中心对称图形—初中数学知识点大全集锦
苏教版八年级下册数学[中心对称与中心对称图形--知识点整理及重点题型梳理]
![苏教版八年级下册数学[中心对称与中心对称图形--知识点整理及重点题型梳理]](https://img.taocdn.com/s3/m/710fbc23c5da50e2524d7f93.png)
苏教版八年级下册数学重难点突破知识点梳理及重点题型巩固练习中心对称与中心对称图形--知识讲解【学习目标】1、理解中心对称和中心对称图形的定义和性质,掌握他们之间的区别和联系;2、掌握关于原点对称的点的坐标特征,以及如何求对称点的坐标;3、探索图形之间的变化关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移和旋转的组合进行图案设计.【要点梳理】要点一、中心对称和中心对称图形1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合 (全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) .2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.要点诠释:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.3.中心对称与中心对称图形的区别与联系:中心对称中心对称图形区别①指两个全等图形之间的相互位置关系.②对称中心不定.①指一个图形本身成中心对称.②对称中心是图形自身或内部的点.联系如果将中心对称的两个图形看成一个整体(一个图形),那么这个图形就是中心对称图形.如果把中心对称图形对称的部分看成是两个图形,那么它们又关于中心对称.要点二、关于原点对称的点的坐标特征关于原点对称的两个点的横、纵坐标均互为相反数.即点关于原点的对称点坐标为,反之也成立.要点三、中心对称、轴对称、旋转对称【388635:中心对称与中心对称图形的区别与联系】1.中心对称图形与旋转对称图形的比较:2.中心对称图形与轴对称图形比较:要点诠释:中心对称图形是特殊的旋转对称图形;掌握三种图形的不同点和共同点是灵活运用的前提.【典型例题】类型一、中心对称和中心对称图形【388635:例3及练习】1.(2015春•鄄城县期末)如图,△ABC与△A1B1C1关于点O成中心对称,下列说法:①∠BAC=∠B1A1C1;②AC=A1C1;③OA=OA1;④△ABC与△A1B1C1的面积相等,其中正确的有()A.1个B.2个C.3个D.4个【答案】D【解析】中心对称的两个图形全等,则①②④正确;对称点到对称中心的距离相等,故③正确;故①②③④都正确.故选D.【总结升华】中心对称的关键是:旋转180°之后可以与原来的图形重合.举一反三【变式】如图,若正方形EFGH由正方形ABCD绕某点旋转得到,则可以作为旋转中心的是()A.M或O或N B.E或O或C C.E或O或N D.M或O或C【答案】A【388635:经典例题2】2. 我们平时见过的几何图形,如:线段、角、等腰三角形、等边三角形、平行四边形、矩形、菱形、正方形中,有哪些是中心对称图形?哪些是轴对称图形?中心对称图形指出对称中心,轴对称图形指出对称轴.【答案与解析】【总结升华】线段、角、等腰三角形、等边三角形、平行四边形、矩形、菱形、正方形是重要的几种对称几何图形,要了解其性质特点更要熟记.类型二、作图3.(2016•聊城)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).(1)若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),写出顶点A1,B1的坐标;(2)若△ABC和△A2B2C2关于原点O成中心对称图形,写出△A2B2C2的各顶点的坐标;(3)将△ABC绕着点O按顺时针方向旋转90°得到△A3B3C3,写出△A3B3C3的各顶点的坐标.【思路点拨】(1)利用点C和点C1的坐标变化得到平移的方向与距离,然后利用此平移规律写出顶点A1,B1的坐标;(2)根据关于原点对称的点的坐标特征求解;(3)利用网格和旋转的性质画出△A2B3C3,然后写出△A2B3C3的各顶点的坐标.【答案与解析】解:(1)如图,△A1B1C1为所作,因为点C(﹣1,3)平移后的对应点C1的坐标为(4,0),所以△ABC先向右平移5个单位,再向下平移3个单位得到△A1B1C1,所以点A1的坐标为(2,2),B1点的坐标为(3,﹣2);(2)因为△ABC和△A1B2C2关于原点O成中心对称图形,所以A2(3,﹣5),B2(2,﹣1),C2(1,﹣3);(3)如图,△A2B3C3为所作,A3(5,3),B3(1,2),C3(3,1);【总结升华】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.举一反三【388635:例5及练习】【变式】如图①, 1O ,2O ,3O ,4O 为四个等圆的圆心,A ,B ,C ,D 为切点,请你在图中画出一条直线,将这四个圆分成面积相等的两部分,并说明这条直线经过的两个点是 ;如图②,1O ,2O ,3O ,4O ,5O 为五个等圆的圆心,A ,B ,C ,D ,E 为切点,请你在图中画出一条直线,将这五个圆...分成面积相等的两部分,并说明这条直线经过的两个点是 .【答案】图①:13O O 或24O O 或AC 或BD;图②:5O M 或4O A类型三、利用图形变换的性质进行计算或证明4.已知:如图,三角形ABM 与三角形ACM 关于直线AF 成轴对称,三角形ABE 与三角形DCE 关于点E 成中心对称,点E 、D 、M 都在线段AF 上,BM 的延长线交CF 于点P . (1)求证:AC=CD ;(2)若∠BAC=2∠MPC ,请你判断∠F 与∠MCD 的数量关系,并说明理由.【解题思路】(1)利用中心对称图形的性质以及轴对称图形的性质得出全等三角形进而得出对应线段相等;(2)利用(1)中所求,进而得出对应角相等,进而得出答案. 【答案与解析】(1)证明:∵△ABM 与△ACM 关于直线AF 成轴对称, ∴△ABM ≌△ACM , ∴AB=AC ,又∵△ABE 与△DCE 关于点E 成中心对称,1o 2o3o 4oCB D A 图① 图② 1o 2o 3o 4o 5o A BC E D∴△ABE ≌△DCE , ∴AB=CD , ∴AC=CD ;(2)解:∠F=∠MCD .理由:由(1)可得∠BAE=∠CAE=∠CDE ,∠CMA=∠BMA , ∵∠BAC=2∠MPC ,∠BMA=∠PMF ,∴设∠MPC=α,则∠BAE=∠CAE=∠CDE=α, 设∠BMA=β,则∠PMF=∠CMA=β, ∴∠F=∠CPM ﹣∠PMF=α﹣β, ∠MCD=∠CDE ﹣∠DMC=α﹣β, ∴∠F=∠MCD .【总结升华】此题主要考查了中心对称图形的性质以及全等三角形的性质等知识,根据题意得出对应角相等进而得出是解题关键. 举一反三【 388635:例4及练习】【变式】如图,三个圆是同心圆,则图中阴影部分的面积为 .【答案】4.。
中心对称图形讲义

知识点一:旋转1.旋转的概念将图形绕一个顶点转动一定的角度,这样的图形运动称为图形的旋转,这个定点称为旋转中心,旋转的角度称为旋转角。
图形的旋转不改变图形的形状、大小,只改变图形上点的位置。
2.旋转的性质一个图形和它经过旋转所得到的图形中,对应点到旋转中心距离相等,两组对应点分别与旋转中心连线所成的角相等。
3.画旋转后的图形利用图形的旋转的性质,可以画出一个图形绕某点按照一定的方向旋转一定角度后的图形。
基本画法:将图形上的一些特殊点与旋转中心连接,以旋转中心为圆心,连线段长为半径画图,按照旋转的角度来找出对应点,再画出所有的对应线段。
考点一:生活中的旋转例1:下列现象中:①地下水位逐年下降;②传送带的移动;③方向盘的转动;④水龙头开关的转动;⑤钟摆的运动;⑥荡秋千运动.属于旋转的有()A.2个B.3个C.4个D.5个例2:在旋转的过程中,要确定一个图形旋转后的位置,除了知道原来图形的位置和旋转方向外,还需要知道_______和_______.例3:小明把自己的左手手印和右手手印按在同一张白纸上(如图所示),则左手手印_______(填“能”或“不能”)通过旋转与右手手印完全重合在一起.考点二:确定图形的旋转角度例1:如图所示,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A.30°B.45°C.90°D.135°考点三:确定图形的旋转中心例1:如图,O为正方形ABCD的边CD的中点,如果正方形CDEF旋转后能与正方形ABCD重合,那么图形所在的平面上可以作为旋转中心的点共个。
例2:如图,线段A'B'是线段AB绕着某一点O旋转得到的,点A'与点A为一对对应点,请找出旋转中心O..O考点四:生活中的数学问题例1:如图,这是一个正面为黑、反面为白的未拼完的拼木盘,给出如下四块正面为黑、反面为白的拼木,现欲拼满拼木盘并使其颜色一致,请问应选择的拼木是()A. B. C. D.考点五:推理说明题例1:将两块大小相同的含30°角的直角三角尺(∠BAC=∠B′A′C′=30°)按如图①所示的方式放置,固定三角尺A′B′C′,然后将三角板ABC绕直角顶点C顺时针方向旋转(旋转角小于90°)至图②所示的位置,AB与A′C交于点E,AC与A′B′交于点F,AB与A′B′相交于点O.(1)求证:△BCE≌△B′CF;(2)当旋转角等于30°时,AB与A′B′垂直吗?请说明理由.考点六:有关旋转的做图题例1:在方格纸上按下列要求作图(如图①),不用写作法:(1)做出“小旗子”向右平移6格后的图案;(2)做出“小旗子”绕点O按逆时针方向旋转90°后的图案。
初中数学中中心对称图形中的面积等分

初中数学中中心对称图形中的面积等分中心对称图形属于图形变换中旋转的特殊形式,它具有独特的一些性质,下面仅从图形的面积角度对中心对称图形进行研究。
一、中心对称图形的相关知识定义:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心,能够重合的顶点叫做对应点(或对称点)。
常见的中心对称图形有:线段、平行四边形、矩形、菱形、正方形、边数为偶数的正多边形、圆等。
一般地,中心对称图形的对称中心是唯一的,在图形的内部。
如线段的对称中心为线段的中点;平行四边形、矩形、菱形、正方形这些图形的对称中心为对角线的交点;边数为偶数的正多边形的对称中心为图形的中心;圆的对称中心是圆心。
由定义易得中心对称图形的性质:每组对应点的连线段经过对称中心且被对称中心平分。
在判断一个图形是否是中心对称图形,可以先初步确定对称中心的位置,再由图形的一个顶点与对称中心连线并延长(构建1800),延长线是否经过图形的另外的顶点,若经过,再判断顶点到对称中心的距离是否相等,若都具备,在判断另外的几对对应点是否具有这些性质。
若均具备则是中心对称图形,否则,不是。
二、中心对称图形中的面积等分线中心对称图形中,经过对称中心的任意一条直线将图形的面积被平分。
例1:人教版八年级数学教材 51页 14题如图,用硬纸板剪一个平行四边形,做出它的对角线的交点O,用大头针把一根平放在平行四边形上的直细木条固定在点O处,并使细木条可以绕点O转动,拨动细木条,使随意停留在任意位置,观察几次拨动的结果,你发现了什么?解:如图,木条和平行四边形组合成图形,该图形是中心对称图形,对称中心为对角线的交点O。
当木条绕点O旋转过程中,可以与一组对边AD、BC相交,也可与对边AB、CD相交,此时木条和对角线把平行四边形ABCD分割成六个基本的三角形,三角形①和三角形④、三角形②和三角形⑤、三角形⑥和三角形③分别关于点O中心对称,它们分别全等,且三角形⑥①②在木条一侧,三角形③④⑤在木条另一侧,利用面积割补法易得S⑥+S①+S②=S③+S④+S⑤即木条平分平行四边形ABCD的面积。
中心对称图形知识点总结和重难点精析

中心对称图形知识点总结和重难点精析中心对称图形是一种常见的几何形态,拥有独特的性质和作图方法。
本文将介绍中心对称图形的定义、性质、作图方法和应用,并针对重难点进行精析,帮助同学们更好地理解和掌握这一知识内容。
一、中心对称图形定义中心对称图形是指在平面内,把一个图形绕着一个定点旋转180度,能与自身重合的图形。
这个定点称为对称中心。
中心对称图形包括旋转对称图形和镜面对称图形,它们都是中心对称图形的特殊情况。
二、中心对称图形的性质中心对称图形的对称中心是对称点连线的中点。
中心对称图形对应的两个部分到对称中心的距离相等。
中心对称图形上对应点的连线经过对称中心,且被对称中心平分。
三、中心对称图形的作图方法直接作图法:对于一些比较简单的中心对称图形,我们可以直接根据定义,通过观察和推理得到其对称中心和对称点,从而完成作图。
代数法:对于一些比较复杂的中心对称图形,我们可以运用代数的相关知识,如坐标轴的变换等,来计算出对称点的坐标,从而完成作图。
几何法:对于一些特殊的中心对称图形,我们可以运用几何的相关知识,如全等三角形、平行四边形等,通过构造和计算得到对称点或对称中心,从而完成作图。
四、中心对称图形的应用中心对称图形在生活中的应用非常广泛,如机械设计、建筑结构、艺术设计和商标设计等。
例如,在机械设计中,一些齿轮和涡轮的形状是中心对称图形,因为这样的设计可以保证它们在运转过程中平稳、顺畅;在建筑结构中,许多建筑的平面图是中心对称图形,因为这样的设计可以增强建筑物的稳定性和美观性;在艺术设计,例如商标设计中,一些商标的图案是中心对称图形,因为这样的设计可以增强商标的辨识度和美观性。
五、重难点精析确定对称中心:确定一个中心对称图形的对称中心是作图的关键。
同学们需要学会观察和分析图形中隐藏的对称特征,如特殊点、平行线等,从而确定对称中心。
作图方法选择:对于不同复杂程度的中心对称图形,需要灵活选择作图方法。
直接作图法适用于简单图形,代数法和几何法适用于复杂图形。
初二数学《中心对称图形》

民间艺术形式之一,通过剪刀和纸 张可以制作出各种美丽的图案。利用剪纸制作中心对 称图形也是一种常见的方法。首先,需要准备一张正 方形的纸,然后折叠出相应的图案,最后用剪刀沿着 折叠的痕迹进行剪裁。展开纸张后,就可以得到一个 中心对称的剪纸作品。这种方法不仅可以锻炼学生的 动手能力,还可以提高学生的艺术鉴赏能力。
利用折纸制作中心对称图形
总结词
简单、有趣
详细描述
折纸是一种常见的艺术形式,通过折叠纸张可以制作出各种形状的物体。对于中心对称 图形,可以通过折叠纸张的方式来实现。例如,将一张正方形的纸对折,然后折叠出相 应的图案,展开纸张后就可以得到一个中心对称的图形。这种方法简单易学,适合初学
者进行实践操作。
利用剪纸制作中心对称图形
05
中心对称图形的制作方法
利用几何画板制作中心对称图形
总结词
直观、精确
详细描述
几何画板是一个专业的数学绘图工具,可以 方便地绘制各种几何图形。在几何画板上, 可以通过设定对称中心,绘制出中心对称图 形,如正方形、矩形、圆等。这种方法可以 精确地绘制出中心对称图形,并且可以通过 动态演示来展示对称过程。
感谢您的观看
THANKS
中心对称图形的识别方法
观察特征
通过观察图形的形状和结 构,可以初步判断是否为 中心对称图形。
测量验证
通过测量和比较图形中各 点到对称中心的距离和角 度,可以验证是否为中心 对称图形。
旋转测试
将图形绕某点旋转180度, 观察是否与原图形重合, 是则为中心对称图形。
02
常见的中心对称图形
矩形
总结词
圆
总结词
圆是完美的中心对称图形,其对称中心是圆心。
详细描述
初二数学第三章《中心对称图形》知识梳理

初二年级数学学科第三单元知识点梳理第三章 中心对称图形江苏省数学特级教师 张顺和一、知识网络二、典例分析 例1 (1)情境观察:将矩形ABCD 纸片沿对角线AC 剪开,得到△ABC 和△''A C D ,如图1所示,将△''A C D 的顶点'A 与点A 重合,并绕点A 按逆时针方向旋转,使点D 、'()A A 、B 在同一条直线上,如图2所示。
观察图2可知:与BC 相等的线段是_____________, 'C AC =_____________。
(2)问题探究:如图3,△ABC 中,AG ⊥BC 于G ,以A 为直角顶点,分别以AB 、AC 为直角边,向△ABC 外作等腰Rt △ABE 和Rt △ACF ,过点E 、F 作射线GA 的垂线,垂足分别为P 、Q ,试探究EP 与FQ 之间的数量关系,并说明你的结论的正确性。
图1 图2C'A'BADCABCDBCDA (A')C'解 (1)情境观察: AD (或A′D ),90°(2)问题探究:结论:EP =FQ . 理由如下:∵△ABE 是等腰三角形,∴AB =AE ,∠BAE=90°. ∴∠BAG +∠EAP =90°.∵AG ⊥BC , ∴∠BAG +∠ABG =90°,∴∠ABG =∠EAP . ∵EP ⊥AG ,∴∠AGB =∠EPA =90°, ∴Rt △ABG ≌Rt △EAP . ∴AG =EP .同理AG =FQ . ∴EP =FQ .说明 情境观察所得结论是容易的,但它是为问题探究服务的,图3中以PG 为分界线的左、右两个图形实际上就是图2,你看出来了吗?分析问题时应多注意前后的联系,体会用化归思想解决问题。
例2 如图,AB//CD ,GM 平分AGH ∠,HM 平分CHG ⊥,HN 平分DHG ∠,GN平分BGH ∠。
八年级数学《中心对称图形》知识点汇总

中心对称图形1、中心对称:如果把一个图形绕一个点旋转180°后能够与另一个图形完全重合,那么这两个图形关于这点成中心对称。
2、中心对称图形:把一个图形绕一个点旋转180°后能够与自身完全重合,那么这个图形是中心对称图形。
3、中心对称的性质:①关于中心对称的两个图形是全等的。
②关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
4、真命题:如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点成中心对称。
5、平行四边形的定义:两组对边分别平行的四边形叫作平行四边形。
6、平行四边形性质:①平行四边形的对角相等。
②平行四边形的对边相等。
③平行四边形的对角线互相平分。
7、平行四边形判定:①两组对边分别相等的四边形是平行四边形。
②对角线互相平分的四边形是平行四边形。
③一组对边平行且相等的四边形是平行四边形。
④真命题:两组对角分别相等的四边形是平行四边形。
⑤真命题:一组对边平行,一组对角相等的四边形是平行四边形。
注意:假命题...:一组对边相等,一组对角相等的四边形是平行四边形。
(×)8、矩形的定义:有一个角是直角的平行四边形叫作矩形。
9、矩形的性质:①矩形的四个角都是直角。
②矩形的对角线相等。
10、矩形的判定:①有三个角是直角的四边形是矩形。
②对角线相等的平行四边形是矩形。
11、菱形的定义:有一组邻边相等的平行四边形叫作菱形。
12、菱形的性质:①菱形的四条边都相等。
②菱形的对角线互相垂直,并且每一条对角线平分一组对角。
13、菱形面积等于对角线乘积的一半。
推而广之:(真命题)对角线互相垂直的四边形的面积等于对角线乘积的一半。
14、菱形的判定:①四边都相等的四边形是菱形。
②对角线互相垂直的平行四边形是菱形。
③真命题:一条对角线平分一个内角的平行四边形是菱形。
15、正方形的定义:有一个角是直角,并且有一组邻边相等的平行四边形叫作正方形。
16、正方形性质:正方形的四个角都是直角,四条边都相等,正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角。
八年级数学下册期中复习 第九章 中心对称图形

A D CB (第2题) (第3题) BCDEF A 八年级数学下册期中复习 第九章 中心对称图形概念与定义相关练习 考点1.平行四边形的性质以及判定性质:1)平行四边形两组对边分别平行且相等.2)平行四边形对角相等,邻角互补.3)平行四边形对角线互相平分.4)平行四边形是中心对称图形.判定方法:1)定义:两组对边分别平行的四边形是平行四边形.2)一组对边平行且相等的四边形是平行四边形.3)两组对边分别相等的四边形是平行四边形.4)对角线互相平分的四边形是平行四边形.基础训练: 1、能够判断一个四边形是平行四边形的条件是( ) A 、一对角相等 B 、两条对角线互相平分阶段 C 、两条对角线互相垂直 D 、一组邻角互补 2、判断一个四边形是平行四边形的条件是( ) A 、AB ∥CD ,AD =BC B 、∠A =∠B ,∠C =∠D C 、AB =CD ,AD =BC D 、AB =AD ,CB =CD 注意:其他还有一些判定平行四边形的方法,但都不能作为定理使用。
如:“两组对角分别相等的四边形是平行四边形”,它显然是一个真命题,但不能作为定理使用.★1.如图,在□ABCD 中,AC 与BD 相交于点O ,点E 是边BC 的中点,AB =4,则OE 的长是( )A . 2B .2C .1D .21 ★2.如图,□ABCD 中,AC 、BD 为对角线,BC =6,BC 边上的高为4,则阴影部分的面积为( )A .3B .6C .12D .24★3.在△ABC 中,AB =BC ,AB =12cm ,F 是AB 边上的一点,过点F 作FE ∥BC 交CA 于点E ,过点E 作ED∥AB 交于BC 于点D (如图),则四边形BDEF 的周长是 .★4.(如图,□ABCD 中,对角线AC 和 BD 相交于点O ,如果AC=12,BD=10,AB=m ,那么m 的取值范围是_______★5、在平面直角坐标系中,点A 、B 、C 的坐标分别是A(-2,5),B(-3,-1),C(1,-1),在第一象限内找一点D ,使四边形ABCD 是平行四边形,那么点D 的坐标是 .★6.如图,在ABCD 中,已知AB=9㎝,AD=6㎝,BE平分∠ABC 交DC 边于点E ,求DE 的长.★7.如图,平行四边形ABCD 的对角线相交于点O ,直线EF 经过点O ,分别与AB 、CD 的延长线交于点E 、F 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中心对称图形—初中数学知识点大全集锦中心对称图形初中数学知识点大全集锦
中心对称的性质
①关于中心对称的两个图形是全等形。
②关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
③关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。
识别一个图形是否是中心对称图形就是看是否存在一点,使图形绕着这个点旋转180度后能与原图形重合。
中心对称是指两个图形绕某一个点旋转180度后,能够完全重合,称这两个图形关于该点对称,该点称为对称中心.二者相辅相成,两图形成中心对称,必有对称中点,而点只有能使两个图形旋转180度后完全重合才称为对称中点.。