抽象函数模型及实例
抽象函数常见题型及解法综述

是[- 1, 1]; ③在其定义域上递减; ④ f( x) +f( y) = f( xy) 对于
任意实数 x, y 都成立.解不等式 f-1( x)·f-1( 1 ) ≤ 1 . 1- x 2
联想
因 为 loga( x·y) =logax+logay, 而 log 1
2
1 2
=1, y=
log 1 x 在其定义域内为减函数, 所以猜测它的模型函数
#!f -1( x+ 1 ) ≤f -1( 1) , #x+ 1 ≥1,
% 1- x
% 1- x
%%- 1≤x+ 1 ≤1,
$
1- x
%%- 1≤x+ 1 ≤1,
∴(
1- x
∴x=0.
%- 1≤x≤1,
%- 1≤x≤1,
&%%- 1≤
1 1- x
≤1.
&%%- 1≤
1 1- x
≤1.
故 原 不 等 式 的 解 集 为 {0}.
二 、寻 觅 特 殊 函 数 的 模 型
1.指 数 函 数 模 型
例 6 设 f( x) 定义于实数集 R 上, 当 x>0 时, f( x) >1,
且对于任意实数 x, y, 有 f( x+y) = f( x)·f( y) , 同时 f( 1) =2,
解不等式 f( 3x- x2) >4.
联 想 由于 ax+y=a·x ay( a>0, a≠1) , 于是猜测它的模型
x- 1
x- 1
x- 1
①- ②+③并化简得 f( x) = x3- x2- 1 . 2x( x- 1)
小 结 把 x 和 x- 1 分 别 看 作 两 个 变 量 , 怎 样 实 现 由 x
抽象函数模型

模型三(指数函数型):f(x+y)=f(x)f(y)或 f(x-y)=f(x)÷f(y)
例3、已知函数对于一切实数x、满足f(0)≠0, f(x+y)=f(x)f(y),且当x<0时,f(x)>1 (1)当x>0时,求f(x)的取值范围(2)判断 在R上的单调性
模型四(对数函数型):f(xy)=f(x)+f(y)或 f(x÷y)=f(x)-f(y)
抽象函数模型
模型一(正比例函数型Hale Waihona Puke : f(x±y)=f(x)±f(y)
例1、已知函数对任意实数x,y,均有 f(x+y)=f(x)+f(y),且当x>0时f(x)>0,f(-1)=-2, 求在区间[-2,1]上的值域。
模型二(一次函数型):f(x+y)=f(x)+f(y)-c
例2、已知函数f(x)对任意x,y都满足条件 f(x)+f(y)=2 + f(x+y),且当x>0时, f(x)>2,f(3)=5,求不等式f(a² -2a-2)<3 的解集
例4、已知函数f(x)定义域为(0,+∞)且单调递增, 满足f(4)=1,f(xy)=f(x)+f(y) (1)证明:f(1)=0;(2)求f(16); (3)若f(x)+f (x-3)≤1,求x的范围; (4)试证f(xⁿ)=nf(x)(n∈N)
微专题21 抽象函数的处理技巧(原卷版)

微专题21抽象函数的处理技巧【方法技巧与总结】常见抽象函数的模型()()()()(1)f x y f x f y f x f x+=+⇔=()()()()log a f xy f x f y f x x=+↔=()()()()xf x y f x f y f x a +=↔=()()()()kf xy f x f y f x x =↔=2()()()()f x y f x f y kxy f x ax bx+=++↔=+()()2()()f x y f x y f x f x ax b++-=↔=+【题型归纳目录】题型一:求抽象函数的解析式及函数值题型二:抽象函数的奇偶性问题题型三:抽象函数的单调性问题【典型例题】题型一:求抽象函数的解析式及函数值例1.设函数:f R R →满足(0)1f =,且对任意x ,y R ∈,都有(1)()()()2f xy f x f y f y x +=--+,则(2017)(f =)A .0B .2018C .2017D .1例2.设函数()f x 满足(0)1f =,且对任意x ,y R ∈,都有(1)()()()2f xy f x f y f y x +=--+,则f (1)(=)A .2B .2-C .1D .1-例3.设函数:f R R →满足(0)1f =,且对任意x ,y R ∈都有(1)()()()2f xy f x f y f y x +=--+,则(2020)(f =)A .0B .1C .2019D .2021变式1.若函数()f x 对定义域内任意两个自变量x ,y 都有()()()f x y f x f y +=,则()f x 可以是()A .()21f x x =+B .2()f x x =C .1()f x x =D .()2xf x =变式2.函数()f x 满足对定义域内的任意x ,都有(2)()2(1)f x f x f x ++<+,则函数()f x 可以是()A .()21f x x =+B .2()2f x x x =-C .()x f x e =D .()f x lnx =变式3.若()f x 满足对任意的实数a ,b 都有()f a b f +=(a )f (b )且f (1)2=,则下列判断正确的有()A .()f x 是奇函数B .()f x 在定义域上单调递增C .当(0,)x ∈+∞时,函数()1f x >D .(2)(4)(6)(2016)(2018)(2020)2020(1)(3)(5)(2015)(2017)(2019)f f f f f f f f f f f f +++⋯++=变式4.已知函数()f x 对一切实数x ,y 都有()()(21)f x y f y x x y +-=++成立,且f (1)0=,则(0)f =,()f x =.变式5.若函数()f x 对任意实数x ,y 均有22()2()233f x y f y x xy y x y +=++-+-,则()f x 的解析式为.变式6.对任意正实数x ,y ,()()()f xy f x f y =+,f (9)4=,则f =.变式7.(1)已知()2()1f x f x x +-=+,求()f x 的解析式.(2)设()f x 是R 上的函数,且(0)1f =,并且对任意实数x ,y 都有()()(21)f x y f x y x y -=--+,求()f x 的解析式.题型二:抽象函数的奇偶性问题例4.(2022·重庆市辅仁中学校高一期中)已知()f x 定义域为R ,对任意,x y ∈R 都有()()()1f x y f x f y +=+-,当0x >时,()1,(1)0f x f <=.(1)求(1)f -;(2)试判断()f x 在R 上的单调性,并证明;(3)解不等式:2(232)2()4f x x f x --+>.例5.(2022·广东·深圳外国语学校高一期中)已知函数()f x 对任意的实数,m n 都有()()()1f m n f m f n +=+-,且当0x >时,有()1f x >.(1)求证:()f x 在R 上为增函数;(2)若()()923292x x x f f k -⋅+⋅->对任意[)0,x ∈+∞恒成立,求实数k 的取值范围.例6.(2022·广西梧州·高一阶段练习)(1)已知函数()f x 对任意的,a b ∈R ,都有()()()1f a b f a f b +=+-,且当0x >时,()1f x >,求证:()f x 是R 上的增函数;(2)若()f x 是R 上的增函数,且()(),(2)1x f f x f y f y ⎛⎫=-= ⎪⎝⎭,解不等式1()23f x f x ⎛⎫-≤ ⎪-⎝⎭.变式8.(2022·湖南省临澧县第一中学高一阶段练习)对任意的0x ≠函数()f x 满足对任意的a ,b 都有()()()f ab f a f b =+,且当1x >时,()0f x >.(1)判断()f x 的奇偶性,并加以证明;(2)判断()f x 的单调性,并加以证明;(3)对任意的0t ≠都有不等式()()20f t t f k --<恒成立,求k 的取值范围.变式9.(2022·全国·高一课时练习)已知函数()f x 的定义域为()0,∞+,对任意正实数a 、b 都有()()()1f ab f a f b +=+,且当1x >时,()1f x >.求证:函数()f x 是()0,∞+上的增函数.变式10.(2022·全国·高一专题练习)定义在()0∞+,上的函数()f x 满足下面三个条件:①对任意正数a b ,,都有()()()f a f b f ab +=;②当1x >时,()0f x <;③()21f =-(1)求()1f 和14f ⎛⎫ ⎪⎝⎭的值;(2)试用单调性定义证明:函数()f x 在()0∞+,上是减函数;(3)求满足()()32412218f x x f x -+>的x 的取值集合.变式11.(2022·全国·高一期中)已知函数f (x )对∀x ,y ∈R ,都有f (x +y )=f (x )+f (y ),当x <0时,f (x )>0,且f (1)=-2.(1)证明函数f (x )在R 上的奇偶性;(2)证明函数f (x )在R 上的单调性;(3)当x ∈[1,2]时,不等式f (x 2-mx )+f (x )<4恒成立,求实数m 的取值范围.变式12.(2022·全国·高一单元测试)已知f (x )是定义在区间[-1,1]上的奇函数,且f (1)=1,当a ,b ∈[-1,1],a +b ≠0时,有()()f a f b a b++>0成立.(1)判断f (x )在区间[-1,1]上的单调性,并证明;(2)若f (x )≤m 2-2am +1对所有的a ∈[-1,1]恒成立,求实数m 的取值范围.题型三:抽象函数的单调性问题例7.(2022·辽宁·铁岭市清河高级中学高一阶段练习)定义在()1,1-上的函数()f x 满足对任意的(),1,1x y ∈-,都有()()1x y f x f y f xy ⎛⎫++= ⎪+⎝⎭,且当(0,1)x ∈时,()0f x <.(1)求证:函数()f x 是奇函数;(2)判断()f x 在()1,1-上的单调性,不需证明;(3)解不等式()()10f x f x -+<.例8.(2022·湖南·慈利县教育科学研究室高一期中)已知函数()f x 是定义在R 上的增函数,并且满足()()(),(1) 4.f x y f x f y f +=+=(1)求(0)f 的值.(2)判断函数()f x 的奇偶性.(3)若(23)()8f x f x +-<,求x 的取值范围.例9.(2022·全国·高一课时练习)设函数()f x 对任意,x y ∈R ,都有()()()f x y f x f y +=+,证明:()f x 为奇函数.变式13.(2022·全国·高一课时练习)已知函数()f x 满足()()()()1,f x y f x f y x y R +=+-∈,当x y ≠时,()()0f x f y x y->-成立,且(1)2f =.(1)求(0)f ,并证明函数()()1g x f x =-的奇偶性;(2)当[0,9]x ∈,不等式()(3f x f m +-≤恒成立,求实数m 的取值范围.变式14.(2022·全国·高一课时练习)已知函数()f x 定义域为[1,1]-,若对于任意的,[1,1]x y ∈-,都有()()()f x y f x f y +=+,且0x >时,有()0f x >.(1)证明:()f x 为奇函数;(2)证明:()f x 在[1,1]-上是增函数;(3)设(1)1f =,若()22f x m am <-+,对所有[1,1]x ∈-,[1,1]a ∈-恒成立,求实数m 的取值范围.变式15.(2022·黑龙江双鸭山·高一期末)设函数()f x 是增函数,对于任意,R x y ∈都有()()()f x y f x f y +=+.(1)写一个满足条件的()f x ;(2)证明()f x 是奇函数;(3)解不等式()211()(3)22f x f x f x ->.变式16.(2022·重庆·西南大学附中高一期中)已知y =f (x )满足对一切x ,y ∈R 都有f (x +2y )=f (x )+2f (y ).(1)判断y =f (x )的奇偶性并证明;(2)若f (1)=2,求f (-13)+f (-3)+f (22)+f (53)的值.变式17.(2022·全国·高一课时练习)函数f (x )对于任意的实数x ,y 都有f (x+y )=f (x )+f (y )成立,且当x >0时f (x )<0恒成立.(1)证明函数f (x )的奇偶性;(2)若f (1)=-2,求函数f (x )在[-2,2]上的最大值;(3)解关于x 的不等式211(2)()(4)(2) 22f x f x f x f -->--变式18.(2022·河南焦作·高一期中)已知f (xy )=f (x )+f (y ).(1)若x ,y ∈R ,求f (1),f (-1)的值;(2)若x ,y ∈R ,判断y =f (x )的奇偶性;(3)若函数f (x )在其定义域(0,+∞)上是增函数,f (2)=1,f (x )+f (x -6)≤4,求x 的取值范围.【过关测试】一.单选题1.若对任意x ,y R ∈,有()()()3f x f y f x y +-+=,函数22()()1x g x f x x =++,则g (2)(2)g +-的值等于()A .0B .4C .6D .82.若对x ∀,y R ∈,有()()()3f x f y f x y +-+=,函数2()()1x g x f x x =++,则g (2)(2)g +-的值()A .0B .4C .6D .93.已知定义在(0,)+∞上的减函数()f x 满足条件:对任意x ,(0,)y ∈+∞,总有()()()1f xy f x f y =+-,则关于x 的不等式(1)1f x ->的解集是()A .(1,)+∞B .(1,2)C .(,2)-∞D .(0,2)二.填空题4.函数()y f x =的定义域为(0,)+∞,且对于定义域内的任意x ,y 都有()()()f xy f x f y =+,且f (2)1=,则f 的值为.5.已知函数()f x 的定义域是(0,)+∞,满足f (2)1=,且对于定义域内任意x ,y 都有()()()f xy f x f y =+成立,那么f (1)f +(4)=.6.已知函数()f x 的定义域是(0,)+∞,且满足()()()f xy f x f y =+,f (2)1=.如果对于0x y <<,都有()()f x f y <,则不等式(1)(1)2f x f x -++<的解集为(表示成集合).7.已知定义在正实数集上的函数()f x 满足①若1x >,则()0f x <;②1()12f =;③对定义域内的任意实数x ,y ,都有:()()()f xy f x f y =+,则不等式()(5)2f x f x +-- 的解集为.三.解答题8.已知函数()f x ,()g x 同时满足:()()()()()g x y g x g y f x f y -=+;(1)1f -=-,(0)0f =,f (1)1=,求(0)g ,g (1),g (2)的值.9.若函数()f x ,()g x 满足()()()()()g x y g x g y f x f y -=+,并且(0)0f =,(1)1f -=-,f(1)1=.(1)证明:22()()(0)f x g x g +=.(2)求(0)g ,g (1),(1)g -,g (2)的值.(3)判断()f x ,()g x 的奇偶性.10.(2022·北京市第五中学高一期末)已知定义在R 上的函数()f x 满足:①对任意实数x ,y ,均有()()2()()f x y f x y f x f y ++-=;②(1)0f =;③对任意[0,1)x ∈,()0f x >.(1)求(0)(2)f f -的值,并判断()f x 的奇偶性;(2)对任意的x ∈R ,证明:(4)()f x f x +=;(3)直接写出()f x 的所有零点(不需要证明).11.(2022·山西太原·高一开学考试)若定义在R 上的函数()f x 对任意实数1x ,2x ,都有()()()12122f x x f x f x +=+-成立,且当0x >时,()2f x >.(1)求证:()2f x -为奇函数;(2)判断()f x 在R 上的单调性,并说明理由;(3)若()45f =,解不等式()2328f m m --<.12.(2022·福建·泉州市第六中学高一期中)设函数()f x 对任意,x y R ∈,都有()()()f x y f x f y +=+,且当0x >时,()0f x <.(1)证明:()f x 为奇函数;(2)证明:()f x 为减函数,(3)若()11f -=,试求关于m 的不等式()()22213f m f m m +-+>-的解集.13.(2022·福建省龙岩第一中学高一阶段练习)已知函数()f x 对任意实数x 、y 恒有f (x +y )=f (x )+f (y ),当0x >时,()0f x <,且()12f =-.(1)判断()f x 的奇偶性;(2)证明函数单调性并求()f x 在区间[]3,3-上的最大值;(3)若()222f x m am <-+对所有的][1,1 ,1,1x a ⎡⎤∈-∈-⎣⎦恒成立,求实数m 的取值范围.14.(2022·海南中学三亚学校(三亚市实验中学)高一期中)已知函数()f x 对一切实数x ,R y ∈都有()()()f x y f x f y +=+,且当0x >时,()0f x <,又()32f =-.(1)试判定该函数的奇偶性;(2)试判断该函数在R 上的单调性;(3)若()()22240f x f x ++--<,求x 的取值范围.15.(2022·陕西·长安一中高一阶段练习)函数()f x 的定义域为{}|0D x x =≠,且满足对于任意1x ,2x D ∈,有()()()1212f x x f x f x ⋅=+.(1)判断()f x 的奇偶性并证明你的结论;(2)如果()41f =,()12f x -<,且()f x 在()0,∞+上是增函数,求x 的取值范围.16.(2022·宁夏·银川一中高一期中)已知函数()f x 定义域为[11]-,,若对于任意的[11]x y ∈-、,,都有()()()f x y f x f y +=+,且0x >时,有()0f x >.(1)判断并证明函数()f x 的奇偶性;(2)判断并证明函数()f x 在[11]-,上的单调性;(3)若f (1)=1,2()21f x m am <-+,对所有[11]x ∈-,,[11]a ∈-,恒成立,求m 的取值范围;17.(2022·四川·攀枝花市第十五中学校高一期中)函数()f x 对任意实数,x y 恒有()()()f x y f x f y +=+,且当0x >时,()0f x <(1)判断()f x 的奇偶性;(2)求证∶()f x 是R 上的减函数∶(3)若a R ∈,求关于x 的不等式()()()()222f ax f x f x f ax ++<-的解集.。
抽象函数模型归纳总结(八大题型)(解析版)

抽象函数模型归纳总结目录01方法技巧与总结02题型归纳总结题型一:一次函数模型题型二:二次函数模型题型三:幂函数模型题型四:指数函数模型题型五:对数函数模型题型六:正弦函数模型题型七:余弦函数模型题型八:正切函数模型03过关测试20一次函数(1)对于正比例函数f x =kx k≠0,与其对应的抽象函数为f x±y=f x ±f y .(2)对于一次函数f x =kx+b k≠0,与其对应的抽象函数为f x±y=f x ±f y ∓b.二次函数(3)对于二次函数f x =ax2+bx+c a≠0,与其对应的抽象函数为f x+y=f x +f y +2axy-c幂函数(4)对于幂函数f x =x n,与其对应的抽象函数为f xy=f x f y .(5)对于幂函数f x =x n,其抽象函数还可以是fxy=f x f y.指数函数(6)对于指数函数f x =a x,与其对应的抽象函数为f x+y=f x f y .(7)对于指数函数f x =a x,其抽象函数还可以是f x -y =f xf y.其中(a >0,a ≠1)对数函数(8)对于对数函数f x =log a x ,与其对应的抽象函数为f xy =f x +f y .(9)对于对数函数f x =log a x ,其抽象函数还可以是fxy=f x -f y .(10)对于对数函数f x =log a x ,其抽象函数还可以是f x n=nf x .其中(a >0,a ≠1)三角函数(11)对于正弦函数f x =sin x ,与其对应的抽象函数为f x +y f x -y =f 2x -f 2y 注:此抽象函数对应于正弦平方差公式:sin 2α-sin 2β=sin α+β sin α-β(12)对于余弦函数f x =cos x ,与其对应的抽象函数为f x +f y =2fx +y 2 f x -y2注:此抽象函数对应于余弦和差化积公式:cos α+cos β=2cos α+β2cosα-β2(13)对于余弦函数f x =cos x ,其抽象函数还可以是f x f y =12f x +y +f x -y注:此抽象函数对应于余弦积化和差公式:cos αcos β=cos α+β +cos α-β2(14)对于正切函数f x =tan x ,与其对应的抽象函数为f x ±y =f x ±f y1∓f x f y注:此抽象函数对应于正切函数和差角公式:tan α±β =tan α±tan β1∓tan αtan β题型一:一次函数模型1已知f x +y =f x +f y -1且f 1 =2,则f 1 +f 2 +⋯+f n 不等于A.f 1 +2f 1 +⋯+nf 1 -n n -12B.f n n +1 2+n -1C.n 2+3n2 D.n n +1【答案】D【解析】∵f x +y =f x +f y -1,∴f x +y -1=f x -1 +f y -1 ,构造函数g x =f x -1,则g x +y =g x +g y ,且g 1 =f 1 -1=1,令a n =g n =f n -1,则a 1=f 1 -1=1,令x =n ,y =1,得g n +1 =g n +g 1 ,∴a n +1=a n +a 1=a n +1,即a n +1-a n =1,所以,数列a n 为等差数列,且首项为1,公差为1,∴a n =1+n -1 ×1=n ,∴f n -1=n ,则f n =n +1.f 1 +f 2 +⋯+f n =2+3+⋯+n +1 =n 2+n +1 2=n n +3 2=n 2+3n 2,f 1 +2f 1 +⋯+nf 1 -n n -1 2=n n +1 2f 1 -n n -1 2=n n +1 -n n -1 2=n 2+3n2,合乎题意;f n n +1 2 +n -1=n n +1 2+1+n -1=n 2+3n 2,合乎题意;故选D .2已知函数f x 的定义域为R ,且f 12≠0,若f (x +y )+f (x )f (y )=4xy ,则下列结论错误的是()A.f -12=0 B.f 12=-2C.函数f x -12是偶函数 D.函数f x +12是减函数【答案】C【解析】对于A ,令x =12、y =0,则有f 12 +f 12 ×f 0 =f 121+f 0 =0,又f 12≠0,故1+f 0 =0,即f 0 =-1,令x =12、y =-12,则有f 12-12 +f 12 f -12 =4×12×-12,即f 0 +f 12 f -12 =-1,由f 0 =-1,可得f 12 f -12 =0,又f 12 ≠0,故f -12=0,故A 正确;对于C ,令y =-12,则有f x -12 +f x f -12 =4x ×-12,则f x -12 =-2x ,故函数f x -12是奇函数,故C 错误;对于D ,有f x +1-12 =-2x +1 =-2x -2,即f x +12=-2x -2,则函数f x +12 是减函数,故D 正确;对于B ,由f x -12 =-2x ,令x =1,有f 12=-2×1=-2,故B 正确.故选:C 3(2024·河南新乡·一模)已知定义在R 上的函数f x 满足∀x ,y ∈R ,f 2xy -1 =f x ⋅f y +f y +2x -3,f 0 =-1,则不等式f x >3-2x 的解集为()A.1,+∞B.-1,+∞C.-∞,1D.-∞,-1【答案】A【解析】令x =y =0,得f (-1)=f (0)⋅f (0)+f (0)-3=-3.令y =0,得f (-1)=f (x )f (0)+f (0)+2x -3,解得f (x )=2x -1,则不等式f (x )>3-2x 转化为2x +2x -4>0,因为y =2x +2x -4是增函数,且2×1+21-4=0,所以不等式f (x )>3-2x 的解集为(1,+∞).故选:A4已知定义在R 上的单调函数f x ,其值域也是R ,并且对于任意的x ,y ∈R ,都有f xf y =xy ,则f 2022 等于()A.0B.1C.20222D.2022【答案】D【解析】由于f x 在R 上单调,且值域为R ,则必存在y 0∈R ,使得f y 0 =1,令y =y 0得,f xf y 0 =xy 0,即f x =y 0x ,于是∀x ,y ∈R ,f xf y =f xy 0y =y 0xy 0y =y 20xy =xy ,则y 0=±1,从而f x =±x ,有f 2022 =2022.故选:D题型二:二次函数模型1(2024·高三·河北保定·期末)已知函数f (x )满足:∀x ,y ∈Z ,f (x +y )=f (x )+f (y )+2xy +1成立,且f (-2)=1,则f 2n n ∈N * =()A.4n +6B.8n -1C.4n 2+2n -1D.8n 2+2n -5【答案】C【解析】令x =y =0,则f 0 =f 0 +f 0 +1,所以f 0 =-1,令x =y =-1,则f -2 =f -1 +f -1 +2+1=2f -1 +3=1,所以f -1 =-1,令x =1,y =-1,则f 0 =f 1 +f -1 -2+1=f 1 -2=-1,所以f 1 =1,令x =n ,y =1,n ∈N *,则f n +1 =f n +f 1 +2n +1=f n +2n +2,所以f n +1 -f n =2n +2,则当n ≥2时,f n -f n -1 =2n ,则f n =f n -f n -1 +f n -1 -f n -2 +⋯+f 2 -f 1 +f 1=2n +2n -2 +⋯+4+1=2n +4 n -12+1=n 2+n -1,当n =1时,上式也成立,所以f n =n 2+n -1n ∈N * ,所以f 2n =4n 2+2n -1n ∈N * .故选:C .2(2024·山东济南·三模)已知函数f x 的定义域为R ,且yf x -xf y =xy x -y ,则下列结论一定成立的是()A.f 1 =1B.f x 为偶函数C.f x 有最小值D.f x 在0,1 上单调递增【答案】C【解析】由于函数f x 的定义域为R ,且yf x -xf y =xy x -y ,令y =1,则f x -xf 1 =x x -1 ,得f x =x 2+f 1 -1 x ,x =1时,f 1 =12+f 1 -1 恒成立,无法确定f 1 =1,A 不一定成立;由于f 1 =1不一定成立,故f x =x 2+f 1 -1 x 不一定为偶函数,B 不确定;由于f x =x 2+f 1 -1 x 的对称轴为x =-12⋅f 1 -1 与0,1 的位置关系不确定,故f x 在0,1 上不一定单调递增,D 也不确定,由于f x =x 2+f 1 -1 x 表示开口向上的抛物线,故函数f x 必有最小值,C 正确,故选:C3(2024·陕西西安·模拟预测)已知函数f (x )的定义域为R ,且满足f (x )+f (y )=f (x +y )-2xy +2,f (1)=2,则下列结论正确的是()A.f (4)=12B.方程f (x )=x 有解C.f x +12 是偶函数D.f x -12是偶函数【答案】C【解析】对于A ,因为函数f (x )的定义域为R ,且满足f (x )+f (y )=f (x +y )-2xy +2,f (1)=2,取x =y =1,得f (1)+f (1)=f (2)-2+2,则f (2)=4,取x =y =2,得f (2)+f (2)=f (4)-8+2,则f (4)=14,故A 错误;对于B ,取y =1,得f (x )+f (1)=f (x +1)-2x +2,则f (x +1)-f (x )=2x ,所以f (x )-f (x -1)=2(x -1),f (x -1)-f (x -2)=2(x -2),⋯,f (2)-f (1)=2,以上各式相加得f (x )-f (1)=2(x -1)+2 ⋅(x -1)2=x 2-x ,所以f (x )=x 2-x +2,令f (x )=x 2-x +2=x ,得x 2-2x +2=0,此方程无解,故B 错误.对于CD ,由B 知f (x )=x 2-x +2,所以f x +12 =x +12 2-x +12 +2=x 2+74是偶函数,f x -12 =x -12 2-x -12 +2=x 2-2x +114不是偶函数,故C 正确,D 错误.故选:C .4(2024·河南·三模)已知函数f x 满足:f 1 ≥3,且∀x ,y ∈R ,f x +y =f x +f y +6xy ,则9i =1f i 的最小值是()A.135 B.395C.855D.990【答案】C【解析】由f x +y =f x +f y +6xy ,得f x +y -3x +y 2=f x -3x 2+f y -3y 2,令g x =f x -3x 2,得g x +y =g x +g y ,令x =n ,y =1,得g n +1 -g n =g 1 ,故g n =g n -g n -1 + g n -1 -g n -2 +⋅⋅⋅+ g 2 -g 1 +g 1 =ng 1 ,又g n =f n -3n 2,所以f n =g n +3n 2=3n 2+f 1 -3 n ,所以9i =1f i =39i =1i 2+f 1 -3 9i =1i =855+45f 1 -3 ,因为f 1 ≥3,当f 1 =3时,9i =1f i 的最小值为855.故选:C .题型三:幂函数模型1已知函数f x 的定义域为-∞,0 ∪0,+∞ ,且xf x =y +1 f y +1 ,则()A.f x ≥0B.f 1 =1C.f x 是偶函数D.f x 没有极值点【答案】D【解析】令g x =xf x ,则g y +1 =y +1 f y +1 ,所以g x =g y +1 ,且x ,y +1为定义域内任意值,故g x 为常函数.令g x =k ,则f x =kx,为奇函数且没有极值点,C 错,D 对;所以f x ≥0不恒成立,f 1 =1不一定成立,A 、B 错.故选:D2(2024·河北·模拟预测)已知定义在-∞,0 ∪0,+∞ 上的函数f x 满足f xy =f -x y +f -yx+1xy,则()A.f x 是奇函数且在0,+∞ 上单调递减B.f x 是奇函数且在-∞,0 上单调递增C.f x 是偶函数且在0,+∞ 上单调递减D.f x 是偶函数且在-∞,0 上单调递增【答案】A【解析】令x =y =-1,则f 1 =-2f 1 +1,所以f 1 =13,令x =y =1,则f 1 =2f -1 +1,所以f -1 =-13,令y =-1,则f -x =-f -x +f 1 x -1x =-f -x +13x -1x =-f -x -23x,所以f -x =-13x,令y =1,则f x =f -x +f -1 x +1x =-13x -13x +1x =13x ,所以f x =13x,因为f -x =-13x=-f x ,且定义域关于原点对称,所以函数f x 是奇函数,由反比例函数的单调性可得函数f x =13x在0,+∞ 上单调递减.故选:A .题型四:指数函数模型1(多选题)(2024·山西晋中·三模)已知函数f x 的定义域为R ,满足f x +y =f x f y +f x +f y ,且f 0 ≠-1,f 1 >-1,则下列说法正确的是()A.f 0 =0B.f x 为非奇非偶函数C.若f 1 =1,则f 4 =15D.f x >-1对任意x ∈N *恒成立【答案】ACD【解析】我们有恒等式:f x +y +1=f x f y +f x +f y +1=f x +1 f y +1 .对于A ,由恒等式可得f 0 +1=f 0 +1 f 0 +1 ,而f 0 ≠-1,故f 0 +1≠0,所以1=f 0 +1,即f 0 =0,故A 正确;对于B ,由于f x =0满足条件且是偶函数,所以f x 有可能是偶函数,故B 错误;对于C ,由恒等式可得f x +1 +1=f x +1 f 1 +1 ,故f 4 +1=f 3 +1 f 1 +1 =f 2 +1 f 1 +12=f 1 +1 4.若f 1 =1,则f 4 =f 1 +1 4-1=24-1=15,故C 正确;对于D ,由恒等式可得f x +1 +1=f x +1 f 1 +1 .而f 1 +1>0,故f x +1 +1和f x +1同号(同为正数,或同为负数,或同为0),从而再由f 1 +1>0可知f x +1>0x ∈N * ,即f x >-1x ∈N * ,故D 正确.故选:ACD .2已知函数f x 满足,f p +q =f p ⋅f q ,f 1 =3,则f 21 +f 2 f 1 +f 22 +f 4f 3+f 23 +f 6 f 5 +f 24 +f 8 f 7 +f 25 +f 10f 9 的值为()A.15B.30C.60D.75【答案】B【解析】∵f p +q =f p ⋅f q ,∴f n +1 =f n ⋅f 1 ,∵f 1 =3∴f n +1 =3f n ∴f n =3×3n -1=3n因此f 21 +f 2 f 1 +f 22 +f 4 f 3 +f 23 +f 6 f 5 +f 24 +f 8 f 7 +f 25 +f 10 f 9=32+323+34+3433+36+3635+38+3837+310+31039=6+6+6+6+6=30故选:B3如果f a +b =f a f b 且f 1 =2,则f 2 f 1 +f 4 f 3 +f 6f 5=()A.125B.375C.6D.8【答案】C【解析】∵f 1 =2,f a +b =f a f b ,∴f 2 =f 1 f 1 ,f 4 =f 3 f 1 ,f 6 =f 5 f 1 ,∴f 2 f 1 =f 1 ,f 4 f 3 =f 1 ,f 6 f 5 =f 1 ,∴f 2 f 1 +f 4 f 3 +f 6 f 5 =3f 1 =6,故选:C .4已知函数f x 对一切实数a ,b 满足f a +b =f a ⋅f b ,且f 1 =2,若a n =f n2+f 2n f 2n -1n ∈N *,则数列a n 的前n 项和为()A.nB.2nC.4nD.8n【答案】C【解析】∵函数f x 对一切实数a,b满足f a+b=f a ⋅f b ,且f1 =2∴f n+1=f n ⋅f1 =2f n∴数列f n是等比数列,首项为2,公比为2∴f n =2n,n∈N*所以a n=f n2+f2nf2n-1=22n+22n22n-1=4所以数列a n的前n项和为4n.故选:C.题型五:对数函数模型1(多选题)已知函数f x 的定义域为R,f xy=y2f x +x2f y ,则( ).A.f0 =0 B.f1 =0C.f x 是偶函数D.x=0为f x 的极小值点【答案】ABC【解析】方法一:因为f(xy)=y2f(x)+x2f(y),对于A,令x=y=0,f(0)=0f(0)+0f(0)=0,故A正确.对于B,令x=y=1,f(1)=1f(1)+1f(1),则f(1)=0,故B正确.对于C,令x=y=-1,f(1)=f(-1)+f(-1)=2f(-1),则f(-1)=0,令y=-1,f(-x)=f(x)+x2f(-1)=f(x),又函数f(x)的定义域为R,所以f(x)为偶函数,故C正确,对于D,不妨令f(x)=0,显然符合题设条件,此时f(x)无极值,故D错误.方法二:因为f(xy)=y2f(x)+x2f(y),对于A,令x=y=0,f(0)=0f(0)+0f(0)=0,故A正确.对于B,令x=y=1,f(1)=1f(1)+1f(1),则f(1)=0,故B正确.对于C,令x=y=-1,f(1)=f(-1)+f(-1)=2f(-1),则f(-1)=0,令y=-1,f(-x)=f(x)+x2f(-1)=f(x),又函数f(x)的定义域为R,所以f(x)为偶函数,故C正确,对于D,当x2y2≠0时,对f(xy)=y2f(x)+x2f(y)两边同时除以x2y2,得到f(xy)x2y2=f(x)x2+f(y)y2,故可以设f(x)x2=ln x (x≠0),则f(x)=x2ln x ,x≠00,x=0,当x>0肘,f(x)=x2ln x,则f x =2x ln x+x2⋅1x=x(2ln x+1),令f x <0,得0<x<e-12;令f x >0,得x>e-12;故f(x)在0,e-1 2上单调递减,在e-12,+∞上单调递增,因为f(x)为偶函数,所以f(x)在-e-1 2,0上单调递增,在-∞,e-12上单调递减,显然,此时x =0是f (x )的极大值,故D 错误.故选:ABC .2.已知定义在0,+∞ 上的函数f x ,满足f xy +1=f x +f y ,且f 12=0,则f 211 =()A.1B.11C.12D.-1【答案】C【解析】令x =y =1,则f 1 +1=f 1 +f 1 ,解得f 1 =1,令x =2,y =12,则f 1 +1=f 2 +f 12,解得f 2 =2,令x =y =2,则f 22 +1=f 2 +f 2 ,解得f 22 =3,令x =22,y =2,则f 23 +1=f 22 +f 2 ,解得f 23 =4,⋯⋯,依次类推可得f 211 =12。
抽象函数是指函数的三种表示法(经典)

抽象函数是指函数的三种表示法:列表法、图象法、解析法均未给出,只给出函数记号f(x)的一类函数.这类函数解决起来较抽象,但却能有效地反映学生对知识的掌握、理解、应用及迁移的能力,对培养、提高学生的发散思维和创造思维等能力有很好的促进作用。
因此,这类问题在高中数学的各类考试中经常出现。
下面谈谈这类问题常见的几种解法:一、赋值法先以特殊值作尝试,在探索中发现题中条件遵循某些规律或特点,从而使问题得以解决。
这类问题经常出现,要认真理解其解题的要领和方法。
例1设函数f(x)的定义域为自然数集,若f(x+y) = f(x)+f(y)+x 对任意自然数x,y恒成立,且f(1) = 1,求f(x)的解析式。
分析:当令y=1时,可得f(x+1)=f(x)+x+1,这相似于数列中的递推关系,再利用相应的递推关系可求出函数的解析式。
解:令y = 1, 则f(x+1) = f(x)+f(1)+x = f(x)+x+1,∴ f(1) = 1f(2)= f(1) +2f(3) = f(2) +3…f(n) = f(n-1) +n各式相加得:f(n) = 1+2+3+…+n =∴ f(x) =例2已知函数f(x)满足f(x+y)+f(x-y) = 2 f(x) · f(y),x∈R,y∈R,且f(0)≠0,求证:f(x)是偶函数。
分析: 当令 x=y=0时,可得f(0)=1,再利用题中条件变形求解。
证明:令x = y = 0∴ f(0) +f(0) = 2f 2 (0)∵ f(0) ≠ 0, ∴ f(0) = 1令 x = 0 , 则 f(y) + f(-y) = 2f(0) · f(y)∴ f(-y) = f(y), ∵ y∈R,∴ f(x)是偶函数例3 已知函数f(x)的定义域为(0 , + ∞ ),对任意x > 0, y> 0恒有f(xy) = f(x) + f(y)求证:当x > 0时, f( ) = -f(x)分析:当令x=y=1时,可得f(1)=0,再灵活运用f(1)=f(x·)可求得。
抽象函数模型抽象函数模型化总结

抽象函数模型抽象函数模型化总结高三数学总复习——抽象函数所谓抽象函数,是指没有明确给出函数表达式,只给出它具有的某些特征或性质,并用一种符号表示的函数。
抽象来源于具体。
抽象函数是由特殊的、具体的函数抽象而得到的,高中大量的抽象函数都是以中学阶所学的基本函数为背景抽象而得,解题时,若能从研究抽象函数的“模型”入手,根据题设中抽象函数的性质,通过类比、猜想出它可能为某种基本函数,变抽象为具体,变陌生为熟知,常可猜测出抽象函数所蕴含的重要性质,并以此作为解题的突破口,必能为我们的解题提供思路和方法。
常见的抽象函数对应的初等函数模型如下: 初等函数模型抽象函数性质正比例函数一次函数幂函数二次函数(a≠0)f(x+y)=f(x)+f(y)+2axy-c 指数函数对数函数或f(xm)=mf(x) 余弦函数正切函数下面从这一认识出发,例谈七种类型的抽象函数及其解法。
(备注:解小题可参对应的具体函数,解大题得赋值,可在草纸上借助具体函数验证赋值所得结果是否正确。
另并不是所有的抽象函数都能找到中学阶段所学的初等函数,此时,只能通过赋值解决问题。
)一.以正比例函数为模型的抽象函数正比例函数是满足函数恒等式的最常见的模型。
若我们能从这个具体的模型出发,根据解题目标展开联想,给解题带来了思路。
例1、已知函数对任意实数,均有,且当时,,,求在区间[-2,1]上的值域。
分析:由题设可知,函数是的抽象函数,因此求函数的值域,关键在于研究它的单调性。
解:设,∵当,∴,∵,∴,即,∴f(x)为增函数。
在条中,令y=-x,则,再令x=y=0,则f(0)=2 f (0),∴ f(0)=0,故f(-x)=f(x),f(x)为奇函数,∴f(1)=-f(-1)=2,又f(-2)=2 f(-1)=-4,∴ f(x)的值域为[-4,2]。
二、以一次函数为模型的抽象函数一次函数y=ax+b是满足函数恒等式f(x+y)=f(x)+f(y)-b的最常见的模型。
抽象函数
抽象函数抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数,如函数的定义域,解析递推式,特定点的函数值,特定的运算性质等,它是高中函数部分的难点,也是大学高等数学函数部分的一个衔接点,由于抽象函数没有具体的解析表达式作为载体,因此理解研究起来比较困难.解决抽象函数常用的方法有(1)赋值法;(2)模型函数法;(3)代换法;(4)递推法;(5)迭代法等。
一.求函数值紧扣已知条件进行迭代变换,经有限次迭代可直接求出结果,或者在迭代过程中发现函数具有周期性,利用周期性使问题巧妙获解。
【例1】已知f x ()的定义域为R +,且f x y f x f y ()()()+=+对一切正实数x ,y 都成立,若f ()84=,则f (2)=_______。
变式:1.设f(x)(x ∈R )为奇函数,f(1)=21,f(x+2)=f(x)+f(2),则f(5)= _______。
2.定义在R 上的奇函数()f x 满足(2)()f x f x +=-,则(6)f = ( ) (A )-1 (B )0(C )1(D )23.已知函数y=f (x )是定义在R 上的奇函数,且f (2)=0,对任意x ∈R ,都有f (x +4)=f (x )+f (4) 成立,则f (2006)= ( )A .4012B .2006C .2008D .04.已知函数)(x f 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有 )()1()1(x f x x xf +=+,则)25(f 的值是 A. 0 B.21 C. 1 D. 25 5.设定义在R 上的函数()f x 满足()()213f x f x ⋅+=,若()12f =,则()99f =( ) (A)13 (B)2 (C)132 (D)2136.定义在R 上的函数()f x 满足()()()2f x y f x f y xy +=++(x y ∈R ,),(1)2f =,则(3)f -等于( C ) A .2B .3C .6D .9二.比较函数值大小利用函数的奇偶性、对称性等性质将自变量转化到函数的单调区间内,然后利用其单调性使问题获解。
高三数学总复习——抽象函数
高三数学总复习——抽象函数所谓抽象函数,是指没有明确给出函数表达式,只给出它具有的某些特征或性质,并用一种符号表示的函数。
抽象来源于具体。
抽象函数是由特殊的、具体的函数抽象而得到的,高中大量的抽象函数都是以中学阶所学的基本函数为背景抽象而得,解题时,若能从研究抽象函数的“模型”入手,根据题设中抽象函数的性质,通过类比、猜想出它可能为某种基本函数,变抽象为具体,变陌生为熟知,常可猜测出抽象函数所蕴含的重要性质,并以此作为解题的突破口,必能为我们的解题提供思路和方法。
常见的抽象函数对应的初等函数模型如下:初等函数模型抽象函数性质正比例函数()(0)f x kx k =≠()()()f x y f x f y ±=±一次函数()(0)f x kx b k =+≠()()()f x y b f x f y ++=+幂函数()nf x x=()()()()()()x f x f xy f x f y f y f y ==或二次函数2()f x ax bx c =++(a≠0)f(x+y)=f(x)+f(y)+2axy-c指数函数()(01)xf x a a a =>≠且()()()()()()f x f x y f x f y f x y f y +=-=或对数函数()log (01)a f x x a a =>≠且()()()()()()xf xy f x f y f f x f y y=+=-或或f(x m )=mf(x)余弦函数()cos f x x=()()2()()22x y x yf x f y f f +-+=()()2()()f x y f x y f x f y ++-=正切函数()tan f x x=()()()1()()f x f y f x y f x f y ±±=下面从这一认识出发,例谈七种类型的抽象函数及其解法。
(备注:解小题可参对应的具体函数,解大题得赋值,可在草纸上借助具体函数验证赋值所得结果是否正确。
抽象函数
抽象函数一般形式不给出具体解析式,只给出函数的特殊条件或特征的函数即抽象函数。
一般形式为y=f(x),或许还附有定义域、值域等,如:y=f(x), (x>0, y>0)。
抽象函数形式幂函数:f(xy)=f(x)f(y)正比例函数:f(x+y)=f(x)+f(y)对数函数:f(x)+f(y)=f(xy)三角函数:f(x+y)+f(x-y)=2f(x)f(y) f(x)=cosx指数函数:f(x+y)=f(x)f(y)周期为n的周期函数:f(x)=f(x+n)证明例题:f(xy)=f(x)+f(y),f(x)在定义域(0,+∞)上单调递增,f(2)=1。
求证:f(x)=lgx/lg2即以二为底x的对数。
证明:定义域:相同∵f(2*1)=f(2)+f(1)∴f(1)=0∵f(1)=f(2)+f(1/2)∴f(1/2)=-1同理f(1/x)=-f(x)∵f(x^k)=f(x*x*……*x*x)【k个x】=f(x)+f(x)+……+f(x)+f(x)【k个】=k*f(x),k∈Z且k>0(x=2时f(x^k)=k) ①f(x^k)=f((1/x)^(-k))=f((1/x)*(1/x)*……*(1/x)*(1/x))【-k个x】=f(1/x)+f(1/x)+……+f(1/x)+f(1/x)【-k个】=(-k)*f(1/x),k∈Z且k<0(x=2时,f(x^k)=-k*f(1/2)=k)f(x^0)=f(1)=0=0*f(x)(x=2时,f(x^k)=k=0)∴f(2^k)=k,k∈Z②∵p*f(2^(1/p))=f((2^(1/p))^p)=f(2^(1/p*p))=f(2)=1,k<>0且p∈Z(①)∴f(2^(1/p))=1/p,p∈Z且p<>0又∵②∴f(2^(k/p))=f((2^(1/p))^k)=k*f(2^(1/p))=k*(1/p)*f(2)=k/p即f(2^m)=m对所有有理数成立③任取z∈R,{1}若f(2^z)<z,z必定为f(y),y>2^z(由于单调性以及③),在(2^z,y)上必定有q=2^(z+n),z+n为有理数,n>0,f(q)=z-n<f(y)=z(单调性)与n>0矛盾,导出矛盾所以f(2^z)<z不成立{2}同理f(2^z)>z不成立又∵2^z>0,有定义域所以f(2^z)=z令x=2^z>0,f(x)=z=以二为底2^z的对数=以二为底x的对数证毕。
SX2020A063高考数学必修_利用模型函数解抽象函数
利用模型函数解抽象函数抽象函数问题,是常以某个基本函数为模型的设计或编拟的.在解答抽象函数问题时,若能根据题设条件所给的结构式特征,寻找出抽象函数的模型函数,根据模型函数的图象与性质,找出问题的解法或证法,是一种行之有效的好方法.下面结合例题进行分类说明.一﹑正比例函数型结构式特征:f(x+y)=f(x)+f(y)例1已知函数y=f(x)对于任意实数x、y均有f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,f(-1)=-2,求f(x)在区间[-2,-1]上的值域.分析:由题中所给结构式的特征f(x+y)=f(x)+f(y),联想到正比例函数的运算法则,其在定区间[a,b]上的值域自然由其增、减性不同分别为[f(a),f(b)]或[f(b),f(a)].于是,本题首先是确定出f(x)的单调性.解:设x1,x2∈[-2,-1],且x1<x2,则x2-x1>0,f(x2-x1)>0,f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)=f(x2-x1)+f(x1)-f(x1)=f(x2-x1)>0,即f(x1)<f(x2),知f(x)在[-2,-1]上单调递增,∴f(x)max=f(-2)=f[(-1)+(-1)]=f(-1)+f(-1)=2f(-1)=-4,f(x)min=f(-1)=-2.所以f(x)在区间[-2,-1]上的值域为[-4,-2].评注:以正比例函数为模型的抽象型函数问题,主要就是利用函数的单调性.判断抽象型函数的单调性,一般情况下是利用f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)进行判断.二﹑指数函数型结构式特征::f(x+y)=f(x)f(y),x,y∈R.例2设函数y=f(x)的定义域为R,且对任意实数m、n,总有f(m+n)=f(m)f(n),且当x>0时,0<f(x)<1.(1)证明:f(0)=1,且当x<0时,f(x)>1;(2)证明f(x)在R上单调递减.分析:由题设所给结构式特征f(m+n)=f(m)f(n),m,n∈R,可知“模型函数”为指数函数.再由x>0时,0<f(x)<1,得底数在(0,1)上,则解法自然天成.证明:(1)在f(m+n)=f(m)f(n),m,n∈R中,令m=1,n=0,得f(1)=f(1)f(0),即f(1)[f(0)-1]=0,但f(1)≠0,故必有f(0)=1.设x<0,则-x>0,令m=x,n=-x,代入条件式有f(0)=f(x)f(-x)=1,f(x)=1f(-x),由x>0时,0<f(x)<1,知-x>0时,0<f(-x)<1,1f(-x)>1,即当x<0时,f(x)>1.(2)设x 1<x 2,则x 2-x 1>0,∴0<f(x 2-x 1)<1,又∵f(x 2)=f[(x 2-x 1)+x 1]=f(x 2-x 1)f(x 1),∴f(x 2)<f(x 1),从而证得f(x)在R 上单调递减. 评注:以指数函数为模型的抽象型函数问题,主要利用函数的单调性及函数值在自变量x 满足0<x <1与x >1条件下函数分布问题.三﹑对数函数型结构式特征:f(xy)=f(x)+f(y)或f(y x)=f(x)+f(y)(x >0,y >0). 例3已知函数f(x)满足条件:①f(12)=1;②值域为[-1,1];③单调递减;④f(xy)=f(x)+f(y)对任意x,y ∈R 都成立.试求不等式f -1(x)f -1(11-x )≤12的解. 分析:由题设所给结构式的特征f(xy)=f(x)+f(y)联想到log a (MN)=log a M +log a N ,可以给函数f(x)设定一个“模型函数”为对数函数型,则其反函数为指数型函数,从而反函数f -1(x)的特征式为f -1(x)f -1(y)=f -1(x +y),再由f -1(x)的单调性求解不等式.解:设y 1=f -1(x 1),y 2=f -1(x 2),则y 1y 2=f -1(x 1)f -1(x 2),且x 1=f(y 1),x 2=f(y 2),又x 1+x 2=f(y 1)+f(y 2)=f(y 1y 2),因此y 1y 2=f -1(x 1+x 2),所以,原不等式等价于f -1(x +11-x )≤f -1(1), 由于反函数与原函数的单调性一致,于是有⎩⎪⎨⎪⎧ -1≤x ≤1-1≤11-x ≤1-1≤x+11-x ≤1x+11-x ≥1,解之得x =0. 评注:本题主要是根据原函数与反函数具有相同的单调性(但注意单调区间是不一定相同)去掉函数的符号,这也是去掉函数符号的常用方法. 例4设定义在(0,+∞)上的函数y =f(x)满足对一切正数m,n 都有f(m n)=f(m)-f(n),且当0<x <1时,f(x)>0.(1)求f(1)的值;(2)判断f(x)的单调性,并加以证明;(3)若设x 1,x 2∈(0,+∞),且x 1≠x 2,试比较12[f(x 1)+f(x 2)]与f(x 1+x 22)的大小. 分析:由特征式f(m n )=f(m)-f(n),联想到log a M N=log a M -log a N ,所以“模型函数”为对数函数. 解:(1)令M =1,N =1,则f(1)=f(1)-f(1)=0,∴f(1)=1.(2)设0<x 1<x 2,则0<x 1x 2<1,f(x 1)-f(x 2)=f(x 1x 2)>0,得f(x 1)>f(x 2), 故f(x)在(0,+∞)上递减.(3)由f(m n )=f(m)-f(n),可得f(m n )+f(n)=f(m)=f(m n·m), ∴12[f(x 1)+f(x 2)]=12f(x 1x 2)=12f(x 1x 2·x 1x 2)=12[f(x 1x 2)+f(x 1x 2]=f(x 1x 2), 又x 1,x 2∈(0,+∞),且x 1≠x 2,x 1+x 22>x 1x 2,由(2)知f(x)在(0,+∞)上递减, ∴f(x 1+x 22)<f(x 1x 2),即12[f(x 1)+f(x 2)]>f(x 1+x 22). 评注:求抽象函数的函数值,一般对抽象函数中的未知数进行赋值,如令x=…、﹣2、﹣1、0、1、2…等;如果题设出现了以不等式为条件,则可以根据此条件根据定义判断出抽象函数的单调性.四﹑三角函数型结构式特征:f(x ±y)=f(x)g(y)±g(x)f(y)(正弦型),f(x ±y)=f(x)f(y)-+g(x)g(y)(余弦型),f(x ±y)=f(x)±f(y)1-+f(x)f(y)(1-+f(x)f(y)≠0,正切型. 例5已知f(x)、g(x)是定义在R 上的两个函数,且g(x)为奇函数,并满足①f(0)=1,②对任何x,y ∈R 都有f(x -y)=f(x)f(y)+g(x)g(y).求证:(1)对任意x ∈R 都有f 2(x)+g 2(x)=1;(2)f(x)是偶函数;(3)若存在非零实数a 满足f(a)=1,则f(x)是周期函数.分析:由牲式f(x -y)=f(x)f(y)+g(x)g(y),我们联想到cos(α-β)=cos αcos β+sin αsin β,进一步由g(x)为奇函数、f(0)=1,可以猜想f(x)、g(x)分别为余弦和正弦.证明:(1)∵f 2(x)+g 2(x)=f(x)f(x)+g(x)g(x)=f(x -x)=f(0)=1,∴对任意x ∈R 都有f 2(x)+g 2(x)=1.(2)由f(x -y)=f(x)f(y)+g(x)g(y),令x =0,y =0,得:f(0-0)=f(0)f(0)+g(0)g(0),又f(0)=1,∴g(0)=0,从而f(-x)=f(0-x)=f(0)f(x)+g(0)g(x),即f(-x)=f(x),所以f(x)是偶函数.(3)若存在非零实数a 满足f(a)=1,令x =y =a ,则g(a)=0,又∵f(x +a)=f[x -(-a)]=f(x)f(-a)+g(x)g(-a)=f(x)f(a)-g(x)g(a)=f(x),∴f(x)是周期函数,a 就是它的一个周期.评注:对于抽象函数的奇偶性,一般利用赋值法,常令y =﹣x 即可判断其奇偶性;而对于抽象函数的周期性,常常是以三角函数为模型进行构造的抽象函数,求解抽象函数的周期性问题一般是将等式中的x 换为x+T 即可.例5 f(x)是定义在R 上的函数,且f(x +y)=f(x)+f(y)1﹣f(x)f(y),(f(x)≠0,1).若f(1)=1,证明:函数f(x)为周期函数,并求出其中一个周期.分析:由f(x +y)=f(x)+f(y)1﹣f(x)f(y)联想到tan(x +y)=tanx +tany 1﹣tanx ·tany,易知f(x)为三角函数y =tanx. 解:令y =1,且由f(1)=1,得f(x +1)=1+f(x)1﹣f(x),∴f(x +2)=1+f(x+1)1﹣f(x+1)=1+1+f(x)1﹣f(x)1﹣1+f(x)1﹣f(x)=-1f(x), 从而f(x +4)=﹣1f(x+2)=﹣1﹣1f(x)=f(x),∴f(x)是周期函数,且4为f(x)的一个周期. 评注:抽象函数的构造一般是根据某个基本函数的相关的公式﹑性质与法则等进行构造的,如以指数函数、对数函数是根据其指数式、对数式运算进行构造的,三角函数是以三角公式构造的.五﹑合理转换,探寻模型例7已知f(x)是定义在R 上的不恒等于零的函数,且对于任意的a,b ∈R 都有f(a ·b)=af(b)+bf(a).(1)求f(0),f(1)的值;(2)判断f(x)的奇偶性,并加以证明;(3)若f(2)=2,u n =f(2-n)n(n ∈N*),求数列{u n }的前n 项和S n .分析:由特征式f(a ·b)=af(b)+bf(a),联想不到一种贴切的函数模型与之对应,但对其进行适当变形:当a ·b ≠0时,f(ab)ab =f(b)b +f(a)a ,令g(x)=f(x)x,则g(a ·b)=g(a)+g(b),这不就是对数函数模型吗?解:(1)令a =b =0,则f(0)=0;令a =b =1,得f(1)=0.(2)由f(1)=f[(-1)×(-1)]=-f(-1)-f(-1)=0,得f(-1)=0,f(-x)=f[(-1)·x]=-f(x)+xf(-1)=-f(x),∴f(x)是奇函数.(3)当a ·b ≠0时f(a ·b)=af(b)+bf(a),f(ab)ab =f(b)b +f(a)a ,令g(x)=f(x)x, 则g(a ·b)=g(a)+g(b),即g(a ·b)-g(b)=g(a ·b b)=g(a), ∴g(1)=f(1)1=0,g(2)=f(2)2=1, 又u n =f(2-n )n =2-n g(2-n )n =g(1)-g(2n )2n n =–ng(2)2n n =–12n (n ∈N*), 所以S n =u 1+u 2+…+u n =–12–122–…–12n =12(1–12n )1–12=12n –1(n ∈N*). 评注:本题通过分析条件从结构特征上看并不明显具有某个基本函数的特征,因此对其条件进行了转化,而转化思想是解决数学问题最常见的数学思想方法,无处不在,转化思想主要体现为非常规向常规转化、陌生向熟悉转化、复杂向简单转化及数与形的转化等.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抽象函数模型及实例
1、线性函数型抽象函数
线性函数型抽象函数,是由线性函数抽象而得的函数。
例1、已知函数f(x)对任意实数x,y,均有f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,f(-1)=-2,求f(x)在区间[-2,1]上的值域。
分析:由题设可知,函数f(x)是的抽象函数,因此求函数f(x)的值域,关键在于研究它的单调性。
解:设,∵当,∴,
∵,
∴,即,∴f(x)为增函数。
在条件中,令y=-x,则,再令x=y=0,则f(0)=2 f(0),
∴f(0)=0,故f(-x)=f(x),f(x)为奇函数,
∴f(1)=-f(-1)=2,又f(-2)=2 f(-1)=-4,
∴f(x)的值域为[-4,2]。
例2、已知函数f(x)对任意,满足条件f(x)+f(y)=2 + f(x+y),且
当x>0时,f(x)>2,f(3)=5,求不等式的解。
分析:由题设条件可猜测:f(x)是y=x+2的抽象函数,且f(x)为单调增函数,如果这一猜想正确,也就可以脱去不等式中的函数符号,从而可求得不等式的解。
解:设,∵当,∴,则
,
即,∴f(x)为单调增函数。
∵,
又∵f(3)=5,∴f(1)=3。
∴,∴,
即,解得不等式的解为-1 < a < 3。
2、指数函数型抽象函数
例3、设函数f(x)的定义域是(-∞,+∞),满足条件:存在,使得,
对任何x和y,成立。
求:
(1)f(0);(2)对任意值x,判断f(x)值的正负。
分析:由题设可猜测f(x)是指数函数的抽象函数,
从而猜想f(0)=1且f(x)>0。
解:(1)令y=0代入,则,∴。
若f(x)=0,则对任意,有,
这与题设矛盾,∴f(x)≠0,∴f(0)=1。
(2)令y=x≠0,则,
又由(1)知f(x)≠0,∴f(2x)>0,即f(x)>0,
故对任意x,f(x)>0恒成立。
例4、是否存在函数f(x),使下列三个条件:①f(x)>0,x∈N;②
;③f(2)=4。
同时成立?若存在,求出f(x)的解析式,如不存在,说明理由。
分析:由题设可猜想存在,又由f(2)=4可得a=2.故猜测存在函数,用数学归纳法证明如下:
(1)x=1时,∵,又∵x∈N时,f(x)>0,∴,结论正确。
(2)假设时有,则x=k+1时,
,∴x=k+1时,结论正确。
综上所述,x为一切自然数时。
3、对数函数型抽象函数
对数函数型抽象函数,即由对数函数抽象而得到的函数。
例5、设f(x)是定义在(0,+∞)上的单调增函数,满足,
求:(1)f(1);
(2)若f(x)+f(x-8)≤2,求x的取值范围。
分析:由题设可猜测f(x)是对数函数的抽象函数,f(1)=0,f(9)=2。
解:(1)∵,∴f(1)=0。
(2),从而有f(x)+f(x-8)≤f(9),
即,∵f(x)是(0,+∞)上的增函数,故
,解之得:8<x≤9。
4、三角函数型抽象函数
三角函数型抽象函数即由三角函数抽象而得到的函数。
例7、己知函数f(x)的定义域关于原点对称,且满足以下三条件:
①当是定义域中的数时,有;
②f(a)=-1(a>0,a是定义域中的一个数);
③当0<x<2a时,f(x)<0。
试问:(1)f(x)的奇偶性如何?说明理由。
(2)在(0,4a)上,f(x)的单调性如何?说明理由。
分析: 由题设知f(x)是的抽象函数,从而由及题设条件猜想:f(x)是奇函数且在(0,4a)上是增函数(这里把a看成进行猜想)。
解:(1)∵f(x)的定义域关于原点对称,且是定义域中的数时有
,∴在定义域中。
∵
,
∴f(x)是奇函数。
(2)设0<x1<x2<2a,则0<x2-x1<2a,∵在(0,2a)上f(x)<0,
∴f(x1),f(x2),f(x2-x1)均小于零,进而知中的,于是f(x1)<f(x2),∴在(0,2a)上f(x)是增函数。
又,∵f(a)=-1,∴,∴f(2a)=0,设2a<x<4a,则0<x-2a<2a,
,于是f(x)>0,即在(2a,4a)上f(x)>0。
设2a<x1<x2<4a,则0<x2-x1<2a,从而知f(x1),f(x2)均大于零。
f(x2-
x1)<0,∵,∴,即
f(x1)<f(x2),即f(x)在(2a,4a)上也是增函数。
综上所述,f(x)在(0,4a)上是增函数。
5、幂函数型抽象函数
幂函数型抽象函数,即由幂函数抽象而得到的函数。
例8、已知函数f(x)对任意实数x、y都有f(xy)=f(x)·f(y),且f(-1)=1,f(27)=9,当时,。
(1)判断f(x)的奇偶性;
(2)判断f(x)在[0,+∞)上的单调性,并给出证明;
(3)若,求a的取值范围。
分析:由题设可知f(x)是幂函数的抽象函数,从而可猜想f(x)是偶函数,且在[0,+∞)上是增函数。
解:(1)令y=-1,则f(-x)=f(x)·f(-1),∵f(-1)=1,∴
f(-x)=f(x),f(x)为偶函数。
(2)设,∴,,
∵时,,∴,∴f(x1)<f(x2),故f(x)在0,+∞)上是增函数。
(3)∵f(27)=9,又,
∴,∴,∵,∴,
∵,∴,又,故。