间间隔T。 采样宽度:采样开关闭合的时间(τ )。 采样信号y*(t):幅值连续但是时间上离散的模拟信号。
逐次逼近式A/D原理概述
DN-1 位比较完毕后,再对下一位即 DN-2 位进 行比较,控制电路使寄存器 DN-2 为 1 ,其以下各 位仍为0,然后再与上一次DN-1结果一起经过D/A 转换后再次送到比较器与 UX 相比较。如此一位 一位地比较下去,直至最后一位 D0 比较完毕为 止。 最后,发出EOC信号表示转换结束。这样经 过 N 次比较后, N 位寄存器保留的状态就是转换 后的数字量数据。
( b ) 工作波性
工作过程-采样期间,开关S闭合,输入电压VIN通过A1对CH快速
充电,输出电压VOUT跟随VIN变化;保持期间,开关S断开,由于 A2的输入阻抗很高,理想情况下电容CH将保持电压VC不变,因而 输出电压VOUT=VC也保持恒定。
1、采样保持器的两种结构
串联型采样保持器电路原理图
8位A/D转换器ADC0809
引脚功能 ADC0809共有28 IN0~IN7:8 A,B,C:模拟输入通道的地址选择线。当CBA=000时,选中 IN0;CBA=001时,选中IN1……依此类推,当CBA=111时,选中 IN7 ALE:地址锁存允许信号输入端。该端接高电平时有效,仅当 该信号有效时,才能将地址信号锁存,经译码后选中一个通道。 START:启动转换脉冲输入端。该端所加信号的上升沿将所有 内部寄存器清0 CLK:时钟脉冲输入端。频率为500MHz D7~D0:数据输出端,D7为高位。 EOC 转换结束信号,高电平有效。启动转换后,若EOC为0, 表示A/D OE:输出允许端,高电平有效。该端为高电平时,打开三态 输出缓冲器,输出转换结果。 UREF(+)和UREF(-):参考电压端,提供A/D转换的基准电压。
为了避免低电平模拟信号传输带来的麻烦,经常要 将测量元件的输出信号经变送器变送,如温度变送器、 压力变送器、流量变送器等,将温度、压力、流量的 电信号变成 0 ~ 10mA 或 4 ~ 20mA 的统一信号,然后经过 模拟量输入通道来处理。
2.4.2 信号调理和I/V变换
1.信号调理电路 信号调理电路主要通过非电量的转换、信号的变换、 放大、滤波、线性化、共模抑制及隔离等方法,将非电 量和非标准的电信号转换成标准的电信号。 (1)非电信号的检测-不平衡电桥
积分型:电路简单、但转换精度依赖于积分时间, 因此转换速率低,初期的A/D转换器大多采用积 分型,现逐次比较型已逐步成为主流 逐次比较型:电路规模中等,优点速度较高,功 耗低。 并行比较型:采用多个比较器,仅作一次比较而 实行转换,转换速率极高,n位的转换需要2n-1 个比较器,因此电路规模也极大,价格也高。
结论 -保持器在采样期间,不启动A/D转换器, 保持期间,立即启动A/D转换器,从而保证 A/D 转换时的模拟输入电压恒定,以确保 A/D转换精度
2.4.5、A/D转换器
模拟量输入通道的任务就是将模拟量转 换成数字量,能够完成这一任务的器件就 是模/数转换器,即A/D转换器,或简称 ADC。
A/D转换器种类